An Earth Charter Based Assessment of The

An Earth Charter Based Assessment of The

<p> AN EARTH CHARTER BASED ASSESSMENT OF THE GREEN BUILDING DEMONSTRATION AND LEARNING CENTER AT FLORIDA GULF COAST UNIVERSITY</p><p>Prepared by Richard M. Clugston, Ph.D. Coordinator, Earth Charter Scholarship Project</p><p>Prepared for President Wilson G. Bradshaw, Provost and Vice President for Academic Affairs Ronald Toll, Vice President for Administrative Services and Finance Joe Shepard, and College of Arts & Sciences Dean Donna Price Henry</p><p>Final Version July 28, 2009</p><p>2 AN EARTH CHARTER BASED ASSESSMENT OF THE GREEN BUILDING DEMONSTRATION AND LEARNING CENTER AT FLORIDA GULF COAST UNIVERSITY</p><p>TABLE OF CONTENTS</p><p>Table of Contents...... 2</p><p>Introduction...... 3</p><p>What is the Earth Charter?...... 3</p><p>EC-Assess...... 4</p><p>Preliminary Considerations: The Earth Charter’s Worldview...... 4</p><p>Applying EC-Assess to FGCU Commitments and the Green Building...... 6 Group 1: Earth Charter Principles and Supporting Principles that can be directly applied to the Green Building project...... 7 Group 2: Earth Charter Principles and Supporting that deal with social and educational dimensions of activities in the building...... 10 Group 3: Earth Charter Supporting Principles that have implications for design and educational programming but which are not a significant part of the LEED/FGCU framework...... 12 Group 4: Earth Charter Supporting Principles that are not relevant...... 12</p><p>Reflections and Directions for Applying the Earth Charter to the Green Building Design...... 13</p><p>Conducting an Earth Charter Design Charrette Early in Fall 2009...... 13</p><p>Appendix A: Model Green Buildings, The Earth Charter, and Their Example for FGCU...... 18 Case #1: Adam Joseph Lewis Center at Oberlin College...... 18 Case #2: The John T. Lyle Center for Regenerative Studies...... 21 Case #3: Unity House at Unity College in Maine...... 23 Case #4: The University of South Carolina Green Dormitory Initiative...... 25 Case #5: The Willow School...... 26</p><p>Appendix B: EC-Assess Worksheet...... 28</p><p>Notes...... 34</p><p>References...... 35</p><p>3 AN EARTH CHARTER BASED ASSESSMENT OF THE GREEN BUILDING DEMONSTRATION AND LEARNING CENTER AT FLORIDA GULF COAST UNIVERSITY</p><p>Introduction This paper provides background information for an analysis of the Green Building Demonstration and Learning Center at FGCU (referred to in this paper as the Green Building) through the lens of the Earth Charter. This paper: 1) Gives a brief overview of the Earth Charter; 2) Describes EC-Assess, the assessment instrument based on the Earth Charter; 3) Demonstrates how the Earth Charter “worldview” and EC-Assess can be brought to bear on the project and gives preliminary findings on how existing building design and proposed programs express commitment to Earth Charter Principles and Supporting Principles; 4) Offers some reflections and suggested directions for the way forward with the green building design; and 5) Describes the process of conducting an EC-Assess of the Green Building in a Fall 2009 charrette process and raises some issues to be resolved this summer.</p><p>EC-Assess is intended to be a community-wide process that draws on and combines the perceptions of critical stakeholders. Thus, to do EC-Assess properly, we would need to involve FGCU administration, faculty, staff, and students and draw on participants’ various perspectives on the institution’s commitment to and actions for Earth Charter Principles and Supporting Principles. </p><p>The Earth Charter, as a document and the focus of a social movement, is making a catalytic contribution to accelerating our transition to sustainable ways of living. Its integrated ethical vision increasingly serves as an inspiration as well as a “standard by which the conduct of all individuals, organizations, businesses, governments and transnational institutions are to be guided and assessed” (Earth Charter, 2000, Preamble, paragraph six). Over the 20 years that individuals and organizations have been drafting the Earth Charter and translating it into action, the Earth Charter has been used as an assessment framework for local and state governments, corporations and NGO’s.</p><p>What is the Earth Charter?i The Earth Charter is a declaration of fundamental ethical principles for building a just, sustainable, and peaceful global society in the 21st century. It seeks to inspire in all people a sense of global interdependence and shared responsibility for the well-being of the diverse human family, the whole community of life, and future generations. It is a vision of hope and a call to action.</p><p>The Earth Charter is centrally concerned with the transition to sustainable ways of living and sustainable human development. The four major themes of the Earth Charter are expressed in its four parts: Part I, Respect and Care for the Community of Life; Part II, Ecological Integrity; Part III, Social and Economic Justice; and Part IV, Democracy, Nonviolence, and Peace. The Earth Charter vision reflects the conviction that caring for people and caring for Earth are two interrelated dimensions of one great task. It supports the view that economic institutions and activities should promote equitable human development and should value and protect Earth’s ecological systems and the many services they provide. The Earth Charter is both a people-</p><p>4 centered and ecosystem-centered document. Recognizing that our environmental, economic, social, political, and spiritual challenges are interdependent, the Earth Charter provides an integrated framework for thinking about and addressing these issues. The result is a fresh, broad conception of what constitutes a sustainable society and sustainable development. </p><p>The Preamble of the Earth Charter briefly describes our cosmological, ecological, and social circumstances and the major challenges and choices facing humanity. The concluding section, The Way Forward, calls for the participation of all members of society in the transition to sustainable ways of living. The Earth Charter does not attempt to describe the mechanisms and instruments required to implement its principles. Yet during the 20 years that individuals and organizations have been drafting the Earth Charter and translating it into action, many practical applications have been developed. The Earth Charter has been used as an assessment framework for local and state governments, corporations and NGO’s.</p><p>EC-Assess Developed by Earth Charter International, EC-Assess is an assessment tool for evaluating the sustainability of organizations, projects, initiatives and individuals. It is an ethical assessment tool that can be used by individuals or groups who want to evaluate and improve both their level of declared commitment and their level of performance in pursuit of a more just, sustainable, and peaceful world. EC-Assess is based on the ethical framework of the Earth Charter, and uses a simple worksheet based on the Earth Charter’s 53 Supporting Principles in Parts II, III and IV. Evaluators first identify which Supporting Principles are relevant to the subject of the assessment. They then evaluate the extent to which each Supporting Principle is espoused publicly and the extent to which actual planning and performance reflects the implementation of that Supporting Principle in practice.</p><p>The results allow the evaluator to identify areas where either the declared embrace of a Supporting Principle is strong or weak, and where the actual practice of a specific Supporting Principle is strong or weak. By utilizing EC-Assess as a normative, systemic, and customizable assessment, individuals and organizations can stimulate discussion and inspire action to change lifestyles, goals, and operations to better reflect their espoused values. The results highlight those areas where declared commitment to a principle, and the practices of that initiative or organization, are not in harmony with one another. This enables the evaluator to identify priorities for improvement.</p><p>Preliminary Considerations: The Earth Charter’s Worldview EC-Assess focuses on the ethical actions suggested in the Supporting Principles of Parts II, III, and IV of the Earth Charter. However, the integrated vision of the whole Earth Charter points toward a worldview that is necessary to meet our global challenges, emphasizing the critical challenges we face and the changes we will need to make if we are to deal successfully with them. The following quotes from the Earth Charter Preamble illustrate these themes: </p><p>“We stand at a critical moment in Earth’s history….” “The dominant patterns of production and consumption are causing environmental devastation, the depletion of resources, and a massive extinction of species.”</p><p>5 “Fundamental changes are needed in our values, institutions and ways of living. We must realize that when basic needs have been met, human development is primarily about being more not having more.” “The spirit of human solidarity and kinship with all life is strengthened when we live with reverence for the mystery of being, gratitude for the gift of life, and humility regarding the human place in nature.”</p><p>The Earth Charter calls on us to confront in a compassionate way the drivers of our unsustainable way of living, and to be moved to action to change them. This is not an easy task, for it draws us into facing the systemic ills of our social structures and our own personal contradictions. This calls for new human-earth relationships (Berry/Tucker, 2006) to clarify what sustainable development really is about, and what education really is for (Orr, 1992). </p><p>What this will require is that we not only make our lives our message (Gandhi) but make our institutions our message! David Orr poses the question “What is education for?” and challenges us to recognize that often it is the most educated humans that do the most damage to the social and ecological fabric necessary to support sustainable living for all. He also argues that our buildings and other institutional practices are crystallized pedagogy, teaching students and others what we really value in life.</p><p>David Gruenewald provides a useful perspective on the Earth Charter’s potential contribution to higher education. He states:</p><p>The Earth Charter’s educational proposals appear to recognize that the disciplinary boundaries, norms, routines, and standardizations that characterize conventional education work against the experiential, collaborative, interdisciplinary, action-oriented, and transformative goals of the Earth Charter. </p><p>What the Earth Charter offers instead is a set of shared if contested counterstandards ‘by which people may measure progress toward a just and sustainable society, standards enforced by the authority of moral judgment and the power of public opinion’ (Sauer, 2002, pp. 26–27).