Hungary to Malaysia

Hungary to Malaysia

<p>Hungary to Malaysia ------log: K:\Hungary_to_Malaysia.log opened on: 26 Jul 2006, 07:42:21</p><p>. *Dropping Hungary . drop if ccode==453440 (10 observations deleted)</p><p>. . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t)</p><p> variable | N mean sd p50 min max ------+------rimp | 1000 490919 1561268 7348 0 1.39e+07 immig | 1000 33202.42 117083.7 2790 0 1137050 gdp | 1000 2.78e+11 9.69e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.6361 16.92474 102.6773 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.95e+07 1.54e+08 1.04e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1042.171 10901.79 13.89535 .0068 270182.6 remote | 1000 6782.308 4121.956 6797 1293 39620 dist | 1000 13346.82 3525.066 14215 2409 17972 open | 1000 .7064996 .3887772 .63295 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.051848 .181104 1.015772 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------. sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou > ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 404626.7 1597655 2944.5 0 1.39e+07 immig | 870 14598.58 27144.22 1403.5 0 158613 gdp | 870 2.37e+11 1.00e+12 1.00e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.7542 17.28051 101.6138 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.34e+07 1.65e+08 1.07e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1181.904 11681.84 19.96485 .0068 270182.6 remote | 870 7215.099 4083.187 6955 1293 39620 dist | 870 13173.82 3411.925 14040 2410 17972 phone | 870 155.748 241.022 47.025 .54 1449.75 open | 870 .7136564 .4102182 .62645 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.043312 .185957 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8729.61 Log likelihood = -547.1466 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3054968 .0308466 9.90 0.000 .2450385 .365955 lgdp | 1.196976 .033775 35.44 0.000 1.130778 1.263174 lgdpau | .1713219 .5978752 0.29 0.774 -1.000492 1.343136 lgdpdfrati~w | -.9036172 .2432338 -3.72 0.000 -1.380347 -.4268876 lpopau | -2.535706 2.060685 -1.23 0.219 -6.574575 1.503162 lpop | .0286916 .0411682 0.70 0.486 -.0519966 .1093799 lxrate1 | -.1368478 .0166431 -8.22 0.000 -.1694678 -.1042279 lremote | -.4224619 .0786595 -5.37 0.000 -.5766317 -.268292 ldist | -2.184429 .166197 -13.14 0.000 -2.510169 -1.858689 lopen | .2651824 .0551138 4.81 0.000 .1571614 .3732034 english | .932337 .1310391 7.11 0.000 .6755052 1.189169 white | 4.557529 .5701526 7.99 0.000 3.44005 5.675007 lwhitemg | -.4138027 .0504544 -8.20 0.000 -.5126915 -.314914 _cons | 40.46189 18.98059 2.13 0.033 3.260616 77.66317 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000952 lgdp | -.000319 .001141 lgdpau | -.000957 .001417 .357455 lgdpdfrati~w | -.000804 .000151 -.009351 .059163 lpopau | .001838 -.008094 -1.20728 .048237 4.24642 lpop | -.000127 -.000766 .000101 .000221 -.000161 .001695 lxrate1 | .000098 .000155 .000339 .00022 -.002484 -.000093 .000277 lremote | .000453 .000047 -.00066 -.001864 -.002152 -.000274 .000059 ldist | .001782 .001061 .000613 -.001054 -.015393 -.000034 .001795 lopen | -.000127 .000576 .00234 .000837 -.015796 .000338 .000158 english | -.001257 .002987 .003136 .00206 -.011559 -.001455 .000555 white | .004241 -.002083 .002708 -.01053 -.024394 .005164 .000183 lwhitemg | -.000548 .000192 -.000253 .000959 .002761 -.000418 -.00005 _cons | -.02309 .072138 10.6303 -.592841 -38.4852 -.004622 .01083</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .006187 ldist | .004595 .027621 lopen | .001341 .001077 .003038 english | -.003367 .002956 -.000829 .017171 white | .000724 -.002782 -.000103 -.000453 .325074 lwhitemg | .000109 -.000425 -.000084 .000211 -.028214 .002546 _cons | -.039757 -.102628 .161729 .05915 .285617 -.029786 360.263</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 69907.08 Log likelihood = -980.1007 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0505492 .014211 3.56 0.000 .0226962 .0784022 lgdp | 1.608723 .0540198 29.78 0.000 1.502846 1.7146 lgdpau | .8876892 .3538703 2.51 0.012 .1941163 1.581262 lgdpdfrati~w | -.4474079 .1486019 -3.01 0.003 -.7386624 -.1561535 lpopau | -6.388743 1.196395 -5.34 0.000 -8.733635 -4.043852 lpop | -.3533118 .0894458 -3.95 0.000 -.5286222 -.1780013 lxrate1 | -.1206392 .020536 -5.87 0.000 -.1608891 -.0803894 lremote | -.9488164 .126176 -7.52 0.000 -1.196117 -.7015159 ldist | -3.203713 .1659226 -19.31 0.000 -3.528916 -2.878511 lopen | -.0567575 .026667 -2.13 0.033 -.1090238 -.0044912 english | .9988392 .0851043 11.74 0.000 .8320379 1.165641 white | 4.66538 .7779235 6.00 0.000 3.140677 6.190082 lwhitemg | -.4592575 .0722652 -6.36 0.000 -.6008948 -.3176203 _cons | 95.30965 11.43085 8.34 0.000 72.90561 117.7137 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000202 lgdp | -.000194 .002918 lgdpau | -.001134 .002244 .125224 lgdpdfrati~w | -.000515 .000931 -.011127 .022083 lpopau | .004491 -.009102 -.414477 .021341 1.43136 lpop | .000053 -.0046 -.00226 -.000226 .007271 .008001 lxrate1 | -.000017 .000343 .00003 .000471 -.003443 -.00041 .000422 lremote | .00013 -.001303 -.008395 -.005071 .030688 .001522 -.000191 ldist | .000431 -.002397 -.007498 -.002537 .020694 .00386 .000382 lopen | .00003 -.000175 -.001042 .000791 .003898 .00038 -.000085 english | -.000397 .000376 .003183 .002731 -.020633 .000086 .001131 white | .000509 -.015508 -.01451 -.00777 .058525 .023965 -.001608 lwhitemg | -.00009 .000621 .000416 .000208 -.002714 -.000849 .000143 _cons | -.046778 .131801 3.73653 -.030161 -13.2801 -.131903 .051216</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .01592 ldist | .008324 .02753 lopen | .000959 .000437 .000711 english | -.00311 .001846 -.000419 .007243 white | .021497 -.016201 .002415 -.003536 .605165 lwhitemg | .000033 .003473 -.000123 .000447 -.05325 .005222 _cons | -.499131 -.494659 -.052411 .253077 -.635745 -.001052 130.664</p><p>. . . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 6800.08 Log likelihood = -935.4606 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0607264 .0173633 3.50 0.000 .0266949 .0947578 lgdp | 1.680097 .0666956 25.19 0.000 1.549376 1.810818 lgdpau | .2981585 .4385496 0.68 0.497 -.561383 1.1577 lgdpdfrati~w | -.5027812 .1755326 -2.86 0.004 -.8468188 -.1587437 lpopau | -4.032084 1.515262 -2.66 0.008 -7.001943 -1.062225 lpop | -.497343 .0806023 -6.17 0.000 -.6553205 -.3393655 lxrate1 | -.1391181 .0243476 -5.71 0.000 -.1868385 -.0913978 lremote | -.3387469 .1251036 -2.71 0.007 -.5839454 -.0935483 ldist | -4.520097 .3295104 -13.72 0.000 -5.165925 -3.874268 lopen | .0225949 .0354189 0.64 0.524 -.0468249 .0920148 english | 1.480639 .1454415 10.18 0.000 1.195579 1.765699 white | 11.5541 1.901119 6.08 0.000 7.827975 15.28023 lwhitemg | -.9406264 .1890368 -4.98 0.000 -1.311132 -.5701211 _cons | 79.28285 14.43008 5.49 0.000 51.00041 107.5653 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000301 lgdp | -.000459 .004448 lgdpau | -.001284 .002703 .192326 lgdpdfrati~w | -.000557 .001342 -.012888 .030812 lpopau | .003987 -.016528 -.642245 .036593 2.29602 lpop | .00032 -.003772 -.001279 -.001112 .004386 .006497 lxrate1 | -6.6e-06 .000349 -.000211 .000851 -.003742 -.000516 .000593 lremote | -.000078 -.000628 -.007106 -.001911 .022475 -.000369 .000024 ldist | .001335 .008839 -.008559 -.002218 -.016608 -.001136 .000893 lopen | .000073 -.000507 -.000431 .001465 .002246 .000797 -.000176 english | -.000673 .001273 .004222 .001825 -.037031 .004496 .001663 white | .000209 -.030792 -.001102 .000853 .011054 .028894 .003979 lwhitemg | -.000036 .00152 -.000927 -.000391 .004612 -.001771 -.000381 _cons | -.039828 .086105 5.73193 -.274049 -21.0294 -.04409 .055787</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .015651 ldist | .005871 .108577 lopen | .0006 -.000551 .001255 english | -.003474 .007369 -.001106 .021153 white | .01444 -.137649 .002179 .030313 3.61426 lwhitemg | .00048 .010346 -.000086 -.003106 -.351817 .035735 _cons | -.359154 -.77462 -.02756 .354168 1.22516 -.158429 208.227</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2256.29 Log likelihood = -1111.455 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0864071 .0414661 2.08 0.037 .005135 .1676792 lgdp | .9389794 .0801356 11.72 0.000 .7819165 1.096042 lgdpau | -.4631616 .8445905 -0.55 0.583 -2.118529 1.192205 lgdpdfrati~w | -.4149194 .3486752 -1.19 0.234 -1.09831 .2684715 lpopau | .210095 2.893649 0.07 0.942 -5.461353 5.881543 lpop | .0395503 .0987049 0.40 0.689 -.1539078 .2330083 lxrate1 | -.1397375 .0334248 -4.18 0.000 -.2052489 -.074226 lremote | .5804134 .2331761 2.49 0.013 .1233966 1.03743 ldist | -1.581484 .3323814 -4.76 0.000 -2.23294 -.9300285 lopen | .3500095 .0793272 4.41 0.000 .1945311 .5054879 english | 1.702871 .2431128 7.00 0.000 1.226379 2.179364 white | 1.699555 2.221539 0.77 0.444 -2.654581 6.053691 lwhitemg | .1700155 .1949556 0.87 0.383 -.2120903 .5521214 _cons | -.2145379 27.44812 -0.01 0.994 -54.01187 53.58279 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001719 lgdp | -.001604 .006422 lgdpau | -.001808 .001549 .713333 lgdpdfrati~w | -.000357 .001594 -.012704 .121574 lpopau | .0034 -.009876 -2.38912 .040072 8.3732 lpop | .00033 -.00573 4.2e-06 -.000968 -.000756 .009743 lxrate1 | .000122 .000911 .000542 .002003 -.007727 -.001195 .001117 lremote | .001231 .00045 -.027832 -.015149 .086998 .000714 -.000804 ldist | .00432 -.007449 -.019974 -.006782 .061547 .011208 -.000182 lopen | .000268 -.001137 .00485 .002455 -.026341 .002979 -.000176 english | -.003638 .00095 .009815 .005851 -.019068 -.000552 .001474 white | .003253 -.023452 .100043 .002938 -.400414 .020219 .000393 lwhitemg | -.000491 .00087 -.010575 -.00169 .043525 -.000192 -.000191 _cons | -.037099 .141057 21.3397 -.281714 -77.4297 -.122252 .114575</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054371 ldist | .020289 .110477 lopen | .001921 -.000991 .006293 english | -.014914 .012431 -.001942 .059104 white | .041369 -.02821 .007121 .040006 4.93523 lwhitemg | -.0007 .006479 -.000422 -.002852 -.422198 .038008 _cons | -1.38918 -1.76045 .282364 .049701 4.10816 -.513474 753.399</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 54771.55 Log likelihood = -913.8515 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0242456 .0136529 1.78 0.076 -.0025136 .0510047 lgdp | 1.545476 .0533422 28.97 0.000 1.440927 1.650025 lgdpau | .6522811 .3630878 1.80 0.072 -.059358 1.36392 lgdpdfrati~w | -.2486545 .1376421 -1.81 0.071 -.518428 .0211191 lpopau | -6.573338 1.228628 -5.35 0.000 -8.981404 -4.165272 lpop | -.1468597 .0912827 -1.61 0.108 -.3257705 .032051 lxrate1 | -.0455096 .0185874 -2.45 0.014 -.0819402 -.009079 lremote | -.6187321 .1494471 -4.14 0.000 -.911643 -.3258212 ldist | -2.458252 .1654915 -14.85 0.000 -2.782609 -2.133894 lopen | -.0440779 .0275896 -1.60 0.110 -.0981526 .0099968 english | 1.154401 .1125644 10.26 0.000 .9337784 1.375023 white | 3.674228 .8714425 4.22 0.000 1.966232 5.382224 lwhitemg | -.2720855 .0801684 -3.39 0.001 -.4292127 -.1149583 _cons | 92.31228 11.61608 7.95 0.000 69.54518 115.0794 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000186 lgdp | -.000195 .002845 lgdpau | -.000884 .002024 .131833 lgdpdfrati~w | -.000344 .000797 -.007569 .018945 lpopau | .003156 -.007095 -.437129 .012119 1.50953 lpop | .000112 -.004578 -.001755 -.000152 .003655 .008333 lxrate1 | 2.3e-06 .000221 -.000061 .000462 -.00253 -.000249 .000345 lremote | -4.1e-06 -.000959 -.013536 -.004617 .049251 .000257 -.000203 ldist | .000828 -.005357 -.004294 .001055 .003919 .009538 .000625 lopen | .000017 -.000096 -.000958 .000881 .003458 .000275 -.000067 english | -.000316 -.000294 .003512 .002699 -.018487 .000217 .000946 white | .000489 -.015811 -.016467 -.002086 .030565 .02759 .001906 lwhitemg | -.000086 .000707 .000088 -.000291 .002136 -.001419 -.000212 _cons | -.03492 .131914 3.94605 -.005405 -13.9617 -.13562 .036608</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .022334 ldist | -.002546 .027387 lopen | .001147 .000267 .000761 english | -.004435 .006535 -.000475 .012671 white | .017592 .030745 .001119 .006414 .759412 lwhitemg | .00083 -.001854 6.0e-06 -.000428 -.066687 .006427 _cons | -.610899 -.230514 -.047509 .186899 -.609238 -.019662 134.933</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7683.48 Log likelihood = -968.7751 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2041574 .0303222 6.73 0.000 .144727 .2635878 lgdp | 1.605751 .0703344 22.83 0.000 1.467898 1.743604 lgdpau | -.1653545 .5812381 -0.28 0.776 -1.30456 .9738513 lgdpdfrati~w | -.1483988 .2500638 -0.59 0.553 -.6385149 .3417173 lpopau | -1.302685 2.03788 -0.64 0.523 -5.296856 2.691487 lpop | -.5042116 .0802252 -6.28 0.000 -.6614501 -.3469732 lxrate1 | -.1293165 .027133 -4.77 0.000 -.1824962 -.0761368 lremote | -.2322287 .1267629 -1.83 0.067 -.4806795 .016222 ldist | -3.198401 .3322458 -9.63 0.000 -3.849591 -2.547211 lopen | .1099389 .0484285 2.27 0.023 .0150209 .204857 english | .9337362 .1380184 6.77 0.000 .6632251 1.204247 white | 10.96063 1.86079 5.89 0.000 7.313551 14.60771 lwhitemg | -.9532426 .1852621 -5.15 0.000 -1.31635 -.5901357 _cons | 33.48625 19.41185 1.73 0.085 -4.560271 71.53277 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000919 lgdp | -.001335 .004947 lgdpau | -.001577 .002803 .337838 lgdpdfrati~w | -.001151 .002571 -.02107 .062532 lpopau | .004089 -.015523 -1.14893 .083856 4.15295 lpop | .000779 -.004094 -.001114 -.001717 .005613 .006436 lxrate1 | .000071 .000281 -.00019 .001138 -.004232 -.00058 .000736 lremote | -.000036 -.000262 -.004072 -.000525 .006213 -.000637 .000086 ldist | .004189 .002158 -.010688 -.00249 -.014772 .001103 .00124 lopen | .000136 -.000742 .001745 .001554 -.00822 .001418 -.000277 english | -.00155 .003323 .001884 .004219 -.017451 .000703 .001803 white | -.000131 -.026033 .012406 .001885 .000892 .020267 .004284 lwhitemg | .000044 .001491 -.001905 -.000539 .003303 -.001284 -.000389 _cons | -.051599 .12276 10.322 -.90424 -38.5311 -.078215 .060792</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016069 ldist | .009276 .110387 lopen | .00042 -.000906 .002345 english | -.003645 -.000911 -.001593 .019049 white | .012787 -.160215 .003388 .018093 3.46254 lwhitemg | .000522 .014524 -.000228 -.002161 -.338773 .034322 _cons | -.210247 -.696467 .090509 .186308 1.30751 -.158876 376.82</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8117.36 Log likelihood = -1109.064 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0152121 .0145657 1.04 0.296 -.0133361 .0437602 lgdp | 1.308612 .0480455 27.24 0.000 1.214445 1.40278 lgdpau | .4371002 .4628878 0.94 0.345 -.4701432 1.344344 lgdpdfrati~w | -.0774501 .1463403 -0.53 0.597 -.3642718 .2093716 lpopau | -5.321543 1.573403 -3.38 0.001 -8.405356 -2.23773 lpop | .1366584 .0699739 1.95 0.051 -.0004879 .2738047 lxrate1 | -.0582689 .0182259 -3.20 0.001 -.0939911 -.0225467 lremote | -.6150068 .1580684 -3.89 0.000 -.9248152 -.3051983 ldist | -3.216958 .2164123 -14.86 0.000 -3.641119 -2.792798 lopen | .0614056 .0382359 1.61 0.108 -.0135354 .1363467 english | 2.461527 .1309535 18.80 0.000 2.204863 2.718191 white | 4.508582 1.161559 3.88 0.000 2.231968 6.785196 lwhitemg | -.1969908 .0979515 -2.01 0.044 -.3889722 -.0050095 _cons | 83.98665 15.16142 5.54 0.000 54.27082 113.7025 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000212 lgdp | -.000335 .002308 lgdpau | .000058 -.000157 .214265 lgdpdfrati~w | -.000351 .000538 .001497 .021415 lpopau | -.001665 .001981 -.710777 -.004378 2.4756 lpop | .000156 -.002619 -.000249 -.00003 -.002345 .004896 lxrate1 | -.000011 .00019 .000242 .000557 -.002051 -.00034 .000332 lremote | .000106 .000705 -.018714 -.00004 .05796 -.000838 -.000031 ldist | .000526 .000322 -.011528 -.000421 .024026 .00076 .000365 lopen | .00005 -.000239 .000012 .001662 .000491 .00056 -.000117 english | -.000647 .000091 .001663 .001205 -.007973 .002239 .000855 white | .000198 -.013167 -.006577 -.00093 .01113 .023809 -.000116 lwhitemg | -5.3e-06 .000681 -.00083 .000227 .003162 -.001537 .000071 _cons | .025012 -.047335 6.44979 .004179 -23.1609 .02608 .023436</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .024986 ldist | .015699 .046834 lopen | .000791 .000023 .001462 english | -.003089 .00304 -.00114 .017149 white | .005971 -.007537 .000512 .032882 1.34922 lwhitemg | .001199 .002747 7.2e-06 -.002798 -.109985 .009594 _cons | -.843061 -.707148 -.0195 .042415 -.088586 -.058318 229.869</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 439.42 Log likelihood = -634.8579 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5008631 .0540553 9.27 0.000 .3949166 .6068095 lgdp | .0636429 .091356 0.70 0.486 -.1154116 .2426973 lgdpau | -.4187589 .6774945 -0.62 0.537 -1.746624 .9091059 lgdpdfrati~w | -.3128567 .2331528 -1.34 0.180 -.7698277 .1441144 lpopau | -.120817 2.308607 -0.05 0.958 -4.645604 4.40397 lpop | .2310282 .0975359 2.37 0.018 .0398614 .422195 lxrate1 | -.095695 .026188 -3.65 0.000 -.1470226 -.0443674 lremote | .2537969 .2398893 1.06 0.290 -.2163776 .7239713 ldist | -2.02081 .5466167 -3.70 0.000 -3.092159 -.9494614 lopen | .0640197 .0577829 1.11 0.268 -.0492326 .177272 english | .584665 .2518518 2.32 0.020 .0910445 1.078285 white | 12.01794 .9736579 12.34 0.000 10.10961 13.92628 lwhitemg | -1.124013 .0963059 -11.67 0.000 -1.312769 -.935257 _cons | 28.4286 22.23647 1.28 0.201 -15.15409 72.01129 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002922 lgdp | -.001702 .008346 lgdpau | -.000476 -.000741 .458999 lgdpdfrati~w | -.001093 .002244 -.007062 .05436 lpopau | -.001704 -.009768 -1.51611 .019384 5.32967 lpop | -.000065 -.005533 -.000679 -.001405 .004529 .009513 lxrate1 | .000118 .000051 .000495 .001483 -.00481 -.000521 .000686 lremote | .002828 .004466 -.02433 -.007451 .055075 -.00373 .000567 ldist | .010105 -.009229 -.022342 -.002664 -.000864 .015731 .001821 lopen | -.000516 .001692 -.002162 .000069 -.001736 -.000019 -.000069 english | -.000244 .00087 .004246 .006235 -.031847 .005643 .001187 white | .016146 -.020348 .005824 -.000311 -.052947 .024756 .004228 lwhitemg | -.001592 .000496 -.001931 -.000549 .011087 -.001305 -.000283 _cons | -.060252 .135258 13.5655 -.130783 -48.9556 -.19587 .046385</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .057547 ldist | .046548 .29879 lopen | .001107 -.001014 .003339 english | -.006576 .015047 .000057 .063429 white | .019872 -.015551 -.003619 .085456 .94801 lwhitemg | .000422 .005675 .000054 -.006417 -.088308 .009275 _cons | -1.27534 -2.76858 .052718 .177425 .588794 -.16554 494.461</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2755.64 Log likelihood = -585.215 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1544131 .0346854 4.45 0.000 .086431 .2223952 lgdp | .2596788 .0563554 4.61 0.000 .1492243 .3701334 lgdpau | -.120629 .0737217 -1.64 0.102 -.2651209 .0238629 lgdpdfrati~w | -.1217909 .0473333 -2.57 0.010 -.2145624 -.0290194 lpopau | 2.590759 .2965377 8.74 0.000 2.009555 3.171962 lpop | .7779753 .1033667 7.53 0.000 .5753803 .9805704 lxrate1 | -.0149342 .0091433 -1.63 0.102 -.0328547 .0029863 lremote | .1332333 .0355647 3.75 0.000 .0635277 .2029389 ldist | -3.261986 .3532469 -9.23 0.000 -3.954337 -2.569635 lopen | -.0153153 .0325942 -0.47 0.638 -.0791988 .0485681 english | .6134506 .2802808 2.19 0.029 .0641102 1.162791 white | 23.47744 2.987837 7.86 0.000 17.62138 29.33349 lwhitemg | -2.214038 .2773754 -7.98 0.000 -2.757684 -1.670393 _cons | -22.90938 5.415801 -4.23 0.000 -33.52415 -12.2946 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001203 lgdp | -.000706 .003176 lgdpau | -.000854 -.000331 .005435 lgdpdfrati~w | .000374 -.001237 .001034 .00224 lpopau | .005742 -.001118 -.018655 .000236 .087935 lpop | -.000235 -.002525 .001279 .000627 -.005024 .010685 lxrate1 | 1.4e-07 .000077 -.000054 .000024 .000737 -.000236 .000084 lremote | -.000379 .001292 -.000781 -.001204 -.000124 -.000827 .000048 ldist | .004465 -.000729 -.003792 .00019 .025711 -.001742 -.000157 lopen | -.000381 -.000215 .00026 -.000504 -.004856 .001192 -.000187 english | -.001001 -.000129 .000954 .000234 -.00727 .000574 .000036 white | .003671 -.006806 .000749 .002478 -.000861 .029109 -.000655 lwhitemg | -.000692 .000243 .000253 -.000142 -.00234 -.002983 .000065 _cons | -.099672 -.005684 .20144 -.008638 -1.14172 -.036306 -.008139</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .001265 ldist | -.000262 .124783 lopen | .000259 -.000943 .001062 english | -.000202 .054731 .000054 .078557 white | -.002876 .02238 .001734 .037697 8.92717 lwhitemg | .000178 -.005327 -.00001 -.002719 -.816163 .076937 _cons | .00089 -1.50143 .070629 -.445943 -.54561 .128404 29.3309</p><p>. . . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 506.02 Log likelihood = -551.6919 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5297602 .0493116 10.74 0.000 .4331113 .6264091 lgdp | .0199915 .0782318 0.26 0.798 -.13334 .173323 lgdpau | 1.938342 .7829564 2.48 0.013 .4037756 3.472908 lgdpdfrati~w | -.6300529 .2774145 -2.27 0.023 -1.173775 -.0863305 lpopau | -9.415261 2.688109 -3.50 0.000 -14.68386 -4.146664 lpop | .3232593 .0970473 3.33 0.001 .1330501 .5134684 lxrate1 | -.1074051 .0252815 -4.25 0.000 -.1569559 -.0578543 lremote | -.0082021 .2553862 -0.03 0.974 -.5087499 .4923456 ldist | -1.52557 .3199279 -4.77 0.000 -2.152617 -.8985223 lopen | .0520696 .0536335 0.97 0.332 -.0530501 .1571892 english | -.0828532 .2213737 -0.37 0.708 -.5167377 .3510314 white | 9.211419 1.088818 8.46 0.000 7.077375 11.34546 lwhitemg | -.8428342 .0964417 -8.74 0.000 -1.031856 -.6538119 _cons | 117.3809 25.50777 4.60 0.000 67.38664 167.3753 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002432 lgdp | -.001481 .00612 lgdpau | .000435 -.00033 .613021 lgdpdfrati~w | -.001247 .001561 -.017532 .076959 lpopau | -.005809 -.005432 -2.04572 .067445 7.22593 lpop | -.00017 -.004377 -.000767 -.000818 .000395 .009418 lxrate1 | .000143 -.000168 .000377 .00086 -.00396 -.000392 .000639 lremote | .001511 .004166 -.022753 -.012123 .063218 -.002576 .00041 ldist | .004744 .001143 -.009801 -.003385 -.00864 .004176 .000751 lopen | -.000261 .000726 .00027 -.0004 -.009488 .000565 -9.4e-06 english | -.001906 .001727 .004248 .004611 -.020655 -.000373 .001 white | .013488 -.026139 .01378 -.006537 -.069438 .030278 .005489 lwhitemg | -.00133 .001322 -.002723 -.000208 .013656 -.001736 -.000445 _cons | .046532 -.00788 18.1756 -.618043 -66.5959 -.052895 .051274</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .065222 ldist | .030686 .102354 lopen | .001188 .002027 .002877 english | -.010107 .020628 -.000024 .049006 white | .020342 .002733 -.001921 .01838 1.18552 lwhitemg | .000677 .000202 .000096 -.001019 -.100561 .009301 _cons | -1.36089 -.963446 .099551 .076543 .548139 -.151591 650.646</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1397.30 Log likelihood = -316.9672 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0372462 .016728 2.23 0.026 .00446 .0700324 lgdp | .2159262 .0533874 4.04 0.000 .1112888 .3205635 lgdpau | -.2431661 .2905729 -0.84 0.403 -.8126786 .3263464 lgdpdfrati~w | -.4054864 .1893745 -2.14 0.032 -.7766536 -.0343191 lpopau | 2.82328 1.039363 2.72 0.007 .7861659 4.860394 lpop | .1176112 .0677301 1.74 0.082 -.0151374 .2503597 lxrate1 | -.0766152 .0176693 -4.34 0.000 -.1112464 -.041984 lremote | -.1288012 .1064026 -1.21 0.226 -.3373465 .0797441 ldist | -1.279698 .2282448 -5.61 0.000 -1.727049 -.832346 lopen | .0064489 .0243693 0.26 0.791 -.041314 .0542118 english | 1.965973 .2077213 9.46 0.000 1.558847 2.373099 white | 9.233493 1.77666 5.20 0.000 5.751303 12.71568 lwhitemg | -.683164 .1834239 -3.72 0.000 -1.042668 -.3236598 _cons | -32.35039 10.62605 -3.04 0.002 -53.17707 -11.52372 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00028 lgdp | -.000308 .00285 lgdpau | .000231 -.001391 .084433 lgdpdfrati~w | -.000512 -.000204 -.001583 .035863 lpopau | -.001111 .006588 -.289939 .021633 1.08028 lpop | .000129 -.002767 .000926 .000776 -.007395 .004587 lxrate1 | -.000016 .000154 .001097 .000684 -.005301 -.000143 .000312 lremote | .000142 .000901 -.00618 -.002788 .021685 -.000523 -.000268 ldist | .000826 .000609 -.001864 -.001115 -.002526 .002931 -.000265 lopen | .000023 -.000238 -.000192 .000951 -.000645 .000304 -9.6e-06 english | -.000169 -.002353 .003053 .00321 -.009975 .004373 .000272 white | .001681 -.021421 .013403 .003043 -.072525 .024085 .000981 lwhitemg | -.00017 .001241 -.001104 -.000026 .005204 -.001657 -.000067 _cons | .007283 -.104355 2.67863 -.329197 -10.511 .064237 .061129</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .011322 ldist | .001519 .052096 lopen | -.000106 -.000099 .000594 english | -.002633 .017499 -.000079 .043148 white | .009469 -.020485 .001226 .067719 3.15652 lwhitemg | -.000348 .000805 -.000064 -.006473 -.321468 .033644 _cons | -.319128 -.480871 .017534 -.082477 1.03669 -.062151 112.913</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1047.13 Log likelihood = -859.0035 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2112718 .0665422 3.18 0.001 .0808514 .3416922 lgdp | .4886882 .1104013 4.43 0.000 .2723057 .7050708 lgdpau | -2.184976 1.147944 -1.90 0.057 -4.434905 .0649526 lgdpdfrati~w | -1.008651 .4524731 -2.23 0.026 -1.895482 -.1218201 lpopau | 4.022566 3.937443 1.02 0.307 -3.694681 11.73981 lpop | .2038669 .1240258 1.64 0.100 -.0392192 .446953 lxrate1 | -.1410991 .0402711 -3.50 0.000 -.220029 -.0621692 lremote | 1.558941 .2869961 5.43 0.000 .9964387 2.121443 ldist | -1.474721 .5117786 -2.88 0.004 -2.477789 -.4716538 lopen | -.0126535 .0778508 -0.16 0.871 -.1652383 .1399314 english | .218224 .2629177 0.83 0.407 -.2970852 .7335331 white | 10.77462 1.440941 7.48 0.000 7.950423 13.59881 lwhitemg | -.8547509 .1387903 -6.16 0.000 -1.126775 -.5827269 _cons | -19.67024 36.98177 -0.53 0.595 -92.15318 52.8127 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004428 lgdp | -.004569 .012188 lgdpau | -.0017 .005532 1.31778 lgdpdfrati~w | -.001531 .004435 -.006428 .204732 lpopau | .00127 -.026861 -4.40836 .072266 15.5035 lpop | .001655 -.010178 -.002545 -.002716 .011202 .015382 lxrate1 | .000124 .001624 .001 .001684 -.010654 -.001518 .001622 lremote | .000437 -.002007 -.032726 -.020904 .083222 .002806 .000656 ldist | .013359 -.010892 -.009458 -.010016 -.015708 .01622 -.002134 lopen | .000324 -.000747 .007058 .001187 -.035606 .002133 -.000357 english | -.006287 .011631 .006811 .001137 -.027254 -.008816 -.000628 white | .026445 -.049808 -.041512 -.039174 .049654 .048954 .005278 lwhitemg | -.003145 .00304 -.000193 .000941 .013135 -.002473 -.000867 _cons | -.051861 .320446 38.8694 -1.01474 -141.845 -.309768 .145074</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .082367 ldist | .022212 .261917 lopen | .003067 .004318 .006061 english | -.001932 .027393 -.000838 .069126 white | .129337 .142522 .00172 .032152 2.07631 lwhitemg | -.004617 -.018769 -.00004 -.005059 -.189291 .019263 _cons | -1.44353 -2.24469 .324629 -.0755 -2.02793 -.002906 1367.65</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 557.42 Log likelihood = -138.1569 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0457924 .0304901 1.50 0.133 -.0139671 .105552 lgdp | .1564997 .0603637 2.59 0.010 .0381891 .2748104 lgdpau | .4239838 .4266398 0.99 0.320 -.4122148 1.260182 lgdpdfrati~w | .3797864 .1895263 2.00 0.045 .0083217 .7512512 lpopau | 2.306613 1.505324 1.53 0.125 -.6437679 5.256994 lpop | .2864698 .0805492 3.56 0.000 .1285964 .4443433 lxrate1 | -.0292299 .0165791 -1.76 0.078 -.0617243 .0032645 lremote | -.0682604 .1398186 -0.49 0.625 -.3422997 .2057789 ldist | -2.166637 .4262938 -5.08 0.000 -3.002158 -1.331117 lopen | .0559712 .0387703 1.44 0.149 -.0200173 .1319597 english | .8067258 .1886868 4.28 0.000 .4369065 1.176545 white | 15.69671 1.218607 12.88 0.000 13.30828 18.08513 lwhitemg | -1.336775 .1143335 -11.69 0.000 -1.560864 -1.112685 _cons | -36.16262 15.44842 -2.34 0.019 -66.44097 -5.884273 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00093 lgdp | -.000694 .003644 lgdpau | -.000442 -.000165 .182022 lgdpdfrati~w | -.000733 .000999 -.001047 .03592 lpopau | .000428 .001665 -.611659 .017337 2.266 lpop | -.00012 -.002676 .000346 .000577 -.004553 .006488 lxrate1 | .000058 .000099 .000193 .000593 -.002799 -.000111 .000275 lremote | .000683 .00231 -.008893 -.00379 .028522 -.001725 .000044 ldist | .002694 -.004013 -.010697 -.007875 -4.2e-07 .009176 .00011 lopen | -.000078 6.5e-06 .000145 .000417 -.003876 .000528 -.000054 english | -.001539 -.000742 .002733 .002725 -.010774 .004736 .000143 white | .00469 -.017735 .031948 -.004289 -.283144 .025883 .003717 lwhitemg | -.000596 .001022 -.003458 .000152 .029228 -.001966 -.000406 _cons | -.013838 -.04185 5.5513 -.218654 -21.7693 -.04865 .037762 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .019549 ldist | .017508 .181726 lopen | .000247 .000117 .001503 english | -.004278 .006334 .000253 .035603 white | -.006528 -.014827 -.000869 .044082 1.485 lwhitemg | .001053 .002173 .000141 -.003515 -.135812 .013072 _cons | -.600368 -1.67332 .049852 .02148 4.00028 -.411133 238.654</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 266.22 Log likelihood = 146.5087 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0017144 .019965 0.09 0.932 -.0374162 .040845 lgdp | .2843683 .0519278 5.48 0.000 .1825917 .3861448 lgdpau | -.3210589 .3644592 -0.88 0.378 -1.035386 .393268 lgdpdfrati~w | -.0960939 .1487989 -0.65 0.518 -.3877344 .1955465 lpopau | 4.617901 1.329837 3.47 0.001 2.011468 7.224335 lpop | -.0724865 .0615299 -1.18 0.239 -.1930829 .0481098 lxrate1 | -.1039135 .0155828 -6.67 0.000 -.1344553 -.0733717 lremote | .3678271 .1336508 2.75 0.006 .1058762 .6297779 ldist | -1.314931 .2812289 -4.68 0.000 -1.86613 -.7637326 lopen | .0325948 .030057 1.08 0.278 -.0263158 .0915054 english | .2341264 .1658588 1.41 0.158 -.0909508 .5592036 white | 9.254427 2.006536 4.61 0.000 5.321689 13.18717 lwhitemg | -.7826359 .1908129 -4.10 0.000 -1.156622 -.4086495 _cons | -63.15974 14.10171 -4.48 0.000 -90.79859 -35.52088 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000399 lgdp | -.000387 .002696 lgdpau | .000263 -.000596 .132831 lgdpdfrati~w | -.000477 .000487 -.006578 .022141 lpopau | -.002558 .003575 -.456473 .0297 1.76847 lpop | .000029 -.002265 -.00019 -.000048 .00101 .003786 lxrate1 | 2.0e-06 .00001 .000509 .000496 -.004721 -.000125 .000243 lremote | .000336 .001766 -.008157 -.001354 .028849 -.001505 -.000078 ldist | .001807 -.001838 -.002349 -.001604 .002488 .004507 .000049 lopen | -.000017 .000034 .000072 .000174 -.001668 .000191 -.000031 english | -.000463 -.001846 -.000104 .000885 .021957 .004587 .000199 white | .002644 -.01559 .016966 -.005085 -.13929 .015533 .001889 lwhitemg | -.000308 .000975 -.002097 .000483 .01437 -.001199 -.000142 _cons | .022298 -.064058 4.20094 -.326005 -17.7392 -.050926 .065337</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .017863 ldist | .007466 .07909 lopen | .000108 -.000541 .000903 english | -.001316 .015224 -.000319 .027509 white | .000113 .014032 -.000902 .034367 4.02619 lwhitemg | .000706 -.002309 .000108 -.003155 -.376402 .03641 _cons | -.507052 -.840523 .026837 -.531716 1.80959 -.168409 198.858</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 501.48 Log likelihood = -651.3583 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .218622 .0542858 4.03 0.000 .1122239 .3250202 lgdp | .7468104 .1026651 7.27 0.000 .5455905 .9480302 lgdpau | -.499068 .6404911 -0.78 0.436 -1.754408 .7562714 lgdpdfrati~w | -.2915824 .2711341 -1.08 0.282 -.8229954 .2398307 lpopau | 2.704849 2.206215 1.23 0.220 -1.619253 7.028951 lpop | -.3324576 .1434559 -2.32 0.020 -.6136259 -.0512892 lxrate1 | -.1340064 .0308294 -4.35 0.000 -.1944309 -.0735819 lremote | .0624607 .2276826 0.27 0.784 -.383789 .5087105 ldist | -3.035253 .6797898 -4.46 0.000 -4.367617 -1.70289 lopen | .0337928 .0644372 0.52 0.600 -.0925019 .1600875 english | -.5481728 .4252831 -1.29 0.197 -1.381712 .2853666 white | 19.69186 4.037298 4.88 0.000 11.7789 27.60482 lwhitemg | -1.798818 .3718793 -4.84 0.000 -2.527688 -1.069948 _cons | -12.36373 21.7854 -0.57 0.570 -55.06233 30.33487 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002947 lgdp | -.002367 .01054 lgdpau | .000933 -.000759 .410229 lgdpdfrati~w | -.001666 .003213 -.008472 .073514 lpopau | -.007469 -.0021 -1.36465 .052863 4.86738 lpop | -.000198 -.007472 -.001621 -.00153 -.004886 .02058 lxrate1 | .00013 .000511 .001917 .001123 -.009978 -.000767 .00095 lremote | .000795 .00411 -.01918 -.011836 .038393 -.002763 .000545 ldist | .012471 .010308 -.004581 -.003125 -.053111 .003329 .000681 lopen | .000454 -.001021 -.000925 -.000122 -.010164 .001843 -.000192 english | -.006307 .002061 .002428 .005331 -.014704 .017322 .000767 white | .007082 -.033894 .11446 .020831 -.309528 .069705 .005128 lwhitemg | -.001353 .001455 -.012142 -.003133 .036812 -.005263 -.000589 _cons | .018176 -.192193 12.1255 -.641456 -44.6514 -.039124 .098978</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .051839 ldist | .028181 .462114 lopen | .000615 .003323 .004152 english | -.003253 .120821 -.001608 .180866 white | .026651 .238152 .004768 .281131 16.2998 lwhitemg | -.000072 -.037826 -.000327 -.030091 -1.47467 .138294 _cons | -.900393 -4.0157 .151681 -1.28011 -.877722 .138947 474.604</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1106.44 Log likelihood = -566.7942 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2259065 .0483323 4.67 0.000 .131177 .3206361 lgdp | .5741992 .1040149 5.52 0.000 .3703338 .7780646 lgdpau | 1.171778 .7189799 1.63 0.103 -.2373963 2.580953 lgdpdfrati~w | -.0273712 .3063749 -0.09 0.929 -.627855 .5731125 lpopau | -5.134419 2.490345 -2.06 0.039 -10.01541 -.2534315 lpop | .5003614 .1299591 3.85 0.000 .2456462 .7550766 lxrate1 | -.0991497 .0330371 -3.00 0.003 -.1639013 -.0343981 lremote | -.4244055 .2612232 -1.62 0.104 -.9363935 .0875825 ldist | -2.232071 .4386393 -5.09 0.000 -3.091788 -1.372353 lopen | -.0821202 .0743588 -1.10 0.269 -.2278607 .0636203 english | 1.049964 .3256832 3.22 0.001 .4116362 1.688291 white | 22.92503 3.073865 7.46 0.000 16.90036 28.94969 lwhitemg | -2.223663 .2733613 -8.13 0.000 -2.759441 -1.687884 _cons | 61.52538 23.86091 2.58 0.010 14.75884 108.2919 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002336 lgdp | -.002057 .010819 lgdpau | -.002421 .006546 .516932 lgdpdfrati~w | -.002247 .005037 -.018324 .093866 lpopau | .007144 -.042123 -1.73277 .055519 6.20182 lpop | .000312 -.009001 -.00435 -.004341 .02151 .016889 lxrate1 | .000079 .00082 .000118 .001889 -.005556 -.000999 .001091 lremote | .000735 .003243 -.010643 -.022783 .024116 -.001351 -.000153 ldist | .008372 -.004205 -.010338 -.004975 .000564 .015464 .000669 lopen | .000232 .00007 .001249 .003106 -.016457 .001206 -.00008 english | -.003392 .002774 .004285 .007685 -.021554 -.001194 .001023 white | .007633 -.036693 .033872 -.0235 -.070512 .061194 .004965 lwhitemg | -.001009 .001183 -.004731 -.000216 .017522 -.003934 -.000588 _cons | -.109418 .441479 15.326 -.324268 -57.1344 -.437639 .075631</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .068238 ldist | .012068 .192404 lopen | .001488 .001787 .005529 english | -.011434 .05795 -.00191 .10607 white | .043457 .05559 .004235 .002888 9.44865 lwhitemg | -.000139 -.008214 -.000502 .000955 -.824504 .074726 _cons | -.863266 -1.87538 .189232 -.270054 -.830518 -.043557 569.343</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1566.51 Log likelihood = -751.1944 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0655857 .0345308 1.90 0.058 -.0020933 .1332648 lgdp | 1.009729 .0961518 10.50 0.000 .821275 1.198183 lgdpau | 1.01497 .7074211 1.43 0.151 -.3715495 2.40149 lgdpdfrati~w | -.1143451 .2738876 -0.42 0.676 -.6511548 .4224647 lpopau | 2.93815 2.458215 1.20 0.232 -1.879862 7.756163 lpop | -.449501 .1405272 -3.20 0.001 -.7249293 -.1740726 lxrate1 | -.1518669 .0222595 -6.82 0.000 -.1954948 -.108239 lremote | -.4225046 .2251998 -1.88 0.061 -.8638881 .0188789 ldist | -1.812887 .746265 -2.43 0.015 -3.27554 -.350235 lopen | -.0582184 .0728458 -0.80 0.424 -.2009936 .0845568 english | .1320527 .3346648 0.39 0.693 -.5238783 .7879838 white | 28.59197 2.676341 10.68 0.000 23.34644 33.8375 lwhitemg | -2.664377 .2581362 -10.32 0.000 -3.170315 -2.158439 _cons | -67.37182 24.56685 -2.74 0.006 -115.522 -19.22167 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001192 lgdp | -.001755 .009245 lgdpau | .000307 .002284 .500445 lgdpdfrati~w | -.001752 .004359 -.014031 .075014 lpopau | -.0075 -.013063 -1.66495 .050645 6.04282 lpop | .001635 -.011101 -.004468 -.003933 .028592 .019748 lxrate1 | .000039 .000301 .000266 .000768 -.008548 -.000676 .000495 lremote | .000426 .002675 -.028557 -.006203 .048213 -.002843 .000507 ldist | .007659 .013887 -.013601 .000127 -.087125 .009896 .001096 lopen | .000365 -.000785 .000386 .004812 -.009666 .001229 -.000337 english | -.001259 .002511 .000308 .002456 -.003454 .000517 .000869 white | .014026 -.059843 -.016697 -.037911 -.246907 .069554 .00913 lwhitemg | -.001416 .003943 -.001847 .002465 .036455 -.005034 -.000858 _cons | .049491 -.029216 14.9041 -.521888 -56.3315 -.488182 .120637</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .050715 ldist | .048986 .556911 lopen | .000125 .002536 .005307 english | .003652 .063153 -.00165 .112001 white | .083101 .046093 -.009492 .216343 7.1628 lwhitemg | -.004381 -.014703 .000955 -.02352 -.678062 .066634 _cons | -.980422 -4.46325 .122277 -.661535 3.51982 -.377505 603.53</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 547.88 Log likelihood = -568.4741 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4420544 .0601044 7.35 0.000 .3242519 .559857 lgdp | .2620293 .0992822 2.64 0.008 .0674398 .4566187 lgdpau | 1.100231 .7446167 1.48 0.140 -.3591911 2.559653 lgdpdfrati~w | -.4754869 .3194391 -1.49 0.137 -1.101576 .1506022 lpopau | -4.614111 2.571369 -1.79 0.073 -9.653901 .425679 lpop | .2991743 .1056793 2.83 0.005 .0920468 .5063019 lxrate1 | -.0714386 .0345587 -2.07 0.039 -.1391724 -.0037049 lremote | -.2280546 .2351349 -0.97 0.332 -.6889105 .2328013 ldist | -1.245248 .572647 -2.17 0.030 -2.367615 -.1228804 lopen | .0920538 .0723611 1.27 0.203 -.0497714 .233879 english | -.1503734 .2798894 -0.54 0.591 -.6989465 .3981998 white | 18.97312 2.048802 9.26 0.000 14.95755 22.9887 lwhitemg | -1.825047 .1958155 -9.32 0.000 -2.208838 -1.441255 _cons | 53.47414 24.36916 2.19 0.028 5.711472 101.2368 