Chapter 5 Review Problems

Chapter 5 Review Problems

<p> PreCalculus Chapter 5 Review Problems</p><p>1.) Change 135 to radian measure in terms of .</p><p> p 2.) Change - to degree measure. 5</p><p>7p 3.) Find the reference angle and all angles coterminal with 480 and . 12</p><p>3p 5.) Find the arc length of a circle with diameter 30 in and q = . 4</p><p>5p 7.) Find the area of the sector if q = and r = 10 ft. 12</p><p>8.) Find the values of the 6 trig functions if (3, -4) lies on the terminal side of an angle.</p><p>1 9.) Suppose sin x = Find cos x . 2</p><p>4 10.) Suppose sin x = - and the terminal side lies in quadrant IV. Find the other 5 trig functions. 5</p><p>11.) Find each exact value. p 5p a. csc90° b. cos60° c. sin d. cos 3 6</p><p>14.) Find the area of the triangle with A = 20°,a= 19,C = 64° Chapter 6 Review Problems</p><p>1. Graph y = sin x on -180 Ј x Ј 180° .</p><p> q 2. Graph y = 3cos 2</p><p>3. State the amplitude, phase shift, and period for each function.</p><p> a. y = 3cos4q b. y = 11tan(15q - 45°)</p><p>4. Evaluate each expression. Assume all angles are in quadrant I. </p><p>ж 3 ц -1 5 -1 3 sin arccos tanжcos ц cosжtan ц a. з ч b. з ч c. з ч и 2 ш и 13ш и 4 ш</p><p>ж 2ц d. cos(arctan 3 + arccot 3) e. tan p + Arcsin из 3шч</p><p>5. Write the equation of a cosine function with amplitude=3, period=180, and phase shift=120. Chapter 7 Review Problems</p><p>1. Solve for all values. 1 a. If cot x = 2, find tan x. b. If sin x = , find cosx. 2</p><p>2. Express each value as a function of an angle in quadrant I. a. sin665° b. tan(-342°)</p><p>3. Simplify. tan x csc x cos2 x a. b. c. sin2 x cos2 x + sin4 x sec x 1+ sin x</p><p>1+ tan x 4. Verify: a. sin x + cosx = b. 1+ sec2 xsin2 x = sec2 x secx</p><p>6. Solve each equation.</p><p> a. 2 cos x - 1 = 0 b. sin2 x - 3sin x + 2 = 0 c. 2cos2 x = sin x + 1</p><p>Chapter 9 Review Problems 1. Find the polar coordinates of (-3,-3)</p><p>2. Name the classical curve given by r = 3cos2q</p><p> o 3. Find the rectangular coordinates of the point (4,135 )</p><p>4. Simplify: i30</p><p>5. Multiply (3 + 2i)(4 - 5i)</p><p>6. Write in complex polar form : 2 - 2i</p><p> o o 7. Write in complex rectangular form : 2(cos60 + isin60 )</p><p>Chapter 10 Review Problems 1. Find the focus, vertex, and equations of the directrix and axis of symmetry of y2 -12 - 16 x - 4 y = 0</p><p>2. Write the standard for the ellipse: 4x2+ 9 y 2 + 16 x - 36 y = - 16</p><p>3. Find the foci, center, and vertices of 12x2+ 24 x - 12 y 2 + 48 y = 48 . Find the equations of the asymptotes.</p><p>4. Write the standard form of the parabola whose directrix is x= -4 and whose focus is at (2,3).</p><p> x2+ y 2 = 4 5. Solve the following system of equations. y=2 x - 1</p><p>6. Identify the conic section represented by 3y2- 3 x 2 + 12 y + 18 x = 42</p><p>7 Write the standard form of the ellipse with foci at ( 4,0) and whose semi-minor axis is 5 units long.</p><p>8. Write the standard form of the circle x2+ y 2 +2 x - 2 y = 2</p><p>Chapter 12 Review Problems 1. Find the 35th term in the sequence -5, -1, 3, …</p><p>2. Form a sequence that has three arithmetic means between 6 and -4.</p><p>3. Find the ninth term of the sequence -8, -4, -2, -1, …</p><p>4. Form a sequence that has three geometric means between 0.2 and 125.</p><p>5. Evaluate each limit or state that the limit does not exist.</p><p>2n (-1)n n2 4n3 - 3n lim a. b. lim 2 c. lim 4 3 n®Ҙ 5n + 1 n®Ҙ 5n n®Ҙ n - 4n</p><p>6. Write in expanded form and find the sum.</p><p>11 Ҙ a. (2a - 4) b. (0.4)k еa=5 еk =1</p><p>7. Express each series using sigma notation.</p><p> a. -1 + 1 + 3 + 5 + … b. 2 + 5 + 10 + 17 + … + 82</p><p>8. Expand (2r + 3s)4</p><p>9. Find the fifth term of (x - 1)15</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us