</p><p>A transformative discourse constantly challenges the assumptions and purposes behind existing practices and articulates a fundamentally different vision. Such is the vision of the Earth Charter. Thus from an educational perspective, the power of the Earth Charter is in its potential to engender conversations, to interrupt our discourse, and to challenge our norms and routines with a comprehensive, socioecological vision for society and education. For if Bowers (2001) is right and we need to replace the destructive metaphors of modernism with new, and old, ecological metaphors, we desperately need conversations out of which these metaphors can emerge and circulate. As a cross-cultural people’s treaty for global interdependence and shared responsibility, the Earth Charter is a text around which these conversations might begin. (Gruenewald, 2004, p. 99)</p><p>6 Applying EC-Assess to FGCU Commitments and the Green Building</p><p>Assessment of all functions is necessary for improvement and continual renewal. The University is committed to accounting for its effectiveness through the use of comprehensive and systematic assessment. Tradition is challenged; the status-quo is questioned; change is implemented. (Florida Gulf Coast University Guiding Principles, 1996)</p><p>Conducting an Earth Charter Assessment to guide the planning and growth of a university green building presents Florida Gulf Coast University with the opportunity to deepen its approaches to green building design. The preliminary exercise before conducting the EC-Assess is to consider what the basic assumptions described in the previous sections imply for the way Florida Gulf Coast University understands its mission and core tasks. How would conducting an EC-Assess influence the campus master plan and other dimensions of planning, academic programs, and the design of the Green Building Demonstration and Learning Center? How do Florida Gulf Coast University commitments align with Earth Charter principles?</p><p>A review of the various documents that guide and constrain the design and programming of the Green Building--such as LEED certification requirements, the FGCU Campus Master Plan, the University Environmental Stewardship Management Plan, and the University Mission, Vision, and Goals--gives a picture of the environmental and social commitments of the University. These commitments often align with Principles and Supporting Principles of the Earth Charter. Therefore, it is likely that an Earth Charter Assessment of the Green Building would reveal that many of the Earth Charter’s principles may already be expressed in FGCU’s building design.</p><p>Approximately three-quarters of the Earth Charter’s Principles and Supporting Principles are strongly affirmed by FGCU commitments. For example, Principles and Supporting Principles of Earth Charter Part II: Ecological Integrity are expressed in FGCU commitments to conservation and rehabilitation in planning; preserving ecosystems and biodiversity on campus in the context of the Western Everglades; using native plants, xeriscaping, managing sources of water and runoff and sourcing sustainable products; and analyzing the carbon footprint of building materials and electricity.</p><p>Principles and Supporting Principles of Part III: Social and Economic Justice are expressed in FGCU commitments to use products that are sustainable, fairness in salaries and compensation, strengthening families, protecting women on campus, and practicing non-discrimination policies.</p><p>Principles and Supporting Principles of Part IV: Democracy, Nonviolence, and Peace are expressed in FGCU commitments to provide outreach to local communities and schools, including arts and humanities education; to encourage global collaboration and partnerships; and to resolve conflicts collaboratively.</p><p>A detailed breakdown of how various University commitments align with Earth Charter principles is beyond the scope of this paper. Indeed, such an analysis would emerge as the result of a thoughtful Earth Charter Assessment planning charrette at FGCU. The tables below provide an illustrative review of how FGCU’s commitments correlate to Earth Charter Principles and </p><p>7 Supporting Principles. These Principles and Supporting Principles fall into the following four groups:</p><p>1) Principles and Supporting Principles that can be directly applied to the green building project; 2) Principles and Supporting Principles that deal with social and educational activities in the building; 3) Supporting Principles that have implications for design and education programming but which are not a significant part of the LEED/FGCU framework; and 4) Supporting Principles that are not relevant to the green building, such as those that focus on military issues. If Florida Gulf Coast University is to conduct an EC-Assess for the Green Building, it would involve a more complete, participatory charting of Earth Charter principles—including the 53 Supporting Principles recognized in EC-Assess—corresponding FGCU commitments, and/or LEED standards. Appendix B provides the complete matrix of the 53 Supporting Principles of the EC-Assess that would be used in a Fall Earth Charter assessment charrette. </p><p>Group 1: Earth Charter Principles and Supporting Principles that can be directly applied to the Green Building project. </p><p>These are Principles and Supporting Principles that are closely connected to LEED credits, to the 13 goals of the Environmental Stewardship Advisory Council, and to the Campus Master Plan. Examples are listed below.</p><p>Earth Charter Principles FGCU Commitments LEED 2009 Credits and Supporting Principles Supporting Principle 5.a - Campus Master Plan (CMP) Policy Sustainable Site Selection Adopt at all levels sustainable 901.1.5 - Restore/enhance natural Credit 1 - Avoid the development plans and on-site wetland areas and development of inappropriate regulations that make incorporate into the stormwater sites and reduce the environmental conservation management system per the environmental impact from the and rehabilitation integral to Southwest Florida Water location of a building on a all development initiatives. Management District conceptual site…. During the site selection permit.ii process, give preference to sites that do not include sensitive Environmental Stewardship elements or restrictive land Management Plan (ESMP) Goal 3.5 types. Select a suitable building - Demonstrate exemplary practice location and design the building in restoring, sustaining, and with a minimal footprint to managing ecological systems.iii minimize disruption of environmentally sensitive areas.iv</p><p>Supporting Principle 5.d - CMP Policy 1301.3.4 - Preserve Sustainable Site Credit 5.1: Control and eradicate non- and restore on-campus wetland Protect or Restore Habitat - native or genetically modified areas and adjacent upland buffer Restore or protect a minimum </p><p>8 organisms harmful to native areas as potential wildlife habitat, of 50% of the site (excluding species and the environment, by removal of exotic vegetation and the building footprint) or 20% and prevent introduction of maintaining them free of exotic of the total site area (including such harmful organisms. infestation.v building footprint), whichever is greater, with native or adapted ESMP Task 3.5.1 - Report the vegetation.vii number of acres cleared and free of exotics with hydrological elements restored, and total acres remaining to be cleared and restored.vi</p><p>Principle 7 - Adopt patterns of CMP Policy 1301.4.2 - Design all Materials and Resources production and consumption University buildings with facilities Prerequisite 1 - Provide an that safeguard Earth’s to accommodate collection, storage, easily-accessible dedicated area regenerative capacities. and disposal of recycled or areas for the collection and materials.viii storage of materials for recycling for the entire building. CMP Policy 1301.4.3 - Coordinate Materials must include, at a on-campus recycling programs with minimum: paper, corrugated those of local government in regard cardboard, glass, plastics and to materials collected, and metals. disposal/collection procedures.ix MR Credit 3: Materials Reuse - ESMP Goal 3.2 - Promote the use Use salvaged, refurbished or of recycled materials in reused materials, the sum of procurement, the use of recycling which constitutes at least 5% or practices in disposal activities, and 10%, based on cost, of the total conservation of resources used.x value of materials on the project.xi</p><p>Supporting Principle 7.b - CMP Objective 301.7: Energy Energy and Atmosphere Act with restraint and Efficiency - Develop, where Prerequisite 2: Energy efficiency when using energy, feasible and cost-effective, Performance - Establish the and rely increasingly on buildings on campus that minimum level of energy renewable energy sources, incorporate passive energy efficiency for the proposed such as solar and wind. efficiency design practices.xii building and systems to reduce environmental and economic CMP Objective 501.4: Energy impacts associated with Conservation - Develop academic excessive energy use.xiv facilities that consider and incorporate passive energy efficiency design practices as practicable and economical advantages.xiii</p><p>FGCU commitment also demonstrated by signing the American College and University Presidents Climate Commitment.</p><p>9 Group 1, continued… Supporting Principle 7.c CMP Policy 301.7.12 - Encourage “Based on existing and proven Promote the development, architects to utilize the following technology, the LEED Green adoption, and equitable specific passive energy efficiency Building Rating Systems transfer of environmentally design principle for campus evaluate environmental sound technologies. buildings: performance from a whole a.) Overhangs and recesses to shade building perspective over a southern-facing glass areas. building’s life cycle, providing b.) Maximize shaded outdoor a definitive standard for what corridors for circulation. constitutes a green building in c.) Maximize shading of buildings design, construction, and through plant placement and operation. The LEED rating selection. systems are based on accepted d.) Design outdoor courtyards, energy and environmental arcades, etc., to maximize natural principles and strike a balance ventilation and air movement. between known, established e.) Select roof materials and practices and emerging building colors to minimize heat concepts.”xvii gain. f.) Exceed, minimum insulation requirements for ceilings and walls.xv</p><p>ESMP Goal 3.1 - Design and build facilities for sustainability. Consider sustainability and environmental impact in the design and construction of FGCU facilities, and construct buildings to meet green building certification requirements.xvi</p><p>10 Group 2: Earth Charter Principles and Supporting Principles that deal with social and educational dimensions of activities in the building. </p><p>These Earth Charter Principles and Supporting Principles reflect the FGCU Vision, Mission, and Guiding Principles,xviii Student Learning Goals and Outcomes,xix university policies on affirmative action, campus safety, freedom of information, grievance procedures, environmental education and education for sustainability, and so on. Examples are listed below.