<p>Quasi-1D Nozzle Review</p><p>Example: Want to find P,T,M, etc. given Po, Pe, and nozzle shape.</p><p>Quasi – Area is allowed to vary along x coordinate, but flow variables are functions of x only.</p><p>Start out with governing conservation equations:</p><p>Mass: r 蝌蝌 dV+ r U� ndS 0 Vt S</p><p>Momentum:</p><p>蝌蝌rUdV+ 蝌 r( U� n) UdS - + 蝌 pdS + 蝌 r fdV Fviscous t V S S V Energy:</p><p>抖 骣U2 骣 U 2 q r琪e+ dV + r 琪 e + U� ndS - � pU + ndS r dV r f U dV 抖蝌蝌 蝌 蝌 蝌 蝌 ( ) tV桫2 S 桫 2 S V t V</p><p>Assuming: 1. steady 2. inviscid 3. no body forces 4. 2D flow</p><p>Quasi-1D: Area is allowed to vary but flow variables are a function of x only</p><p>A, u, A+dA,u+du, +d Mass:</p><p>-ruA +( u + du)( r + d r )( A + dA) = 0 - ruA + ruA +rudA + r duA + d r uA +higher order terms = 0 divide by through ruA dA du dr + + = 0 A u r or d(r uA) = 0 Momentum:</p><p>2 骣PdA -ru A +( r + d r )( u + du)( u + du)( A + dA) = PA -( P + dP)( A + dA) + 2琪 桫 2 - ru2 A + ru2 A +ru2 dA + u 2 Ad r + r uAdu + r uAdu = PA - PA - PdA -AdP + PdA u( r udA+ uAd r + r Adu ) +ruAdu = - AdP dP= -r udu</p><p> dP dP dr dP = = -udu a2 = rd r r d r s dr u = - du r a2 Substituting equation into to get: dA du u + -du = 0 A u a2 which can be rearranged to get: 2 dA du骣 u dA du 2 +琪1 -2 = +( 1 -M ) = 0 A u桫 a A u dA du =(M 2 -1) A u which can be used to determine general flow behavior in a converging-diverging nozzle, as below:</p><p>M dA du < 1 < 0 > 0 dA <0 --> converging subsonic < 1 > 0 < 0 dA >0 --> diverging > 1 < 0 < 0 du <0 --> decelerating supersonic > 1 > 0 > 0 du >0 --> accelerating</p><p>Energy: We will not go through the derivation for the energy equation but, applying analysis as before will give:</p><p> dh+ udu =0 or cP dT = - udu</p><p>Total-Static-Mach Relations Isentropic Relations: g g P骣r 骣 T g -1 2=琪 2 = 琪 2 P1桫r 1 桫 T 1</p><p>Static-Total</p><p>From Energy Equation with uo=0 (total) u 2 cT= c T + 1 Po P 1 2 Rearranging T u2 o =1 + T2 cP T g R using cP = g -1 , T g -1 u2 o =1 + T2 g RT Inserting a= g RT and M= u a gives</p><p>T g -1 o =1 + M 2 T 2 g g -1 P 骣 g -1 2 o =琪1 + M P 桫 2 1 g -1 r 骣 g -1 2 o =琪1 + M r 桫 2 Given Eq.’s ,, and we can now:</p><p> Find any static property in an isentropic flow given Mach #, Po,To,o. Use/control known total conditions to find mach # through nozzle</p><p>Area-Mach Relations From mass r*u * A * = r uA u* at A* M= = 1 � u * a * , giving a* 2 2 2 骣A骣r * 骣 a * 琪 * = 琪 琪 桫A桫r 桫 u or 2 2 *2 * 2 骣A骣r 骣ro 骣 a 琪 * = 琪 琪 琪 桫A桫ro 桫 r 桫 u using isentropic relations for the density terms g +1 2 g -1 骣A 1轾 2 骣 g - 1 2 琪* =2 犏 琪1 + M 桫A M 臌g +1 桫 2 Mach # is a function of this area ratio only. Must find A*.</p><p>Completely Subsonic Flow</p><p>Pe= P atm From isentropic relation 轾 g -1 2 骣P g M =犏 o -1 e 犏琪 g -1 桫Pe 臌犏 Can now determine A* and entire Mach # distribution P A o = 1 e * If: Then: Me =0, * , A = 0 NO FLOW Pe A P o Ae As increases, Me increases, * decreases, A* increases Pe A Note that A/A* < 1 is not physically possible. That is, after 1st critical is reached, must have Amin = A*</p><p>Supersonic Flow Subsonic Flow ahead of throat. Follow supersonic A/A* branch after throat. * A= At</p><p>骣Ae Me = f 琪 桫A* g 1-g 骣 g -1 2 Pe= P o琪1 + M e 桫 2</p><p>Suppose we pick Po so that Pe = Patm</p><p> If we decrease Po, then Pe < Patm because Me is unchanged. Need weak oblique shocks to get a small pressure jump. As Po decreases, need stronger oblique shocks until normal shock at exit, 2nd critical. As Po decreases, shock moves up the nozzle. Eventually get to 1st critical. Increasing Po from 3rd critical, Pe > Patm. Get Prandtl-Meyer expansion fan to get pressure decrease</p><p>Summary:</p><p>For our nozzle:</p><p>Po,3 rd 60 psig</p><p>Po,2 nd 20 psig</p><p>Po,1 st 8 psig</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-