Open Book / Open Notes

Open Book / Open Notes

<p> EGRE 254 Quiz #2 Open book / Open notes 4/13/09</p><p>Name: _SOLUTIONS_ Neatly print your name.</p><p>1 1. a). Using the minimum amount of additional combinational logic, show how to implement a JK flip-flop using a T flip-flop. You do not need to draw the circuit. Just write the equation for T.</p><p>J Q 0 0   Q 1   1 K T(d Q )= ( D ,� ; d ) + JQ KQ dQ J K Q T Q C /Q CLK Q TFF</p><p> b). Using the minimum amount of additional combinational logic, show how to implement a JK flip-flop using a D flip-flop. You do not need to draw the circuit. Just write the equation for D. D(d Q )= ( D ,1; d ) = JQ + KQ dQ J K Q D Q C /Q CLK Q TFF</p><p>2 2. Fill in the Q maps and the Z map for the given state diagram. </p><p>X = 0 X = 0</p><p>X = 1 X = 1 S0 S1 S2 Q Q Q Q X = 0 Q Q 1 2 1 2 1 2 0 0 0 1 1 0 Z = 0 Z = 1 Z = 1</p><p>X = 1 X = 0 X = 1 S3 Q Q 1 2 1 1 Z = 0 Q1 Q1 Q1 Q2 Q1 Z 0    0   0 0 1</p><p>X 0  1 1 X   1  Q2 1 0</p><p>Q2 Q2</p><p>3 3. Fill in the state table for the state diagram shown below.</p><p>X = 0 X = 0</p><p>X = 1 X = 1 S0 S1 S2 X = 0 Z = 0 Z = 1 Z = 1</p><p>X = 1 X = 0 X = 1 S3</p><p>Z = 0</p><p>Present Next state State X=0 X=1 Z S0 S0 S1 0 S1 S2 S2 1 S2 S0 S3 1 S3 S0 S3 0</p><p>4 4. Given the Q maps, write the simplest sum of product equations for designing the finite state machine using SR flip-flops. S(Q) = (; d, 1), R(Q) = (; d, 0)</p><p>Q1 Q1 Q1 Q2 0 0 1 1 0 1 1 0 0 ∆ 1 1 ∆ 1 1 ∆ Y Y d d d d d d d d X X 0 0 1  0   0</p><p>Q2 Q2</p><p>YQ S1 = 2 S2 = Y corrected</p><p>R1 = XQ2 R2 = X</p><p>5. Given the Q maps, write the simplest sum of product equations for designing the finite state machine using D flip-flops. D(Q) = (, 1; d)</p><p>Q1 Q1 Q1 Q2 0 0 1 1 0 1 1 0 0 ∆ 1 1 ∆ 1 1 ∆ Y Y d d d d d d d d X X 0 0 1  0   0</p><p>Q2 Q2</p><p>D1 = XQ1+ YQ 2 + Q 1 Q 2 D2 = XQ2 + Y Corrected</p><p>5 6. Given the Q maps, write the simplest sum of product equations for designing the finite state machine using T flip-flops. T(Q) = (, ; d)</p><p>Q1 Q1 Q1 Q2 0 0 1 1 0 1 1 0 0 ∆ 1 1 ∆ 1 1 ∆ Y Y d d d d d d d d X X 0 0 1  0   0</p><p>Q2 Q2</p><p>T1 = YQ1 Q 2+ XQ 1 Q 2 T2 = XQ2+ YQ 2</p><p>6 7.. Given the Q maps, write the simplest sum of product equations for designing the finite state machine using JK flip-flops. J(Q) = (; d, 1, ), K(Q) = (; d, 0, )</p><p>Q1 Q1 Q1 Q2 0 0 1 1 0 1 1 0 0 ∆ 1 1 ∆ 1 1 ∆ Y Y d d d d d d d d X X 0 0 1  0   0</p><p>Q2 Q2</p><p>J1 = YQ2 J2 = Y</p><p>K1 = XQ2 K2 = X</p><p>8. Assuming the machine in problem 7 has been built using JK flip-flops. Fill in the Q* maps. Be sure to enter either 0 or 1 in the cells that were don’t care conditions. * * Q1 Q1 Q1 Q2 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 Y Y 0 1 1 0 1 0 0 1 X X 0 0 1 0 0 0 0 0</p><p>Q2 Q2</p><p>The characteristic equation for the JK flip-flop is Q* = JQ + KQ ; therefore,</p><p>* Q1= J 1 Q 1 + K 1 Q 1 = YQ 2 Q 1 + X Q 2 Q 1 = YQ 2 Q 1 + XQ 1 + Q 1 Q 2 * Q2= J 2 Q 2 + K 2 Q 2 = YQ 2 + XQ 2</p><p>7</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us