</p><p>Earth Charter Principles and Supporting FGCU Commitments Principles Supporting Principle 9.b – Empower every human Mission – Florida Gulf Coast University… practices being with the education and resources to secure a and promotes environmental sustainability. sustainable livelihood. Guiding Principles – Informed and engaged citizens –and – are essential to the creation of a civil and sustainable society. Supporting Principle 14.a – Provide all with educational opportunities that empower them to Student Learning Goal 3: Ecological Perspective – contribute actively to sustainable development. Know the issues related to economic, social, and ecological sustainability. Analyze and evaluate ecological issues locally and globally. Participate in collaborative projects requiring awareness and/or analysis of ecological and environmental issues.</p><p>Supporting Principle 14.b – Promote the Student Learning Goal 1: Aesthetic Sensibility – contribution of the arts and humanities as well as Know and understand the variety of aesthetic the sciences in sustainability education. frameworks that have shaped, and continue to shape, human creative arts</p><p>Supporting Principle 12.a – Eliminate Mission – Florida Gulf Coast University… embraces discrimination in all its forms, such as that based diversity. on race, color, sex, sexual orientation, religion, language, and national, ethnic, or social origin. Guiding Principles – Diversity is a source of renewal and vitality. The University is committed to –and– developing capacities for living together in a democracy whose hallmark is individual, social, Principle 11 – Affirm gender equality and equity cultural, and intellectual diversity. It fosters a as prerequisites to sustainable development. climate and models a condition of openness in which students, faculty, and staff engage multiplicity and difference with tolerance and equity.</p><p>Student Learning Goal 2: Culturally Diverse Perspective – Analyze, evaluate, and assess the impact of differences in ethnicity, gender, socioeconomic status, native language, sexual orientation and intellectual/disciplinary approaches.</p><p>11 Group 2, continued… Supporting Principle 12.a – Eliminate The Office of Institutional Equity and Compliance discrimination in all its forms, such as that based seeks to foster productive educational and work on race, color, sex, sexual orientation, religion, environments that nurture and value equity, language, and national, ethnic, or social origin. diversity, respect, human understanding, and access for our constituents by providing awareness, tools –and – and resources to eliminate bias, illegal discrimination and harassment to support the Principle 11 – Affirm gender equality and equity University’s vision, mission and strategies; and to as prerequisites to sustainable development. develop and foster a setting, which celebrates differences, and welcomes and serves students, faculty, staff, visitors and vendors from all aspects of diversity.xx</p><p>FGCU adheres to Federal nondiscrimination laws, such as Title VII of the Civil Rights Act; Equal Pay Act of 1963; Age Discrimination in Employment Act of 1967 (ADEA); Rehabilitation Act of 1973, Sections 501 and 505; Titles I and V of the Americans with Disabilities Act of 1990 (ADA); and the Civil Rights Act of 1991.</p><p>Supporting Principle 13.c – Protect the rights to FGCU Guiding Principles – Academic freedom is freedom of opinion, expression, peaceful the foundation for the transmission and advancement assembly, association, and dissent. of knowledge. The University vigorously protects freedom of inquiry and expression and categorically expects civility and mutual respect to be practiced in all deliberations.</p><p>Supporting Principle 9.c – Recognize the ignored, FGCU Division of Justice Studies Human Slavery protect the vulnerable, serve those who suffer, and Symposium and Human Trafficking Symposium enable them to develop their capacities and to pursue their aspirations.</p><p>Supporting Principle 13.f – Strengthen local FGCU Guiding Principles – Service to Southwest communities, enabling them to care for their Florida, including access to the University, is a environments. public trust. The University is committed to forging partnerships and being responsive to its region.</p><p>Supporting Principle 16.a – Encourage mutual The International Services Office provides services understanding, solidarity, and cooperation among and support to students, faculty and staff all peoples and within and among the nations. participating in international education, study abroad and exchange programs, international internships, service learning, and degree programs abroad.xxi</p><p>12 Group 3: Earth Charter Supporting Principles that have implications for design and educational programming but which are not a significant part of the LEED/FGCU framework. </p><p>These are Earth Charter Supporting Principles that emphasize lifecycle analysis, investment policies, full cost accounting, indigenous spirituality, outreach to developing countries and local poor communities, and that encourage us to “adopt lifestyles that emphasize the quality of life and material sufficiency in a finite world,” and so on. Examples are:</p><p>Supporting Principle 6.c – Ensure that decision making addresses the cumulative, long- term, indirect, long distance, and global consequences of human activity. Supporting Principle 7.d – Internalize the full environmental and social costs of goods and services in the selling price, and enable consumers to identify products that meet the highest social and environmental standards. Supporting Principle 7.f – Adopt lifestyles that emphasize the quality of life and material sufficiency in a finite world. Supporting Principle 8.b – Recognize and preserve the traditional knowledge and spiritual wisdom in all cultures that contribute to environmental protection and human well-being. Supporting Principle 10.a – Promote the equitable distribution of wealth within nations and among nations. Supporting Principle 12.b – Affirm the right of indigenous peoples to their spirituality, knowledge, lands and resources and to their related practice of sustainable livelihoods. Supporting Principle 12.d – Protect and restore places of cultural and spiritual significance. Supporting Principle 14.d – Recognize the importance of moral and spiritual education for sustainable living.</p><p>Group 4. Earth Charter Supporting Principles that are not relevant. </p><p>These include Supporting Principles that focus on military issues, such as the following:</p><p>Supporting Principle 16.d – Eliminate nuclear, biological, and toxic weapons and other weapons of mass destruction Supporting Principle 16.e – Ensure that the use of orbital and outer space supports environmental protection and peace The alignment of Earth Charter principles, Florida Gulf Coast University commitments, and LEED credit requirements raises probing questions for the design of the Green Building Demonstration and Learning Center. For example, what kind of buildings best express FGCU’s values, principles, mission, and vision? What basic messages about sustainable living should the building communicate through its design and functioning? Do we need to provide students with ever more spacious and lavish lodging to attract them to FGCU? How big should offices be? </p><p>13 How would the signature elements of coming on to campus include the Earth Charter and Green Building? </p><p>Reflections and Directions for Applying the Earth Charter to the Green Building Design The Florida Gulf Coast University Campus Master Plan states: Overall, there is a common architectural vocabulary used throughout [the FGCU campus] with little variation in features and treatment. While this consistency of design does help to unify the campus’ built environment, the introduction of distinctive architectural features and treatments could help enliven the campus. This would be especially appropriate if included in the design of ‘signature’ buildings. (pp 3-4)</p><p>The proposed site of the Green Building is outside the academic core and is therefore more focused on outreach. The Sugden Welcome Center is the nearest building. The topography of the area lends itself to a less rectilinear building design. Landscaping would emphasize native plants in an edible landscape with low inputs of water, pesticides, and fertilizer (e.g. permaculture) and education for sustainable living.</p><p>The architectural vocabulary that emerges from the Earth Charter is, not surprisingly, more “Earthy” than a green building as an ecoefficient machine. The design metaphors are more rounded and nested – a place celebrating diversity, linkages, interconnectedness, humility, and responsibility. The Green Building would incorporate the best in ecoefficiency in FGCU’s bioregion (recognizing the limits of the LEED model applied to diverse regions.) Embodying the Earth Charter, the building would also display/integrate into the design an appreciation of indigenous and vernacular traditions, clarify full cost accounting, celebrate green business practices, and emphasize international and local connections in artwork. </p><p>Conducting an Earth Charter Design Charrette Early in Fall 2009 This section begins with a general description of the EC-Assess process, and then raises some issues for determining the parameters and participants in the Fall charrette. A major question is what are the costs and benefits of working with the current plans for the Green Building verses going back to the drawing board to reflect more Earth Charter principles, new LEED standards, and the latest green building technologies?</p><p>Because EC-Assess measures the perceived commitment to Earth Charter principles and the actual commitment to principles, it is useful for a diversity of participants to be involved in the assessment process. A community-wide charrette planning process based on EC-Assess would need to involve representatives of the following stakeholders: the green building project managers and engineers, FGCU administration, faculty, and staff (especially those who will have offices in the building), FGCU students and student government leaders, and members of the local Southwest Florida community.</p><p>The following are the six steps in the EC-Assess process:</p><p>1. Select the Subject: Name and briefly describe the entity you are going to assess. In this case, the “subject” is the green building, set within the context of a university that is committed to education and action for environmental sustainability, has pledged to </p><p>14 become carbon neutral, and is an affiliate of the Earth Charter Initiative. This context asks the participants to design a green building with a range of concerns that include much outside customary ecoefficiency orientations typical of LEED green building charrettes.</p><p>2. Map What’s Relevant: Here the charrette team looks at the green building through the lens of the Supporting Principles of Earth Charter Principles 5-16. Which of these are relevant to building design in this larger context? How do we tie this design to the implications of these broad global ethical principles? (The analysis above would be illustrative of steps 2, 3, and 4.)</p><p>3. Evaluate the Values: For those Supporting Principles that are relevant, how are they expressed in the guidelines for and proposed design of the green building and FGCU’s mission, vision, goals, learning outcomes, and campus master plan?</p><p>4. Appraise the Performance: “Appraise the degree to which each principle is evidenced in action” Clearly we can’t do this until the building has been built, but we can determine the indicators/evaluative framework to determine how we would appraise the performance. What sort of evidence will we look for?</p><p>5. Reflect on the Feedback: What seems to be missing or undesirable in the current design?</p><p>6. Create the Strategy: What will be done to modify the building design?</p><p>There are major issues for determining the parameters and participants in the Fall charrette. For example, the blueprints for the Green Building Development and Learning Center were drawn by Astorino and others in the fall of 2005 and approved in June 2006. These plans show an innovative green building meeting the purposes it was intended to serve when drawn up and the LEED standards of the time. </p><p>Much has changed over the past three years. Growing concern about climate change and the need for energy independence has accelerated the development of many new green technologies, designs and policies. FGCU has new leadership and renewed commitment to the founding vision of environmental sustainability and stewardship, evidenced in the signing of the President’s Climate Commitment and the Affiliate Agreement with Earth Charter International, building LEED certified buildings, the solar farm, Lewis Johnson’s work (e.g., staffing the Environmental Stewardship Advisory Council), and in many other ways. </p><p>These new circumstances may suggest modifications in the Green Building design:</p><p>1. The purpose of the building has changed. The Green Building Demonstration and Learning Center design reflects a commitment to use the best in ecoefficient design and technology, and to provide a large education space where green technologies can be showcased – where green business can display its innovations and students and community members can learn about them. With the Center for Environmental and Sustainability Education housed in the building, the purpose shifts to education for </p><p>15 sustainable living, emphasizing ecocultural sustainability as well as ecoefficiency. In the May 29, 2009 Green Building planning charrette, faculty members associated with the Center emphasized a design especially for demonstrating the teaching/learning methodologies of education for sustainable development and providing faculty development opportunities to understand how these instructional approaches differ from standard disciplinary instruction. Of course, this emphasis would incorporate the crystallized pedagogy of a carbon neutral, net zero, LEED platinum building. Some themes and ideas that emerged in the discussion were a health-oriented building, curvilinear architecture, outreach to the underprivileged, University Colloquium as the “heart” of the building, edible landscape, “off the grid”, nature trails, student gardens. For more information, please refer to the Green Building planning charrette meeting minutes of May 29, 2009.</p><p>2. The Earth Charter has been increasingly embraced as an orienting framework for FGCU’s understanding and practice of sustainability, guiding educational activities of the green building as well as its design and interior displays. Looking at the current building design through the Earth Charter lens, about 75% of the 53 Supporting Principles of the EC-Assess framework are intended to be implemented. Embracing some of the missing 25%, the building would display/integrate into the design an appreciation of indigenous and vernacular traditions, emphasize international and local connections, and have more rounded spaces connected to the landscape.</p><p>3. LEED V3 has been developed. A new version of LEED assessment has been approved as the new evaluation framework, with more and differently weighted credits than the previous version. Increasing emphasis is being placed on adapting buildings to bioregional contexts and creating buildings that can adapt and evolve to incorporate new green technologies.</p><p>If we were beginning the design process now from scratch, it would be in the context of these three factors (as well as others). However, going back to the drawing board is a costly and time consuming process, using up limited financial resources, and is potentially demoralizing by launching yet another green building effort that creates conflicting and unrealizable expectations. The next step is to clarify the possibility of responding to the new factors through appropriate design modifications of the Green Building plans. This requires we answer two critical questions:</p><p>“How much can the existing design be modified to accommodate the design implications of the new purposes, Earth Charter perspectives, LEED changes? What needs to remain intact to not trigger the need for hiring a new architect and going through the various permitting processes, etc?”</p><p>“What can be done in landscaping, interior design, room rearrangement to more fully realize the new purposes and perspectives?”</p><p>Important background information for the Fall charrette would be a new design sketch showing what the building and grounds could look like with possible CESE/Earth Charter modifications </p><p>16 that do not require a whole new design process, as well as clarity on what it would cost in time and money to go back to the drawing board. The charrette could also explore new designs and green buildings that have emerged recently to suggest either a new design or modifications of the existing design.</p><p>Appendix A describes some green buildings that incorporate new green technologies and/or embody Earth Charter Principles that are not as fully present in the Green Building Demonstration and Learning Center plans. The following briefly summarizes the unique features of these five buildings, which are described more fully in Appendix A.</p><p>The Adam Joseph Lewis Center at Oberlin College is perhaps the most advanced green building on an American university campus, in terms of technology and curriculum. The community-wide process in which it was imagined and planned is a model of community participation in the design of a green building, but the process was quite lengthy. The technologies and materials used in its construction demonstrate ecoefficiency and showcase “off-the-shelf” environmental technologies. As a place of learning for Oberlin’s Environmental Studies program, the center teaches through, what David Orr calls, “crystallized pedagogy.”</p><p>The John T. Lyle Center for Regenerative Studies at CalPoly Pomona University is a research facility, focused on environmentally-sound energy production and agriculture. It’s curriculum in regenerative studies models how architecture interfaces with academics. Its Masters degree in Regenerative Studies is an example for Florida Gulf Coast University to consider in the design of a Liberal Studies degree based on the Earth Charter.</p><p>The adaptive design of Unity House at Unity College in Maine demonstrates how its planners considered the long-term use of a building and the needs of future occupants. It was deliberately planned to be an affordable green residency, demonstrating that state of the art technology can be available to all, and designed so that the space and technology configurations could easily be changed in response to new purposes and innovations. As the President’s on-campus residence, it is both a private home and a public space—a gateway between the campus community and the wider Unity, Maine community.</p><p>The University of South Carolina Green Dormitory Initiative offers resident students a “lived” experience of sustainable development and sustainable lifestyles. It provides out- of-classroom education and service learning opportunities in environment and sustainability. It suggests that Florida Gulf Coast University might consider the needs of students outside of formal classroom instruction, such as a green building that provides space for clubs and organizations or student study.</p><p>The Willow School’s grounds and campus buildings show how state-of-the-art green buildings can interface with local and traditional architecture. Willow School buildings were inspired by and blend in with the historic homes and buildings of central New Jersey, and the use of salvaged materials further links the past and present. Overall, the </p><p>17 Willow School’s green buildings strive to fulfill the schools goals of modeling sustainable living.</p><p>In the fall we would conduct a broader Earth Charter assessment and planning charrette to explore the way forward with the Green Building. This charrette must be carefully constructed to be clear on the constraints and to include the right mix of stakeholders for exploring how the Earth Charter worldview and principles could be fully realized in the Green Building and its wider institutional context. The Green Building could embody the Earth Charter through its informative educational displays, the design of learning spaces, and the types of curriculum and instruction that will occur in the building. </p><p>The Green Building would showcase the integration of the many aspects of environmental and sustainability education. It would showcase local and international connections in the context of Western Everglades ecological integrity. Students, faculty, physical plant staff, and community representatives act as teachers and learners in the process of realizing the Earth Charter commitments. The Green Building would house leading edge thinking and doing for an environmentally and socially sustainable future, and emphasize interdisciplinary sustainable development practice. FGCU, through the leadership of the Center for Environmental and Sustainability Education, is at the leading, healing edge of Earth Charter scholarship and practice. </p><p>18 APPENDIX A</p><p>MODEL GREEN BUILDINGS, THE EARTH CHARTER, AND QUESTIONS FOR FLORIDA GULF COAST UNIVERSITY</p><p>University campuses across the US and world are constructing green buildings as a demonstration of their commitment to the environmental and sustainable development. The following five institutions have elevated the goal of incorporating eco-efficiency and green technology on campus. Their green buildings are not merely demonstration centers. Rather, they are facilities placed at the center of learning, teaching, and living for sustainable development. The five cases studies below describe the institutions and green buildings, relate institutional commitments to Earth Charter values, and raise questions for FGCU’s Green Building Demonstration and Learning Center.</p><p>Case #1: Adam Joseph Lewis Center at Oberlin College The Adam Joseph Lewis Center (AJLC) at Oberlin Collegexxii was conceived as an integrated building-landscape system that would function as a core component of Oberlin’s Environmental Studies curriculum. The AJLC is more than just a demonstration. It is a part of the larger education of the Oberlin community aimed to promote the practical skills and analytic abilities necessary to reweave the human presence in the world. It was designed to be a building that would teach. Lessons embodied in its technology and design choices are intended to reinforce those taught in its classrooms. The AJLC provides a fertile space that has attracted the focus of courses in a variety of disciplines, lecture series, student research, Winter Term and summer student projects, community groups, regional schools, and universities and professionals from abroad.</p><p>With over 150 environmental sensors installed throughout the building and landscape, the AJLC's data monitoring and display system provides a unique opportunity to visualize in real- time the flows of energy and cycling of matter that are necessary to support the built environment. The Center’s goal is to make interactions between the built and natural environments visible and easy to interpret. The premise of this work is that real-time feedback on ecological performance increases awareness, connectedness to place, and motivation to act. Feedback of this type may be a necessary prerequisite for facilitating a more sustainable relationship among humans, technology and the natural world. Six key design elements were considered in the design of the Adam Joseph Lewis Center, as described below: energy; heating, cooling, and air quality; landscape; Living Machine and water use; weather conditions; and materials.</p><p>Energy: Photovoltaic (PV) panels on the roof of the Center use renewable energy from the sun to meet a substantial fraction of the building’s energy needs. Solar energy production is coupled with energy efficient lighting, heating, and appliances to minimize negative environmental impact. The Lewis Center's lighting is designed to optimize energy efficiency while creating a pleasant, welcoming environment in which to work and study. Features employed include orienting the building on an east-west axis in order to take full advantage of natural lighting; strategic window placement and reflective surfaces to distribute light throughout spaces; and </p><p>19 energy-efficient lighting fixtures and control strategies, including motion sensing lights and “WATT-Stopper” dimming system to set lighting depending on need.</p><p>Heating, Cooling & Air Quality: Relying on both active and passive systems, the Center provides a comfortable working environment for students, faculty and staff. Active systems use mechanical equipment to extract and move heat, while passive systems do so with a minimum of mechanical devices.</p><p>Landscape: The Center was conceived as an integrated building-landscape system. The landscape features a variety of constructed ecosystems that simulate native Northern Ohio ecosystems and incorporate cultigens that produce food for humans. This landscape is designed to demonstrate principles of green landscaping, including urban agriculture; diverse native forest and wetland vegetation; responsible stormwater management and storage; restoration of indigenous ecosystems; and some 50 emergent and open-water wetland plants, all endemic to Ohio, that inhabit the Center's restored wetland. This repository for native species diversity is complemented by an emerging forest, dry land community, circular fruit and vegetable garden, terraced orchard, low-mow turf, and a sundial.</p><p>Living Machine & Water Use: The Living Machine is an ecologically engineered system that combines elements of conventional wastewater technology with the purification processes of wetland ecosystems to treat and recycle the building’s wastewater for reuse in the toilets and landscape. The system is designed to remove organic wastes, nutrients, and pathogens, which can damage human and environmental health if discharged. Water cleaned by the Living Machine is reused in the building’s toilets and landscape. The Living Machine also serves as a valuable research laboratory and educational tool for students and faculty. A team of student operators maintain and monitor the living machine. </p><p>Weather Conditions: A weather station rises above the peak of the Center’s curved roof, monitoring real-time conditions and trends for a variety of environmental variables.</p><p>Materials: Materials for the Center were selected to enhance its sustainability and were evaluated based on criteria that required less energy inputs, encouraged local production and distribution, and supported creative economic structures. Materials for the Center were selected to enhance its sustainability and were evaluated based on the following criteria: recycled or reused; low energy to produce, use, and maintain; locally harvested, produced and/or distributed; Supportive of creative economic structures and addressing problems in ecological design; and products of service (materials leased from a company rather than bought outright – when worn out, the product is returned for recycling and replaced).</p><p>Adam Joseph Lewis Center and the Earth Charter The Adam Joseph Lewis Center (AJLC) takes on board many of the Earth Charter educational principles, as enumerated in the description of The Willow School. The AJLC also demonstrates many of the Earth Charter Principles and Supporting Principles in Part II: Ecological Integrity. For example, the building’s technological innovations “manage the use of renewable resources”xxiii, “manage the… use of non-renewable resources such as fossil fuels”xxiv, and “act[s] with restraint and efficiency when using energy, and [relies] increasingly on renewable energy </p><p>20 sources such as solar and wind”xxv. The center’s architecture and facilities “reduce, reuse and recycle materials… and ensure that residual waste can be assimilated by ecological systems”xxvi. As a demonstration and educational laboratory, the center also promotes “the development, adoption, and equitable transfer of environmentally sound technologies”xxvii and advances “the study of ecological sustainability and promote[s] the open exchange and wide application of the knowledge acquired.”xxviii</p><p>Questions for Florida Gulf Coast University The Adam Joseph Lewis Center’s example raises questions for the design of Florida Gulf Coast University’s Green Building:</p><p>1. How can the Green Building function as a core component of the University’s environmental studies and sustainability curriculum? 2. How can the Green Building serve as a part of the larger education of the Southwest Florida and Western Everglades community? 3. How can the Green Building make interactions between the built and natural environments visible and easy to interpret? 4. What kinds of materials will be used to construct the building? Are materials recycled or reused? Are they locally harvested, produced, and/or distributed? Do they require low energy to produce, transport, use, and maintain? Are they products of service?</p><p>21 Case #2: The John T. Lyle Center for Regenerative Studies The mission of the Lyle Centerxxix is to advance the principles of environmentally sustainable living through education, research, demonstration and community outreach. The term “regenerative” describes processes that restore, renew or revitalize their own sources of energy and materials, creating sustainable systems that integrate the needs of society with the integrity of nature. Located on 16 acres (6.5 ha) within the Cal Poly Pomona University campus, the Center researches and demonstrates a wide array of regenerative strategies, including low-energy architecture, energy production technology, water treatment, organic agriculture, ecological restoration and sustainable community development.</p><p>The Center is administered by the College of Environmental Design, and offers a Master of Science in regenerative studies as well as a minor program at the undergraduate level. Faculty are drawn from departments across campus, creating a unique interdisciplinary learning environment. Students have numerous opportunities to get involved at the Lyle Center, beyond taking classes. For example, students can conduct research or demonstration projects that advance regenerative principles. The Center offers student housing for graduate and upper division students, and a number of employment opportunities are available each year. All of these opportunities are open to all Cal Poly Pomona students, regardless of their degree program.</p><p>The buildings at the Center are designed to minimize the amount of energy required for heating and cooling of the interior spaces. They work with natural patterns of the sun as well as airflows to passively regulate the internal temperatures of the buildings. Trellis structures on the south side of buildings support grapes, chayote, or other deciduous vines. The shade from the vines block direct sunlight from entering the buildings in the summer, helping to keep the interior spaces from heating up. In the winter, the vines lose their leaves and lower sun angles allow direct sunlight to penetrate into the interior spaces, passively warming the building. The buildings are also designed to control airflow to increase human comfort. Hot air is allowed to dissipate out of clerestory windows as cooler air enters the space from below, creating a chimney effect that promotes airflow. The Riverfront Dormitory is elevated to allow cool evening air to flow underneath the interior spaces. Building exteriors are finished with a fast-growing, renewable cedar, and the Center is continually exploring alternative building materials, particularly materials that are waste products of our society. Alternative materials are also being routinely studied in small, temporary projects on display at the Center.</p><p>The majority of the Center's energy production comes from various solar technologies. The Center operates an Amonix Solar Concentrator unit. This unit tracks the sun throughout the day, and is capable of generating up to 12.8 kWH on a summer day. This scale of technology is appropriate for communities with large energy demand and adequate resources to routinely provide maintenance. The center also has a number of smaller fixed and tracking photovoltaic panels throughout the site, a portable solar energy cart, and solar thermal panels on the rooftops of both dormitory buildings. Fixed panels, while not quite as efficient as tracking concentrators, reliably produce power throughout the day. Another solar alternative on display at the Center are solar shingles, located on the roof of the straw-bale building. This technology, while less efficient than traditional photovoltaic panels, is a low-profile alternative for situations where the appearance of solar panels is not desired. The Center operates one windmill, as part of a solar/wind hybrid system located on a hilltop. Local conditions at the Center are not conducive to</p><p>22 high wind generation, so the hybrid system generates only about 5.5 kWH on windy days. The Center is actively conducting research and outreach on bio-fuels, particularly bio-diesel, a substitute for petroleum-based diesel fuel made from vegetable oil. The Center uses bio-diesel to power its machinery, and conducts numerous workshops and demonstrations of the refining process for the community.</p><p>Quality food is a necessity of life and an important part of sustainable communities. All of the Center's gardens are fully organic, meaning that chemical pesticides and fertilizers are not used. Successful organic gardens entail working with natural processes to enhance the soil and control pests, two activities commonly managed with chemicals in modern agricultural operations. A variety of techniques are used to replenish nutrients within the garden soil, including cover- cropping with legumes that return nitrogen to the soil, and composting of green waste. Flowering plants in the garden attract predatory insects which feed on agricultural pests. Organic pesticides made out of garlic and peppers are also applied.</p><p>The Lyle Center and the Earth Charter The goals and practice of the John T. Lyle Center for Regenerative Studies overlaps with Earth Charter principles and values. For example, the Lyle Center promotes systems thinking and ecological understanding, mirroring the Earth Charter’s call to “live with a sense of universal responsbility, identifying ourselves with the whole Earth community as well as our local comunities.”xxx In particular, the Lyle Center works to “protect and restore the integrity of Earth’s ecological systems, with special concern for biological diversity and the natural processes that sustain life.”xxxi Its focus on regenerative studies models “patterns of production, consumption, and reproduction that safeguard Earth’s regenerative capacities, human rights, and community well-being.”xxxii</p><p>Questions for Florida Gulf Coast University The Lyle Center’s example raises questions for the design of Florida Gulf Coast University’s Green Building:</p><p>1. How can curriculum be influenced or guided by the Green Building? Can the project help establish an Earth Charter-inspired degree in liberal studies? 2. What roles are available for students in and around the Green Building? 3. Are there opportunities for students to engage in monitoring, upkeep, and maintenance of green building technologies?</p><p>23 Case #3: Unity House at Unity College in Maine Unity House is the on-campus residence of the President of Unity College. It is a platinum level LEED certified building designed by the OPEN Prototype Initiative, an architecture-research group at the Massachusetts Institute of Technology. The building was designed and fabricated to accommodate centuries of change in technologies, occupancy and use. This is expressed in the architecture and detailing which create a new model for design, fabrication, and assembly that could establish a system for a series of affordable, high performance houses. For example, special attention was given to the separation of shell and infill, easily accessible services, and flexible space. Of great importance is the relationship between public and private space, allowing for flexibility within a relatively short time. </p><p>The house reflects the college’s environmental commitments and its rural, New England nature: modest, frugal, solid, high quality, appropriate in scale, and in touch with the local climate. Structural elements include the use of local to New England timber, chosen to help facilitate learning and connect people to local resources. The residence is powered by renewable energy. It was designed to meet the goals of Net-Zero energy and Carbon Neutral initiatives as defined in the Living Building Challenge. On-site renewable energy generation also provide ample opportunity for experiential curriculum. The building uses water in a frugal and environmentally responsible manner. Any fixture or activity that does not require potable water uses either grey water or water from captured precipitation. Sources of indoor air pollution are eliminated by incorporating the appropriate amount of air exchanges as defined in California Title 24 requirements and by not permitting toxic, high VOC materials into the space.</p><p>Notably, Unity House and the OPEN Prototype Initiative represent adaptive design. It is a building that can adapt to new uses and technologies. The systems and components in the house have been designed to accommodate changing uses and needs. The multi-use building serves both as a residence and a public building, and so the function of the building changes--sometimes very quickly. The ability to make larger scale modifications relatively easily is important. Interior partition walls have been configured in a way that they can be “uninstalled” and moved. The task of turning two bedrooms into one, or making a living room into a larger entertainment area, becomes a straightforward operation. The de-mountable baseboard provides access to wiring chases in the walls should outlets or data ports need to be changed or added. The easily removed ceiling panels provide access to repair or modify plumbing, heating, and ventilation systems. </p><p>This “Open Building” design views the home as a collection of layered systems. These layers include the site, the structure, the skin, the space plan, the services, and the “stuff” within the home. Keeping these layers separate, and disentangled, allows for the creation of systems that use materials appropriate to their expected life spans. Access to the system, commensurate with the need for future modification, is designed into the initial plan. For example, the plumbing, electrical systems, the HVAC (heating, ventilation, and air conditioning) systems are designed into specific spaces that do not interfere with the building’s structure or skin. The backbone of this system, which is not expected to change significantly over time, will be built of long-lasting materials preinstalled in a central mechanical core wall. The branches of this system are accessible within the Open Built ceiling system, allowing for service or modification, should the layout of the home be changed.</p><p>24 Unity House and the Earth Charter As a multiuse building that serves as a private residence and a public space, as well as being situated between the campus grounds and the wider community, the Unity House strengthens the local community, enabling it to care for its environment.xxxiii As a modestly sized residence of 1900 square feet, Unity House suggests, in the words of the Earth Charter, that, “when basic needs have been met, human development is primarily about being more, not having more.”xxxiv Its adaptive design is an example of decision-making that “addresses the cumulative, long-term, indirect… consequences of human activities.”xxxv</p><p>Questions for Florida Gulf Coast University The Unity House example raises questions for the design of Florida Gulf Coast University’s Green Building: 1. Is the building’s interior architecture adaptive? How responsive will it be to potential future uses? 2. Will the building be carbon neutral and/or feature net-zero energy use? How might the building demonstrate FGCU’s pledge to the American College & University Presidents Climate Commitment? 3. Are the building’s long-term maintenance needs considered in the initial design? 4. How will the campus community and the wider Southwest Florida and Western Everglades community utilize the building?</p><p>25 Case #4: The University of South Carolina Green Dormitory Initiative West Green Quad is the University of South Carolina’s newest residence hall complex, a 500- bed Living and Learning complex that is certified as LEED Silver. West Green Quad, home to the Environmental Awareness Community, is designed to be a sustainable living environment. Residents live in a healthy and comfortable green building, are able to monitor their own resource consumption, and participate in the programs of the West Quad Learning Center--films, speakers, service projects, special courses, field trips, and other events. The West Green Quad is particularly supportive of student-initiated projects and programs.</p><p>The West Green Quad is designed to be a model and advocate for sustainability on the USC campus and in the community. It promotes interactions among students, faculty, staff, and community members to explore the changes required to create a sustainable society. Green values and a holistic perspective guide all the initiative’s programs, operations, and facilities. The result is a unique “green bubble” within which students are able to begin or continue their journey toward a more sustainable lifestyle.</p><p>With the West Green Quad, USC has imagined a living/learning facility that reduces negative environmental impacts, increases positive local economic impacts, and builds a strong sense of community. The Green Learning Community residency option is for residents to live in a small community of 25-30 students who share a desire to learn more about how to live more sustainably—personally and as a society. Everyone lives together on the same floor and has the opportunity to initiate and participate in special programs. The Green Learning Community has opportunities for attending community dinners, taking field trips to places of interest, meeting informally with visiting speakers and activists, and getting priority consideration for living in the West Green Quad.</p><p>USC Green Dormitory Initiative and the Earth Charter Beyond the education for sustainable development they receive through formal academic instruction, residents of the USC West Green Quad are adopting lifestyles centered on sustainable development. In the words of the Earth Charter, “we must imaginatively develop and apply the vision of a sustainable way of life locally, nationally, regionally, and globally.”xxxvi The USC West Green Quad residency experience is an example of integrating into “life-long learning the knowledge, values, and skills needed for a sustainable way of life.”xxxvii</p><p>Questions for Florida Gulf Coast University The USC West Green Quad dormitory initiative raises the following questions regarding Florida Gulf Coast University’s Green Building: 1. How are student needs addressed in the Green Building? 2. Are there opportunities for students to occupy and/or use the building outside of formal classroom instructions? For example, can space be designated for use by student clubs and organization, as study space, or as social space? 3. Will the Green Building be available for special events, programming, lectures, and informal gatherings?</p><p>26 Case #5: The Willow School The Willow Schoolxxxviii is a small, independent coeducational day school for students in kindergarten through eighth grade, committed to combining academic excellence and the joy of learning and to experiencing the wonder of the natural world. The Willow School campus is located on a 34-acre site in the central New Jersey countryside. The grounds preserve the natural beauty of the area, with design features that include many outdoor learning spaces and constructed wetlands for the filtration of wastewater that provide for the return of an abundance of clean water to the groundwater system. Natural meadows, butterfly gardens, water harvesting and hedgerows are incorporated into the site. The grounds include gardens and woodlands for environmental study.</p><p>Willow School buildings include a mix of a historic 3-story colonial home, a state-of-the-art 13,500 square foot classroom building, and a LEED platinum certified arts and performance center. The original three-story Colonial home has been converted into an administration building with offices for the head of school, advancement and external affairs, admissions, and business administration. The building also includes meetings rooms and a faculty workroom. The library, containing over 3,600 volumes, is temporarily housed in the administrative building.</p><p>The classroom building, with natural wood siding and barn-like roof, conforms to the rural character of the surrounding neighborhood. The interior consists of spacious classrooms to an average of 14 students per grade, along with a teacher's lounge, a morning gathering space, and interior play space. Each classroom opens directly onto the surrounding grounds to facilitate both recreation and field studies as an integral part of the daily curriculum. The overall building includes the latest in environmentally-sensitive and energy-efficient design. Clerestories provide passive-solar heating, supplemented by geothermal heating and cooling systems. Rainwater runoff and grey water are recycled to maintain the surrounding plantings, and the remaining wastes are processed in the most environmental methods available. The Willow School's overall goal is to teach in a building that not only houses the students but serves as a model to study responsible living.</p><p>The Barn Studio is a unique space comprised of reclaimed and salvaged wood from the frame of a historic barn in Hynemansville, PA. The Barn boasts platinum certification from LEED. The building has 25’ ceilings, exposed pine rafters and beech ceiling boards. Daylight harvesting techniques as well as 32 oversized ceiling lamps provides ample light for the space. Architectural details such as a series of small windows, large floor to ceiling windows, floors made of unfinished maple and a stage make this space a flexible venue for meetings and / or group events. This space is designed with a rustic, open feel and an appreciation for the scenic beauty that is part of the school campus location.</p><p>The Willow School and the Earth Charter The Willow School would rate high on an Earth Charter assessment for a number of reasons. The school’s teaching philosophy and architectural design “transmit to future generations values, traditions and institutions that support the long-term flourishing of Earth’s human and ecological communities”xxxix and “integrate into formal education and life-long learning the knowledge, values and skills need for a sustainable way of life.”xl The campus grounds and buildings honor </p><p>27 the architecture of the local community and thus “protect[s] and restore[s]… places of cultural significance.”xli</p><p>Questions for Florida Gulf Coast University The Willow School’s example raises questions for the design of Florida Gulf Coast University’s Green Building:</p><p>1. How might FGCU’s environmental mission and curriculum be reflected in the Green Building’s design? 2. How might the FGCU Green Building preserve the natural beauty of the campus grounds? 3. Does the building design feature outdoor learning spaces? 4. How might FGCU reuse locally sourced materials? 5. How might FGCU recreate traditional Southwest Florida architectural designs?</p><p>28 APPENDIX B</p><p>EC-ASSESS WORKSHEET</p><p>Below each Supporting Principle is a brief statement by the author on its application to Florida Gulf Coast University campus issues. These suggestions are highlighted.</p><p>Relevance Earth Charter Principles 5-16 (with Supporting Declared Level of of Level of Engaged Principles) Principle Care Action Earth Charter Part II. Ecological Integrity 5. Protect and restore the integrity of Earth’s YES or 0, 1, 2, 3 0, 1, 2, 3 ecological systems, with special concern for biological NO diversity and the natural processes that sustain life. </p><p> a. Adopt at all levels sustainable development plans and regulations that make environmental conservation and rehabilitation integral to all development initiatives. (conservation and rehabilitation in planning) b. Establish and safeguard viable nature and biosphere reserves, including wild lands and marine areas, to protect Earth’s life support systems, maintain biodiversity, and preserve our natural heritage. (preserve ecosystems and biodiversity on campus in the context of the Western Everglades, e.g. no net loss) c. Promote the recovery of endangered species and ecosystems. (ecological restoration projects) d. Control and eradicate non-native or genetically modified organisms harmful to native species and the environment, and prevent introduction of such harmful organisms. (native plants, xeriscaping and GMO food policy) e. Manage the use of renewable resources such as water, soil, forest products, and marine life in ways that do not exceed rates of regeneration and that protect the health of ecosystems. (sources of water, sustainable forest products, and runoff) f. Manage the extraction and use of non-renewable resources such as minerals and fossil fuels in ways that minimize depletion and cause no serious environmental damage. (lifecycle analysis of building materials, such as metals, and electricity generation) < Averages for This Principle </p><p>YES or 0, 1, 2, 3 0, 1, 2, 3 6. Prevent harm as the best method of environmental NO protection and, when knowledge is limited, apply a precautionary approach. a. Take action to avoid the possibility of serious or irreversible environmental harm even when scientific knowledge is incomplete or inconclusive. (prevention principle) b. Place the burden of proof on those who argue that a </p><p>29 proposed activity will not cause significant harm, and make the responsible parties liable for environmental harm. (precautionary principle/polluter pays) c. Ensure that decision making addresses the cumulative, long-term, indirect, long distance, and global consequences of human activities. (considering long term/remote consequences in planning decisions) d. Prevent pollution of any part of the environment and allow no build-up of radioactive, toxic, or other hazardous substances. (toxic emissions from building in construction and functioning) e. Avoid military activities damaging to the environment. < Averages for This Principle YES or 0, 1, 2, 3 0, 1, 2, 3 7. Adopt patterns of production, consumption, and NO reproduction that safeguard Earth’s regenerative capacities, human rights, and community well-being. a. Reduce, reuse, and recycle the materials used in production and consumption systems, and ensure that residual waste can be assimilated by ecological systems. (reduce, reuse, recycle in construction and on site practices) b. Act with restraint and efficiency when using energy, and rely increasingly on renewable energy sources such as solar and wind. (energy efficiency and renewable energy sources) c. Promote the development, adoption, and equitable transfer of environmentally sound technologies. (developing and transferring green technology to “developing” settings, and outreach) d. Internalize the full environmental and social costs of goods and services in the selling price, and enable consumers to identify products that meet the highest social and environmental standards. (full cost accounting) e. Ensure universal access to health care that fosters reproductive health and responsible reproduction. (sex ed/reproductive health care counseling) f. Adopt lifestyles that emphasize the quality of life and material sufficiency in a finite world. (sufficiency, “small is beautiful” office size, being more, not having more) < Averages for This Principle Relevance Declared Level of Earth Charter Principles 5-16 (with Supporting of Level of Engaged Principles) Principle Care Action YES or 0, 1, 2, 3 0, 1, 2, 3 8. Advance the study of ecological sustainability and NO promote the open exchange and wide application of the knowledge acquired. a. Support international scientific and technical cooperation on sustainability, with special attention to the needs of developing nations. </p><p>30 (collaboration/outreach, esp. to developing nations) b. Recognize and preserve the traditional knowledge and spiritual wisdom in all cultures that contribute to environmental protection and human well-being. (traditional knowledge and spiritual wisdom) c. Ensure that information of vital importance to human health and environmental protection, including genetic information, remains available in the public domain. (public access to critical knowledge) < Averages for This Principle Earth Charter Part III. Social and Economic Justice YES or 9. Eradicate poverty as an ethical, social, and 0, 1, 2, 3 0, 1, 2, 3 NO environmental imperative. a. Guarantee the right to potable water, clean air, food security, uncontaminated soil, shelter, and safe sanitation, allocating the national and international resources required. (meeting basic needs of all) b. Empower every human being with the education and resources to secure a sustainable livelihood, and provide social security and safety nets for those who are unable to support themselves. (social security/sustainable livelihoods) c. Recognize the ignored, protect the vulnerable, serve those who suffer, and enable them to develop their capacities and to pursue their aspirations. (protecting the most vulnerable) < Averages for This Principle 10. Ensure that economic activities and institutions at YES or 0, 1, 2, 3 0, 1, 2, 3 all levels promote human development in an NO equitable and sustainable manner. a. Promote the equitable distribution of wealth within nations and among nations. (equitable distribution of wealth, such as salaries, compensation) b. Enhance the intellectual, financial, technical, and social resources of developing nations, and relieve them of onerous international debt. (connection and transfer to developing countries) c. Ensure that all trade supports sustainable resource use, environmental protection, and progressive labor standards. (products used in building are sustainably certified, fair trade etc.) d. Require multinational corporations and international financial organizations to act transparently in the public good, and hold them accountable for the consequences of their activities. (purchase from and invest in corporations committed to sustainability) < Averages for This Principle YES or 0, 1, 2, 3 0, 1, 2, 3 11. Affirm gender equality and equity as prerequisites to NO sustainable development and ensure universal access to education, health care, and economic opportunity. </p><p>31 a. Secure the human rights of women and girls and end all violence against them. (protecting women on campus) b. Promote the active participation of women in all aspects of economic, political, civil, social, and cultural life as full and equal partners, decision makers, leaders, and beneficiaries. (status of women in building and on campus, like leadership roles, pay, etc.) c. Strengthen families and ensure the safety and loving nurture of all family members. (strengthening families) < Averages for This Principle YES or 0, 1, 2, 3 0, 1, 2, 3 12. Uphold the right of all, without discrimination, to a NO natural and social environment supportive of human dignity, bodily health, and spiritual well being, with special attention to the rights of indigenous peoples and minorities. a. Eliminate discrimination in all its forms, such as that based on race, color, sex, sexual orientation, religion, language, and national, ethnic or social origin. (non discrimination and celebration of diversity) b. Affirm the right of indigenous peoples to their spirituality, knowledge, lands and resources and to their related practice of sustainable livelihoods. (honoring indigenous rights, lands, spiritualities, sustainable practices) c. Honor and support the young people of our communities, enabling them to fulfill their essential role in creating sustainable societies. (empowering youth) d. Protect and restore outstanding places of cultural and spiritual significance. (preserve spiritual and cultural resources) < Averages for This Principle </p><p>Earth Charter Part IV. Democracy, Nonviolence, and Peace 13. Strengthen democratic institutions at all levels, YES or and provide transparency and accountability in 0, 1, 2, 3 0, 1, 2, 3 governance, inclusive participation in decision NO making, and access to justice. </p><p> a. Uphold the right of everyone to receive clear and timely information on environmental matters and all development plans and activities which are likely to affect them or in which they have an interest. (communicate to FGCU and wider communities development plans and invite input) b. Support local, regional and global civil society, and promote the meaningful participation of all interested individuals and organizations in decision making. (provide a locus for civil society activities)</p><p>32 c. Protect the rights to freedom of opinion, expression, peaceful assembly, association, and dissent. (encourage critical participation) d. Institute effective and efficient access to administrative and independent judicial procedures, including remedies and redress for environmental harm and the threat of such harm. (environmental grievances) e. Eliminate corruption in all public and private institutions. (expose corruption) f. Strengthen local communities, enabling them to care for their environments, and assign environmental responsibilities to the levels of government where they can be carried out most effectively. (support local, sustainable systems) < Averages for This Principle 14. Integrate into formal education and life long YES or 0, 1, 2, 3 0, 1, 2, 3 learning the knowledge, values, and skills needed for NO a sustainable way of life. a. Provide all, especially children and youth, with educational opportunities that empower them to contribute actively to sustainable development. (outreach to schools and communities on sustainability) b. Promote the contribution of the arts and humanities as well as the sciences in sustainability education. (arts and humanities for a sustainable future) c. Enhance the role of the mass media in raising awareness of ecological and social challenges. (media initiatives) d. Recognize the importance of moral and spiritual education for sustainable living. (education on the moral and spiritual dimensions of sustainability) < Averages for This Principle YES or 0, 1, 2, 3 0, 1, 2, 3 15. Treat all living beings with respect and NO consideration. a. Prevent cruelty to animals kept in human societies and protect them from suffering. (humane education and humane food, regulations on animal experimentation) b. Protect wild animals from methods of hunting, trapping, and fishing that cause extreme, prolonged, or avoidable suffering. (humane pest control, rodents, etc.) c. Avoid or eliminate to the full extent possible the taking or destruction of non-targeted species. (hunting and fishing education/sustainable seafood) < Averages for This Principle YES or 0, 1, 2, 3 0, 1, 2, 3 16. Promote a culture of tolerance, nonviolence, and NO peace. a. Encourage and support mutual understanding, solidarity, and cooperation among all peoples and within and among nations. (global collaboration and partnerships)</p><p>33 b. Implement comprehensive strategies to prevent violent conflict and use collaborative problem solving to manage and resolve environmental conflicts and other disputes. (conflict resolution and collaborative problem solving) c. Demilitarize national security systems to the level of a non- provocative defense posture, and convert military resources to peaceful purposes, including ecological restoration. (probably not relevant except in certain educational programs) d. Eliminate nuclear, biological, and toxic weapons and other weapons of mass destruction. (probably not relevant except in certain educational programs) e. Ensure that the use of orbital and outer space supports environmental protection and peace. (probably not relevant except in certain educational programs) f. Recognize that peace is the wholeness created by right relationships with oneself, other persons, other cultures, other life, Earth, and the larger whole of which all are a part. (Emphasize our interconnectedness with all life, the need for contemplative practice and right relationships with all present and future beings) < Averages for This Principle </p><p>34 NOTES</p><p>35 REFERENCES</p><p>Berry, T. (2006). Evening thoughts: Reflecting on Earth as sacred community. (M.E. Tucker, Ed.). San Francisco: Sierra Club Books.</p><p>Bowers, C.A. (2001). “How language limits our understanding of environmental education.” Environmental Education Research, 7(2), 141–51.</p><p>Earth Charter International Secretariat. (2008). EC-Assess: The Earth Charter ethics-based assessment tool. San Jose, Costa Rica: Earth Charter International. Available online at http://www.earthcharterinaction.org/invent/images/uploads/EC-Assess.pdf</p><p>Earth Charter Commission. (2000). The Earth Charter. San Jose, Costa Rica: Earth Charter International. Available online at http://www.earthcharter.org</p><p>Florida Gulf Coast University. (1996). “Vision, mission, and guiding principles.” Fort Myers, FL: Florida Gulf Coast University. Available online at http://www.fgcu.edu/info/mission.asp</p><p>Florida Gulf Coast University. (1997). “Student learning goals and educational outcomes.” Fort Myers, FL: Florida Gulf Coast University. Available online at http://www.fgcu.edu/Catalog/learninggoals.asp</p><p>Florida Gulf Coast University. (2006). Environmental stewardship management plan. Fort Myers, FL: Florida Gulf Coast University. Available online at http://www.fgcu.edu/planning/LRPIE/files/2006_EnvStewMgtPlan_Final.pdf</p><p>Florida Gulf Coast University. (2006). Campus master plan 2005-2015, volume 2 – Goals, objectives and policies. Fort Myers, FL: Florida Gulf Coast University. Available online at http://www.fgcu.edu/masterplan/</p><p>Gruenewald, D.A. (2004). “A Foucauldian analysis of environmental education: Toward the socioecological challenge of the Earth Charter.” Curriculum Inquiry, 34(1), 71-107.</p><p>Orr, D.W. (1992). Ecological literacy. Albany, NY: SUNY Press.</p><p>Sauer, P. (2002). “Global ethics: An American perspective.” Orion 21(1): 18–27.</p><p>U.S. Green Building Council. (2009). LEED for new construction and major renovations 2009 rating system. Washington, D.C.: U.S. Green Building Council. Available online at http://www.usgbc.org/ShowFile.aspx?DocumentID=5546</p><p>36 i Much of this section is derived from various texts on the Earth Charter written by Steven C. Rockefeller, chair of the Earth Charter Drafting Committee and co-chair of the Earth Charter Council. ii Florida Gulf Coast University Campus Master Plan 2005-2015 Volume 2 – Goals, Objectives and Policies (CMP), p 9-2 iii Florida Gulf Coast University Environmental Stewardship Management Plan (ESMP), p 24 iv LEED for New Construction and Major Renovations 2009 Rating System, p 2 v CMP, p 13-4 vi ESMP, p 24 vii LEED 2009, p 12 viii CMP, pp 13-4 to 13-5 ix CMP, p 13-5 x FGCU ESMP, pp 20-21 xi LEED 2009, p 47 and 51 xii CMP, p 3-7 xiii CMP, p 5-5 xiv LEED 2009, p 31 xv CMP, p 3-8 xvi ESMP, p 16 xvii LEED 2009, p xi xviii http://www.fgcu.edu/info/mission.asp xix http://www.fgcu.edu/Catalog/learninggoals.asp xx http://www.fgcu.edu/oiec/ xxi http://studentservices.fgcu.edu/International/ xxii See http://www.oberlin.edu/ajlc/ajlcHome.html for more information on the center. xxiii Earth Charter Supporting Principle 5.e xxiv Earth Charter Supporting Principle 5.f xxv Earth Charter Supporting Principle 7.b xxvi Earth Charter Supporting Principle 7.a xxvii Earth Charter Supporting Principle 7.c xxviii Earth Charter Principle 8 xxix See http://www.csupomona.edu/~crs/ for more information xxx Earth Charter, Preamble, Paragraph 5, “Universal Responsibility” xxxi Earth Charter Principle 5 xxxii Earth Charter Principle 7 xxxiii Earth Charter Supporting Principle 13.f xxxiv Earth Charter Preamble, Paragraph 4, “The Challenges Ahead” xxxv Earth Charter Supporting Principle 6.c xxxvi The Earth Charter, They Way Forward, paragraph two xxxvii Earth Charter Principle 14 xxxviii See http://www.willowschool.org/ for more information on The Willow School xxxix Earth Charter Supporting Principle 4.b xl Earth Charter Principle 14 xli Earth Charter Supporting Principle 12.d</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    37 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us