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003613 lgdp | -.003227 .009857 lgdpau | -.002254 .006551 .554454 lgdpdfrati~w | -.002286 .005949 -.008758 .102041 lpopau | .005054 -.035412 -1.8541 .048371 6.61194 lpop | .000956 -.006407 -.004541 -.00447 .012634 .011168 lxrate1 | .000368 .000468 -.000115 .000958 -.004308 -.000685 .001194 lremote | -.000502 .002979 -.010798 -.018683 .002494 .001587 .001215 ldist | .01173 .000156 -.006286 -.011167 -.064256 .006518 .000643 lopen | -.000359 .000884 .002139 -.000111 -.023207 .001613 -.000145 english | -.004017 .006824 .005429 .001564 -.023151 -.000134 -.001656 white | .021655 -.040079 -.009532 -.074958 .105207 .017259 -.001482 lwhitemg | -.002631 .002311 -.001144 .004395 .001695 -.000427 -.000227 _cons | -.094772 .278566 16.3133 -.457511 -59.9689 -.198877 .052817</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .055288 ldist | .035099 .327925 lopen | .002503 .003091 .005236 english | .008536 .086848 -.000114 .078338 white | .118554 .207387 -.008343 .143196 4.19759 lwhitemg | -.007817 -.02993 .000775 -.016479 -.3918 .038344 _cons | -.65596 -2.37266 .238982 -.800089 -3.9935 .327253 593.856</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1531.31 Log likelihood = -242.2113 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0042793 .0228777 0.19 0.852 -.0405602 .0491188 lgdp | .4391276 .0819722 5.36 0.000 .2784651 .5997901 lgdpau | -.3241993 .4922563 -0.66 0.510 -1.289004 .6406052 lgdpdfrati~w | .1773169 .2237387 0.79 0.428 -.2612028 .6158366 lpopau | 1.198482 1.698868 0.71 0.481 -2.131238 4.528202 lpop | -.2323772 .1158194 -2.01 0.045 -.459379 -.0053754 lxrate1 | -.0402512 .0226815 -1.77 0.076 -.0847062 .0042037 lremote | -.0647559 .169257 -0.38 0.702 -.3964935 .2669818 ldist | -3.861632 .5195635 -7.43 0.000 -4.879958 -2.843306 lopen | .0128867 .0499615 0.26 0.796 -.085036 .1108094 english | -.0163697 .3022435 -0.05 0.957 -.6087561 .5760166 white | 16.03595 2.614341 6.13 0.000 10.91193 21.15996 lwhitemg | -1.167722 .2810891 -4.15 0.000 -1.718647 -.6167976 _cons | 21.06517 17.01823 1.24 0.216 -12.28994 54.42027 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000523 lgdp | -.000669 .006719 lgdpau | .000196 -.002087 .242316 lgdpdfrati~w | -.000837 .002465 -.009476 .050059 lpopau | -.001589 .000203 -.808919 .049496 2.88615 lpop | .000258 -.006157 .000125 -.000983 -.002758 .013414 lxrate1 | -.000023 .000181 .001354 .001037 -.006523 -.000541 .000514 lremote | .000103 .002222 -.016867 -.003796 .049393 -.002935 -.000114 ldist | .002296 .003591 -.010035 -.000878 -.015658 .018315 -.000371 lopen | .000045 -.000114 -.002124 .001118 .002554 .000823 -.000042 english | -.001084 .000447 .00177 .001763 -.002587 .004433 .000614 white | .004354 -.036555 .048084 -.011314 -.295683 .061451 .002305 lwhitemg | -.000472 .001507 -.00577 .000305 .03612 -.004947 -.000062 _cons | .007937 -.053588 7.35165 -.62244 -26.9309 -.178593 .078349</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .028648 ldist | .012594 .269946 lopen | .000152 .000902 .002496 english | .000218 .061453 3.9e-06 .091351 white | -.00377 .155508 -.001828 .109629 6.83478 lwhitemg | .002989 -.020241 .000234 -.011095 -.724791 .079011 _cons | -.748948 -2.56056 -.006819 -.685027 2.0055 -.234466 289.62 . . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping Indonesia . drop if ccode==453560 (10 observations deleted)</p><p>. . . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 480733.9 1560783 7348 0 1.39e+07 immig | 1000 33046.77 117081.5 2790 0 1137050 gdp | 1000 2.77e+11 9.70e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.497 16.5633 102.6773 60.87417 184.0119 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.77e+07 1.53e+08 1.02e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1018.645 10900.02 13.89535 .0068 270182.6 remote | 1000 6713.199 4138.674 6764 1293 39620 dist | 1000 13450.01 3438.651 14305 2409 17972 open | 1000 .7101332 .3894539 .63885 .0671 3.2192 english | 1000 .37 .4830459 0 0 1 gdpdfratio~w | 1000 1.050534 .1784156 1.013736 .5844526 1.94877 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------</p><p>. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou > ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 392919.6 1596471 2944.5 0 1.39e+07 immig | 870 14419.67 27010.31 1403.5 0 158613 gdp | 870 2.35e+11 1.00e+12 1.00e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.5943 16.86464 101.6138 60.87417 184.0119 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.13e+07 1.64e+08 1.03e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1154.863 11680.26 19.96485 .0068 270182.6 remote | 870 7135.663 4110.863 6927 1293 39620 dist | 870 13292.43 3314.92 14051 2410 17972 phone | 870 159.1009 241.9731 49.795 .54 1449.75 open | 870 .717833 .4108799 .63875 .0671 3.2192 english | 870 .3793103 .4854945 0 0 1 gdpdfratio~w | 870 1.041802 .1828736 1 .5844526 1.94877 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 9132.66 Log likelihood = -546.7767 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3344265 .0308187 10.85 0.000 .2740229 .3948301 lgdp | 1.197077 .0331448 36.12 0.000 1.132115 1.26204 lgdpau | .1296837 .5972609 0.22 0.828 -1.040926 1.300294 lgdpdfrati~w | -1.036727 .2496679 -4.15 0.000 -1.526067 -.5473871 lpopau | -2.484968 2.060065 -1.21 0.228 -6.522621 1.552685 lpop | -.0071285 .0426965 -0.17 0.867 -.0908122 .0765551 lxrate1 | -.1339624 .016662 -8.04 0.000 -.1666193 -.1013055 lremote | -.3915755 .0778987 -5.03 0.000 -.5442541 -.2388969 ldist | -2.026915 .1586052 -12.78 0.000 -2.337776 -1.716055 lopen | .2555495 .0560243 4.56 0.000 .1457439 .3653552 english | .8301979 .1333792 6.22 0.000 .5687795 1.091616 white | 4.336572 .5694161 7.62 0.000 3.220537 5.452607 lwhitemg | -.4055836 .0504282 -8.04 0.000 -.504421 -.3067461 _cons | 39.51179 18.97477 2.08 0.037 2.321929 76.70165 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00095 lgdp | -.0003 .001099 lgdpau | -.000976 .001334 .356721 lgdpdfrati~w | -.000901 .000084 -.007945 .062334 lpopau | .002191 -.007932 -1.20592 .045159 4.24387 lpop | -.000163 -.00077 .000306 .000594 -.000842 .001823 lxrate1 | .000077 .00015 .000438 .000283 -.002725 -.000055 .000278 lremote | .000536 .000116 -.000808 -.002276 -.00223 -.000513 -8.5e-06 ldist | .001712 .001125 .000415 -.002133 -.01413 -.000608 .001455 lopen | -.000199 .000576 .002457 .00112 -.01661 .000494 .000187 english | -.001293 .00273 .003612 .00307 -.012434 -.000966 .000737 white | .004337 -.002048 .00401 -.007811 -.026982 .006185 .00073 lwhitemg | -.000543 .000187 -.000339 .000764 .002815 -.000494 -.000083 _cons | -.028381 .071604 10.6273 -.572541 -38.4818 .006457 .015509</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .006068 ldist | .005554 .025156 lopen | .001211 .000831 .003139 english | -.004024 .001531 -.000479 .01779 white | -.002488 -.003224 .000468 .005025 .324235 lwhitemg | .000301 -.000252 -.000112 -.000235 -.028261 .002543 _cons | -.039976 -.093174 .173155 .077371 .30173 -.029857 360.042</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 78808.06 Log likelihood = -978.7231 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0506532 .0135226 3.75 0.000 .0241495 .077157 lgdp | 1.67324 .0488425 34.26 0.000 1.577511 1.76897 lgdpau | .8850739 .3493839 2.53 0.011 .200294 1.569854 lgdpdfrati~w | -.5103122 .1457128 -3.50 0.000 -.7959039 -.2247204 lpopau | -6.245437 1.180396 -5.29 0.000 -8.558971 -3.931904 lpop | -.4741722 .0815932 -5.81 0.000 -.6340919 -.3142526 lxrate1 | -.1270311 .0205339 -6.19 0.000 -.1672768 -.0867854 lremote | -.9049371 .093857 -9.64 0.000 -1.088893 -.7209807 ldist | -2.940946 .1521253 -19.33 0.000 -3.239107 -2.642786 lopen | -.06234 .0262106 -2.38 0.017 -.1137117 -.0109683 english | .9521092 .0860557 11.06 0.000 .7834432 1.120775 white | 3.861625 .7662694 5.04 0.000 2.359765 5.363485 lwhitemg | -.3925014 .0732356 -5.36 0.000 -.5360406 -.2489622 _cons | 90.55332 11.08644 8.17 0.000 68.8243 112.2823 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000183 lgdp | -.000241 .002386 lgdpau | -.001168 .001719 .122069 lgdpdfrati~w | -.000568 .000496 -.011359 .021232 lpopau | .004621 -.006829 -.403455 .02229 1.39333 lpop | .000144 -.003762 -.001462 .000517 .003719 .006657 lxrate1 | -.000027 .000257 -.000063 .000436 -.003202 -.00026 .000422 lremote | .000392 .000171 -.006346 -.003227 .022972 -.000971 .000031 ldist | .00068 -.002948 -.006078 -.000472 .014268 .004974 .000488 lopen | .000041 -.000087 -.00096 .000904 .003562 .000236 -.000076 english | -.000402 .00019 .002917 .002727 -.020095 .000392 .001157 white | .001002 -.010739 -.010778 -.00367 .038892 .016514 -.000577 lwhitemg | -.000082 .000491 .00046 .000193 -.002459 -.000674 .000101 _cons | -.052984 .100017 3.60457 -.07684 -12.8056 -.082296 .046344</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .008809 ldist | .001743 .023142 lopen | .000612 .000304 .000687 english | -.002731 .002846 -.000405 .007406</p><p> white | .008295 -.004794 .001539 -.001266 .587169 lwhitemg | -.000108 .00155 -.00011 .000343 -.054603 .005363 _cons | -.295913 -.332673 -.044527 .237385 -.403067 .01383 122.909</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7929.75 Log likelihood = -944.4683 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .158728 .0264878 5.99 0.000 .1068129 .210643 lgdp | 1.725849 .0708 24.38 0.000 1.587084 1.864615 lgdpau | -.0439947 .5975751 -0.07 0.941 -1.21522 1.127231 lgdpdfrati~w | -.4677339 .2435489 -1.92 0.055 -.945081 .0096133 lpopau | -2.053878 2.08829 -0.98 0.325 -6.146852 2.039096 lpop | -.6625021 .0822729 -8.05 0.000 -.8237541 -.5012501 lxrate1 | -.1705445 .028007 -6.09 0.000 -.2254373 -.1156517 lremote | -.3407898 .1327903 -2.57 0.010 -.601054 -.0805257 ldist | -3.320111 .356115 -9.32 0.000 -4.018083 -2.622138 lopen | .0762079 .0459937 1.66 0.098 -.013938 .1663538 english | .7940889 .14606 5.44 0.000 .5078166 1.080361 white | 8.855036 1.890639 4.68 0.000 5.149451 12.56062 lwhitemg | -.7678 .1894829 -4.05 0.000 -1.13918 -.3964204 _cons | 45.46043 19.98748 2.27 0.023 6.285685 84.63518 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000702 lgdp | -.001111 .005013 lgdpau | -.002251 .00456 .357096 lgdpdfrati~w | -.000992 .002563 -.023036 .059316 lpopau | .006478 -.021236 -1.21282 .084796 4.36096 lpop | .000762 -.0043 -.001977 -.002256 .006286 .006769 lxrate1 | .000042 .000525 .000265 .000947 -.005907 -.000829 .000784 lremote | -.000015 -.000151 -.00712 -.001398 .021873 -.001873 .000107 ldist | .003253 .006173 -.01491 -.002679 .008623 -.003013 .001196 lopen | .000117 -.00063 .00023 .002109 -.000617 .00114 -.000242 english | -.001186 .003156 .008148 .001003 -.048347 .001516 .001873 white | .001333 -.028778 .0172 -.006146 -.057634 .026168 .003985 lwhitemg | -.000088 .001671 -.002841 -.000016 .011025 -.0019 -.000428 _cons | -.068615 .131896 10.9193 -.844179 -40.5434 -.015722 .075661</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .017633 ldist | .011788 .126818 lopen | .000461 -.000969 .002115 english | -.006354 -.003229 -.001667 .021334 white | .003847 -.169926 .002679 .025942 3.57452 lwhitemg | .00158 .014698 -.000181 -.003303 -.351726 .035904 _cons | -.410516 -1.17374 .005355 .573714 2.29899 -.267814 399.5</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2602.98 Log likelihood = -1095.429 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0896262 .0391713 2.29 0.022 .0128519 .1664006 lgdp | .9677747 .0793903 12.19 0.000 .8121727 1.123377 lgdpau | -.2922241 .7900492 -0.37 0.711 -1.840692 1.256244 lgdpdfrati~w | -.4283251 .3319124 -1.29 0.197 -1.078861 .2222112 lpopau | -.196991 2.715117 -0.07 0.942 -5.518522 5.12454 lpop | -.0322458 .0952835 -0.34 0.735 -.218998 .1545063 lxrate1 | -.1429047 .0331453 -4.31 0.000 -.2078682 -.0779412 lremote | .556396 .223354 2.49 0.013 .1186302 .9941617 ldist | -1.535294 .3295158 -4.66 0.000 -2.181133 -.8894551 lopen | .3098901 .0787245 3.94 0.000 .1555928 .4641873 english | 1.54066 .2260538 6.82 0.000 1.097603 1.983718 white | 1.476603 2.139793 0.69 0.490 -2.717314 5.67052 lwhitemg | .1904576 .1857766 1.03 0.305 -.1736579 .5545731 _cons | 2.251508 25.8809 0.09 0.931 -48.47412 52.97714 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001534 lgdp | -.001477 .006303 lgdpau | -.001672 .001949 .624178 lgdpdfrati~w | -.000158 .000878 -.007935 .110166 lpopau | .0031 -.009993 -2.0947 .035404 7.37186 lpop | .000377 -.005515 -.000439 -.000667 -.001426 .009079 lxrate1 | .000092 .000891 .000583 .001523 -.006763 -.001131 .001099 lremote | .001204 .000249 -.022605 -.015471 .070052 .001284 -.000877 ldist | .003885 -.007654 -.018636 -.006149 .061048 .011465 -.000442 lopen | .000283 -.001182 .005716 .001796 -.030589 .002919 -.000181 english | -.003045 .001111 .006003 .004106 -.004616 -.002593 .001695 white | .003759 -.022535 .089826 .001394 -.360968 .017196 .001028 lwhitemg | -.000506 .000684 -.009358 -.0014 .038768 .000172 -.00024 _cons | -.034139 .135837 18.7298 -.310545 -68.3751 -.102199 .100544</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .049887 ldist | .019183 .108581 lopen | .001702 -.001065 .006198 english | -.010784 .015912 -.002085 .0511 white | .041775 -.020643 .007132 .028085 4.57871 lwhitemg | -.001177 .005914 -.000436 -.001405 -.387189 .034513 _cons | -1.199 -1.75642 .335537 -.133124 3.66601 -.458232 669.821</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 60844.79 Log likelihood = -911.8971 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .025224 .0133443 1.89 0.059 -.0009304 .0513784 lgdp | 1.584092 .0528376 29.98 0.000 1.480532 1.687652 lgdpau | .7287046 .3538521 2.06 0.039 .0351672 1.422242 lgdpdfrati~w | -.2901081 .1366145 -2.12 0.034 -.5578676 -.0223486 lpopau | -6.770709 1.197971 -5.65 0.000 -9.118689 -4.422728 lpop | -.2196962 .0918331 -2.39 0.017 -.3996858 -.0397066 lxrate1 | -.048557 .0188781 -2.57 0.010 -.0855574 -.0115566 lremote | -.6560747 .1488453 -4.41 0.000 -.9478062 -.3643433 ldist | -2.524686 .1655648 -15.25 0.000 -2.849187 -2.200185 lopen | -.0544341 .0270119 -2.02 0.044 -.1073765 -.0014917 english | 1.135334 .1127081 10.07 0.000 .9144297 1.356237 white | 3.470622 .8910957 3.89 0.000 1.724107 5.217137 lwhitemg | -.2678626 .0827471 -3.24 0.001 -.4300439 -.1056813 _cons | 94.86697 11.33207 8.37 0.000 72.65653 117.0774 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000178 lgdp | -.000187 .002792 lgdpau | -.00083 .001898 .125211 lgdpdfrati~w | -.00034 .000685 -.00754 .018664 lpopau | .002996 -.006365 -.415034 .011661 1.43514 lpop | .000113 -.004573 -.001651 .000066 .002655 .008433 lxrate1 | 8.3e-07 .0002 -.00006 .000478 -.002676 -.000202 .000356 lremote | -.000027 -.000806 -.013186 -.00482 .048543 -.000027 -.000231 ldist | .000809 -.00534 -.003801 .001416 .001763 .009612 .000661 lopen | .000017 -.000093 -.00099 .00087 .003595 .000263 -.000072 english | -.000309 -.000228 .003499 .00287 -.018912 .000098 .000996 white | .000574 -.016583 -.014727 -.000629 .020723 .029678 .002063 lwhitemg | -.000097 .000816 -.00006 -.000432 .00294 -.001662 -.000219 _cons | -.033484 .122787 3.74631 -.000957 -13.279 -.121935 .038609</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .022155 ldist | -.003447 .027412 lopen | .001111 .000224 .00073 english | -.004613 .006273 -.000493 .012703 white | .013182 .034558 .001027 .0071 .794051 lwhitemg | .001259 -.00234 .000011 -.000537 -.070569 .006847 _cons | -.596673 -.201919 -.04808 .198425 -.506728 -.02667 128.416</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8377.14 Log likelihood = -970.8747 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2486739 .0314081 7.92 0.000 .1871153 .3102326 lgdp | 1.593757 .0706408 22.56 0.000 1.455303 1.73221 lgdpau | -.2331274 .5942879 -0.39 0.695 -1.39791 .9316554 lgdpdfrati~w | -.2609343 .2602609 -1.00 0.316 -.7710363 .2491677 lpopau | -.9763655 2.082484 -0.47 0.639 -5.057959 3.105228 lpop | -.539227 .0816396 -6.60 0.000 -.6992377 -.3792164 lxrate1 | -.1498434 .0276466 -5.42 0.000 -.2040296 -.0956571 lremote | -.2903862 .1222007 -2.38 0.017 -.5298951 -.0508773 ldist | -2.692291 .3502522 -7.69 0.000 -3.378773 -2.00581 lopen | .0982425 .0491732 2.00 0.046 .0018648 .1946202 english | .7500494 .1487737 5.04 0.000 .4584583 1.04164 white | 9.636434 1.878371 5.13 0.000 5.954895 13.31797 lwhitemg | -.843716 .1875269 -4.50 0.000 -1.211262 -.4761701 _cons | 26.3425 19.88216 1.32 0.185 -12.62581 65.31081 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000986 lgdp | -.001452 .00499 lgdpau | -.00189 .003273 .353178 lgdpdfrati~w | -.001269 .002727 -.023001 .067736 lpopau | .005278 -.017564 -1.20085 .091858 4.33674 lpop | .000827 -.004247 -.001153 -.001713 .00708 .006665 lxrate1 | .000071 .000352 -.000156 .001099 -.004472 -.000635 .000764 lremote | .000127 -.000341 -.003975 -.001295 .006798 -.001456 .00005 ldist | .004798 .001691 -.012948 -.005136 -.004846 -.001045 .000937 lopen | .000154 -.000753 .001518 .001808 -.007279 .001369 -.000306 english | -.001765 .003418 .003407 .004302 -.021377 .000935 .001979 white | -.000504 -.025707 .017578 .003907 -.011303 .02375 .004742 lwhitemg | .00012 .001532 -.002439 -.000885 .004546 -.001704 -.000456 _cons | -.068725 .150818 10.7947 -.961981 -40.308 -.073937 .066337</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .014933 ldist | .011721 .122677 lopen | .000354 -.00107 .002418 english | -.005894 -.009423 -.001928 .022134 white | .002503 -.19223 .002919 .033644 3.52828 lwhitemg | .001442 .018066 -.000209 -.003812 -.346495 .035166 _cons | -.220877 -.894396 .083976 .306397 1.70418 -.20111 395.3</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8012.18 Log likelihood = -1117.663 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0272098 .0166509 1.63 0.102 -.0054253 .0598449 lgdp | 1.366324 .0514126 26.58 0.000 1.265557 1.467091 lgdpau | .3847505 .5356319 0.72 0.473 -.6650687 1.43457 lgdpdfrati~w | -.0921347 .1801449 -0.51 0.609 -.4452122 .2609429 lpopau | -4.735326 1.81976 -2.60 0.009 -8.30199 -1.168662 lpop | .0374978 .0746464 0.50 0.615 -.1088064 .183802 lxrate1 | -.0724908 .0213807 -3.39 0.001 -.1143962 -.0305855 lremote | -.8943535 .1680117 -5.32 0.000 -1.22365 -.5650566 ldist | -3.249526 .2270418 -14.31 0.000 -3.69452 -2.804533 lopen | .0919103 .0451203 2.04 0.042 .0034762 .1803444 english | 2.316465 .1502622 15.42 0.000 2.021957 2.610974 white | 3.678235 1.149271 3.20 0.001 1.425705 5.930765 lwhitemg | -.1713654 .096334 -1.78 0.075 -.3601765 .0174458 _cons | 78.81245 17.38295 4.53 0.000 44.7425 112.8824 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000277 lgdp | -.000447 .002643 lgdpau | -.000287 .000214 .286902 lgdpdfrati~w | -.000574 .000708 .00228 .032452 lpopau | -.000809 .001349 -.952393 -.005819 3.31153 lpop | .000204 -.002936 -.000145 .000224 -.003349 .005572 lxrate1 | -.000029 .000258 .000518 .000768 -.003188 -.000417 .000457 lremote | .000292 .000786 -.0191 -.002314 .059483 -.001444 -.000311 ldist | .000754 .000451 -.013867 -.002639 .033726 -.000939 .000104 lopen | .000083 -.000368 -.000201 .002081 .000912 .000813 -.00015 english | -.000907 .000481 .004109 .00254 -.014934 .002088 .001276 white | .000264 -.014246 .000668 .000398 -.013156 .027043 .000159 lwhitemg | 5.2e-06 .000759 -.001401 5.6e-06 .005009 -.001867 .000046 _cons | .017887 -.05115 8.56659 .029775 -30.7633 .058103 .038963</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .028228 ldist | .020219 .051548 lopen | .000996 .000044 .002036 english | -.005392 .000205 -.001501 .022579 white | -.001157 -.013233 .000953 .041483 1.32082 lwhitemg | .001953 .003562 -.000012 -.003771 -.10697 .00928 _cons | -.918819 -.864607 -.024022 .131767 .21056 -.084527 302.167</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 447.98 Log likelihood = -644.853 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4970358 .0544329 9.13 0.000 .3903494 .6037222 lgdp | .0543863 .0917998 0.59 0.554 -.125538 .2343105 lgdpau | -.4173677 .7321337 -0.57 0.569 -1.852323 1.017588 lgdpdfrati~w | -.2608501 .2524954 -1.03 0.302 -.755732 .2340318 lpopau | -.0758425 2.495406 -0.03 0.976 -4.966748 4.815063 lpop | .2551975 .0960636 2.66 0.008 .0669164 .4434786 lxrate1 | -.0925395 .027138 -3.41 0.001 -.1457289 -.03935 lremote | .2881258 .2539145 1.13 0.256 -.2095376 .7857891 ldist | -2.246813 .5717058 -3.93 0.000 -3.367336 -1.12629 lopen | .0660891 .0593631 1.11 0.266 -.0502605 .1824387 english | .6883317 .2515381 2.74 0.006 .1953261 1.181337 white | 12.44984 .9609598 12.96 0.000 10.56639 14.33328 lwhitemg | -1.153311 .0951843 -12.12 0.000 -1.339869 -.9667532 _cons | 29.20106 24.00556 1.22 0.224 -17.84897 76.25109 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002963 lgdp | -.001573 .008427 lgdpau | -.000631 -.00008 .53602 lgdpdfrati~w | -.001319 .002427 -.007078 .063754 lpopau | -.002031 -.012783 -1.77232 .018569 6.22705 lpop | -.000186 -.005511 -.000905 -.0013 .007312 .009228 lxrate1 | .000117 .000022 .000367 .001555 -.004861 -.000525 .000736 lremote | .003105 .004479 -.027445 -.008744 .062539 -.003839 .0007 ldist | .01084 -.009761 -.026515 -.002686 .008364 .014168 .002159 lopen | -.00057 .002082 -.002062 -.000256 -.00246 -.000208 -.000081 english | -.000154 .000873 .005618 .007084 -.036361 .005432 .001155 white | .015909 -.019473 .005126 -.001508 -.050845 .023293 .004323 lwhitemg | -.001571 .000321 -.002266 -.000544 .012299 -.001155 -.000275 _cons | -.061449 .170089 15.8514 -.119364 -57.2482 -.215434 .046826</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .064473 ldist | .053415 .326847 lopen | .001188 -.001894 .003524 english | -.008973 .008293 .000232 .063271 white | .021279 -.036972 -.004035 .085549 .923444 lwhitemg | .000752 .008369 -8.5e-06 -.00689 -.085819 .00906 _cons | -1.44233 -3.10673 .064644 .30622 .772595 -.204021 576.267</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3977.01 Log likelihood = -593.6717 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1266923 .0274164 4.62 0.000 .0729572 .1804275 lgdp | .2104699 .0473927 4.44 0.000 .117582 .3033578 lgdpau | -.0940067 .0511231 -1.84 0.066 -.1942061 .0061928 lgdpdfrati~w | -.1092723 .0344096 -3.18 0.001 -.1767138 -.0418308 lpopau | 2.673855 .218964 12.21 0.000 2.244694 3.103017 lpop | .8277703 .0974713 8.49 0.000 .6367302 1.018811 lxrate1 | -.0118021 .0066305 -1.78 0.075 -.0247976 .0011935 lremote | .1332294 .027212 4.90 0.000 .0798947 .186564 ldist | -3.301477 .3365547 -9.81 0.000 -3.961112 -2.641842 lopen | .003174 .0250385 0.13 0.899 -.0459005 .0522485 english | .8165757 .2794046 2.92 0.003 .2689528 1.364199 white | 24.33197 2.970209 8.19 0.000 18.51047 30.15348 lwhitemg | -2.243427 .2755067 -8.14 0.000 -2.78341 -1.703443 _cons | -24.19503 4.788843 -5.05 0.000 -33.58099 -14.80907 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000752 lgdp | -.000374 .002246 lgdpau | -.000533 -.000441 .002614 lgdpdfrati~w | .000251 -.000903 .000542 .001184 lpopau | .003744 .000323 -.009247 .000264 .047945 lpop | -.000259 -.001951 .00118 .000482 -.003782 .009501 lxrate1 | .000012 .000058 -.000037 .000022 .000467 -.000181 .000044 lremote | -.00024 .000946 -.000446 -.000716 .000019 -.000629 .000021 ldist | .002682 -.000249 -.002291 .000158 .018245 -.001764 -.000044 lopen | -.000293 -.000186 .000233 -.000278 -.003119 .000914 -.000114 english | -.00051 -.000191 .000462 .000201 -.005514 -.000839 .000035 white | .002199 -.00505 .001103 .001852 -.001782 .027364 -.000431 lwhitemg | -.000426 .000137 .000138 -.000072 -.001856 -.002842 .000039 _cons | -.06383 -.017829 .104948 -.003704 -.695417 -.049924 -.005319</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .00074 ldist | -.000116 .113269 lopen | .000127 -.000749 .000627 english | -.00021 .055281 -.000025 .078067 white | -.002204 .023951 .001157 .042961 8.82214 lwhitemg | .000094 -.004632 -2.4e-06 -.00332 -.806092 .075904 _cons | -.00344 -1.30994 .044408 -.445568 -.564877 .116159 22.933</p><p>. . </p><p>. **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 499.50 Log likelihood = -555.8705 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5038655 .0500237 10.07 0.000 .4058209 .6019102 lgdp | .0184012 .0779851 0.24 0.813 -.1344469 .1712492 lgdpau | 1.930098 .7869371 2.45 0.014 .3877293 3.472466 lgdpdfrati~w | -.4550641 .2848002 -1.60 0.110 -1.013262 .1031341 lpopau | -9.447321 2.701942 -3.50 0.000 -14.74303 -4.151613 lpop | .3860639 .0982526 3.93 0.000 .1934923 .5786356 lxrate1 | -.0900904 .026503 -3.40 0.001 -.1420353 -.0381455 lremote | .0160296 .2537579 0.06 0.950 -.4813267 .513386 ldist | -1.786536 .3322698 -5.38 0.000 -2.437773 -1.135299 lopen | .0582823 .0540488 1.08 0.281 -.0476513 .1642159 english | .0040724 .225805 0.02 0.986 -.4384973 .446642 white | 9.814357 1.108077 8.86 0.000 7.642565 11.98615 lwhitemg | -.8904651 .0984001 -9.05 0.000 -1.083326 -.6976045 _cons | 119.3352 25.65639 4.65 0.000 69.04956 169.6208 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002502 lgdp | -.001492 .006082 lgdpau | .000425 -.000524 .61927 lgdpdfrati~w | -.001455 .001547 -.016404 .081111 lpopau | -.00565 -.00497 -2.06629 .062888 7.30049 lpop | -.000336 -.004215 -.000585 -.00009 -.00088 .009654 lxrate1 | .000113 -.000147 .000548 .001037 -.004832 -.000289 .000702 lremote | .001623 .004265 -.02344 -.012395 .065333 -.002915 .000401 ldist | .005459 .001031 -.01011 -.005023 -.005197 .002191 .000251 lopen | -.000305 .000776 .000019 -.000124 -.008768 .000649 -.000014 english | -.002224 .001723 .004762 .005417 -.023281 .00036 .00118 white | .012007 -.02514 .016392 -.0012 -.086422 .033426 .006929 lwhitemg | -.001207 .001247 -.002935 -.000667 .01517 -.002062 -.000585 _cons | .03928 -.011971 18.3611 -.56909 -67.3269 -.022313 .063723</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .064393 ldist | .029993 .110403 lopen | .001195 .001876 .002921 english | -.01057 .017842 .000041 .050988 white | .018605 -.016857 -.0017 .026067 1.22784 lwhitemg | .000664 .001818 .000072 -.001635 -.104627 .009683 _cons | -1.3606 -1.04875 .093106 .125087 .887351 -.179235 658.25</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1444.05 Log likelihood = -334.3749 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0327662 .0183935 1.78 0.075 -.0032843 .0688168 lgdp | .2154575 .0586913 3.67 0.000 .1004246 .3304904 lgdpau | -.0755369 .3456832 -0.22 0.827 -.7530635 .6019897 lgdpdfrati~w | -.3662568 .2125988 -1.72 0.085 -.7829428 .0504292 lpopau | 1.581449 1.215136 1.30 0.193 -.8001739 3.963071 lpop | .1451284 .0729333 1.99 0.047 .0021818 .288075 lxrate1 | -.0642892 .0187068 -3.44 0.001 -.1009538 -.0276245 lremote | -.1859979 .1211413 -1.54 0.125 -.4234306 .0514347 ldist | -1.486812 .290581 -5.12 0.000 -2.056341 -.917284 lopen | -.0002715 .0321918 -0.01 0.993 -.0633662 .0628233 english | 2.210591 .2323917 9.51 0.000 1.755112 2.666071 white | 10.21923 1.835455 5.57 0.000 6.621801 13.81665 lwhitemg | -.795032 .1892403 -4.20 0.000 -1.165936 -.4241279 _cons | -14.02854 12.18802 -1.15 0.250 -37.91663 9.859546 ------</p><p>. vce | limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000338 lgdp | -.000351 .003445 lgdpau | .000269 -.000577 .119497 lgdpdfrati~w | -.000278 -.000651 -.004676 .045198 lpopau | -.001596 .002118 -.404903 .034604 1.47656 lpop | .000112 -.003387 -.000177 .001055 -.002369 .005319 lxrate1 | -4.3e-06 .000188 .001264 .000613 -.005975 -.000208 .00035 lremote | .00031 .001151 -.006857 -.00331 .021961 -.000654 -.000447 ldist | .001176 .00046 -.002986 .00003 -.00466 .003365 -.000269 lopen | .000039 -.000318 -.000767 .001412 -.00005 .000463 -.000013 english | -.000281 -.002272 .002521 .003352 -.005265 .003005 .000363 white | .001695 -.0242 .008421 .001878 -.03627 .022824 .000811 lwhitemg | -.000156 .001325 -.00099 .000073 .003697 -.00125 -.00008 _cons | .010176 -.054901 3.68398 -.47463 -14.0438 .008752 .069677</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .014675 ldist | .006366 .084437 lopen | .000095 .000063 .001036 english | -.003323 .031589 -.000201 .054006 white | .009686 -.046312 .001808 .056337 3.3689 lwhitemg | -.000309 .004107 -.000082 -.005009 -.342616 .035812 _cons | -.384335 -.77797 .018557 -.260394 .889882 -.080114 148.548</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1159.30 Log likelihood = -830.4568 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1337476 .0618909 2.16 0.031 .0124436 .2550516 lgdp | .5115141 .1058674 4.83 0.000 .3040178 .7190103 lgdpau | -2.276633 1.078251 -2.11 0.035 -4.389967 -.1632996 lgdpdfrati~w | -.8836542 .4256513 -2.08 0.038 -1.717915 -.049393 lpopau | 4.90403 3.694091 1.33 0.184 -2.336256 12.14432 lpop | .2641816 .1212946 2.18 0.029 .0264486 .5019146 lxrate1 | -.1237885 .0386497 -3.20 0.001 -.1995405 -.0480364 lremote | 1.691458 .2737762 6.18 0.000 1.154866 2.228049 ldist | -2.211378 .3581163 -6.18 0.000 -2.913273 -1.509482 lopen | .0040913 .0752033 0.05 0.957 -.1433045 .1514871 english | .2596365 .2512475 1.03 0.301 -.2327995 .7520725 white | 11.2408 1.451409 7.74 0.000 8.396092 14.08551 lwhitemg | -.8627616 .139651 -6.18 0.000 -1.136472 -.5890507 _cons | -27.32983 34.63921 -0.79 0.430 -95.22143 40.56177 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00383 lgdp | -.003928 .011208 lgdpau | -.001774 .005023 1.16263 lgdpdfrati~w | -.001592 .004084 -.000057 .181179 lpopau | .00206 -.024125 -3.88484 .04133 13.6463 lpop | .001167 -.009777 -.002122 -.002404 .011486 .014712 lxrate1 | .000082 .001471 .000762 .00155 -.008824 -.001437 .001494 lremote | .00146 -.002418 -.033503 -.019386 .088535 .001899 .000705 ldist | .010349 -.009875 -.009076 -.010613 .011572 .006225 -.003018 lopen | .000319 -.000751 .005945 .001069 -.031325 .001946 -.000359 english | -.005263 .009185 .006367 .000893 -.022818 -.006648 -.000599 white | .023765 -.049537 -.041517 -.035718 .072427 .04955 .004076 lwhitemg | -.002653 .002995 .000036 .000989 .009194 -.002507 -.000664 _cons | -.047204 .296078 34.2566 -.647914 -125.109 -.218748 .13183</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .074953 ldist | .019892 .128247 lopen | .002871 .004305 .005656 english | -.003485 .018769 -.000733 .063125 white | .113797 .100779 .001893 .036243 2.10659 lwhitemg | -.004265 -.011945 -.000063 -.005233 -.193092 .019502 _cons | -1.40648 -1.25955 .287435 -.024561 -1.87014 -.013365 1199.87</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 535.33 Log likelihood = -125.3823 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0239222 .0285003 0.84 0.401 -.0319373 .0797817 lgdp | .1804419 .0629937 2.86 0.004 .0569766 .3039072 lgdpau | .439333 .4422154 0.99 0.320 -.4273934 1.306059 lgdpdfrati~w | .3749705 .1939741 1.93 0.053 -.0052118 .7551529 lpopau | 2.020986 1.551661 1.30 0.193 -1.020214 5.062186 lpop | .3014539 .0831854 3.62 0.000 .1384136 .4644942 lxrate1 | -.0150618 .0175187 -0.86 0.390 -.0493979 .0192743 lremote | -.0542184 .1382199 -0.39 0.695 -.3251244 .2166877 ldist | -2.360659 .4382408 -5.39 0.000 -3.219595 -1.501723 lopen | .0589061 .0421482 1.40 0.162 -.0237028 .1415151 english | .9778641 .194696 5.02 0.000 .5962669 1.359461 white | 16.36535 1.258135 13.01 0.000 13.89945 18.83125 lwhitemg | -1.388223 .1176427 -11.80 0.000 -1.618799 -1.157648 _cons | -30.91928 15.82695 -1.95 0.051 -61.93953 .1009639 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000812 lgdp | -.000684 .003968 lgdpau | -.000452 -.000325 .195555 lgdpdfrati~w | -.000705 .000779 -.001441 .037626 lpopau | .000687 .001712 -.654351 .020335 2.40765 lpop | -.000067 -.003004 .000586 .000679 -.004252 .00692 lxrate1 | .000054 .000113 .000168 .000628 -.002496 -.000089 .000307 lremote | .000834 .002358 -.008437 -.003873 .022759 -.001848 .000111 ldist | .00254 -.004337 -.010439 -.008466 .001843 .008873 .000269 lopen | -4.5e-06 -.000067 .000016 .000122 -.005195 .000595 -.000062 english | -.001254 -.00126 .00323 .003146 -.00932 .005664 .000189 white | .004352 -.019319 .034641 -.003042 -.282828 .028886 .00349 lwhitemg | -.000489 .001057 -.003581 .000077 .028791 -.002202 -.00039 _cons | -.018235 -.037534 5.89783 -.250527 -22.9815 -.05593 .03062</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .019105 ldist | .019115 .192055 lopen | .000077 .000369 .001776 english | -.005367 .009506 -.000141 .037907 white | -.005192 -.012512 -.000629 .049265 1.5829 lwhitemg | .000664 .002064 .000066 -.004176 -.144554 .01384 _cons | -.527145 -1.80977 .075251 -.041668 3.88244 -.39398 250.492</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 276.48 Log likelihood = 169.6645 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0016673 .0186021 0.09 0.929 -.0347922 .0381267 lgdp | .283708 .0506728 5.60 0.000 .1843911 .3830248 lgdpau | -.2788714 .3621001 -0.77 0.441 -.9885745 .4308317 lgdpdfrati~w | -.0968363 .1348863 -0.72 0.473 -.3612086 .167536 lpopau | 4.138465 1.310516 3.16 0.002 1.569901 6.707028 lpop | -.0319697 .0619387 -0.52 0.606 -.1533673 .0894279 lxrate1 | -.0908917 .0149801 -6.07 0.000 -.1202521 -.0615312 lremote | .3317861 .1340891 2.47 0.013 .0689762 .594596 ldist | -1.282065 .282197 -4.54 0.000 -1.835161 -.7289694 lopen | .0215934 .0279237 0.77 0.439 -.033136 .0763228 english | .4444363 .1854107 2.40 0.017 .0810381 .8078346 white | 9.875978 2.039902 4.84 0.000 5.877845 13.87411 lwhitemg | -.8530065 .1937874 -4.40 0.000 -1.232823 -.4731902 _cons | -56.94471 13.81839 -4.12 0.000 -84.02826 -29.86117 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000346 lgdp | -.000342 .002568 lgdpau | .000281 -.00071 .131116 lgdpdfrati~w | -.00037 .000359 -.006612 .018194 lpopau | -.002392 .003601 -.44879 .02705 1.71745 lpop | .000026 -.002135 -.000071 4.9e-06 .000153 .003836 lxrate1 | 9.0e-06 2.9e-06 .000407 .000446 -.004053 -.000097 .000224 lremote | .000274 .001706 -.008735 -.0014 .030314 -.001367 -.000051 ldist | .001459 -.001165 -.002838 -.00117 .005237 .00424 .000055 lopen | -9.3e-07 -.000031 .000157 .000152 -.001837 .000201 -.000026 english | -.000494 -.001898 -.000216 .000774 .022396 .005186 .000224 white | .002193 -.015274 .016529 -.003789 -.12926 .01706 .001833 lwhitemg | -.000259 .000931 -.002079 .000318 .013577 -.001387 -.000141 _cons | .022155 -.066503 4.12919 -.278755 -17.1205 -.042377 .056463</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .01798 ldist | .007588 .079635 lopen | 7.2e-06 -.000481 .00078 english | -.001033 .018267 -.000263 .034377 white | .000631 .017496 -.000474 .045062 4.1612 lwhitemg | .000707 -.002736 .00007 -.00432 -.388497 .037554 _cons | -.518981 -.889599 .028855 -.575874 1.58625 -.147768 190.948</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 556.70 Log likelihood = -634.1971 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1480213 .0488938 3.03 0.002 .0521912 .2438514 lgdp | .7478536 .0989655 7.56 0.000 .5538849 .9418224 lgdpau | -.4605897 .6029521 -0.76 0.445 -1.642354 .7211748 lgdpdfrati~w | -.1825226 .2531214 -0.72 0.471 -.6786314 .3135861 lpopau | 2.466109 2.074566 1.19 0.235 -1.599965 6.532183 lpop | -.2373959 .1422587 -1.67 0.095 -.5162178 .041426 lxrate1 | -.1160253 .0293583 -3.95 0.000 -.1735666 -.058484 lremote | .0900613 .2139894 0.42 0.674 -.3293502 .5094727 ldist | -3.935681 .673576 -5.84 0.000 -5.255866 -2.615497 lopen | .0247898 .0623476 0.40 0.691 -.0974093 .146989 english | -.398522 .4217016 -0.95 0.345 -1.225042 .4279978 white | 20.48551 3.978311 5.15 0.000 12.68816 28.28285 lwhitemg | -1.834066 .3637467 -5.04 0.000 -2.546996 -1.121135 _cons | -2.478254 20.6257 -0.12 0.904 -42.90388 37.94737 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002391 lgdp | -.001935 .009794 lgdpau | .000776 -.000962 .363551 lgdpdfrati~w | -.001464 .002641 -.006057 .06407 lpopau | -.006137 -.001438 -1.20766 .041056 4.30382 lpop | -.00025 -.007201 -.001246 -.00094 -.005856 .020238 lxrate1 | .000095 .000391 .001742 .001041 -.008929 -.000566 .000862 lremote | .000795 .004098 -.017935 -.010218 .035496 -.002825 .000481 ldist | .009959 .014069 -.005522 -.001851 -.03868 -.003116 .000133 lopen | .000376 -.000872 -.000924 .000253 -.0089 .001695 -.000165 english | -.005366 .00116 .002208 .004749 -.015121 .016669 .000828 white | .004796 -.03144 .095578 .019029 -.263113 .070307 .004255 lwhitemg | -.000982 .001252 -.010067 -.002731 .03098 -.005386 -.000467 _cons | .017804 -.22227 10.7415 -.522337 -39.5258 .027912 .092105</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .045791 ldist | .026496 .453705 lopen | .000603 .003097 .003887 english | -.002984 .127021 -.001547 .177832 white | .018982 .224154 .004893 .284881 15.827 lwhitemg | .000079 -.036473 -.000322 -.030639 -1.42134 .132312 _cons | -.815056 -4.10545 .131412 -1.30283 -.995725 .170701 425.419 . xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1361.71 Log likelihood = -570.9229 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2046837 .0469951 4.36 0.000 .112575 .2967923 lgdp | .5980394 .1009074 5.93 0.000 .4002645 .7958143 lgdpau | .6829374 .6306875 1.08 0.279 -.5531874 1.919062 lgdpdfrati~w | .1492742 .2820444 0.53 0.597 -.4035228 .7020712 lpopau | -2.940041 2.182307 -1.35 0.178 -7.217285 1.337203 lpop | .519454 .1288955 4.03 0.000 .2668236 .7720845 lxrate1 | -.0895471 .0292799 -3.06 0.002 -.1469346 -.0321596 lremote | -.291754 .2249746 -1.30 0.195 -.7326962 .1491882 ldist | -2.136291 .4457718 -4.79 0.000 -3.009987 -1.262594 lopen | -.0614048 .0707436 -0.87 0.385 -.2000598 .0772502 english | 1.098097 .3193852 3.44 0.001 .4721136 1.724081 white | 24.22008 3.076989 7.87 0.000 18.18929 30.25087 lwhitemg | -2.318903 .2739561 -8.46 0.000 -2.855847 -1.781959 _cons | 34.84271 21.04814 1.66 0.098 -6.410876 76.0963 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002209 lgdp | -.001921 .010182 lgdpau | -.002338 .005398 .397767 lgdpdfrati~w | -.001896 .003132 -.008995 .079549 lpopau | .006878 -.035062 -1.33073 .03356 4.76247 lpop | .000344 -.008523 -.003814 -.002411 .0177 .016614 lxrate1 | .000052 .000671 .000686 .001208 -.00644 -.00085 .000857 lremote | .000519 .003831 -.016785 -.017363 .035804 -.002875 .000516 ldist | .008326 -.003639 -.009957 -.003119 .000818 .01788 .000364 lopen | .000216 -.000015 .000474 .002067 -.013168 .001306 -.000069 english | -.003218 .002403 .005901 .00609 -.024458 -.000926 .000692 white | .00601 -.035234 .013496 -.016725 -.011678 .058919 .003418 lwhitemg | -.0009 .001219 -.002964 -.00008 .010761 -.004074 -.000355 _cons | -.107886 .352283 11.8382 -.243821 -43.9729 -.406831 .074971</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .050614 ldist | .006954 .198712 lopen | .001416 .002284 .005005 english | -.008042 .061104 -.001698 .102007 white | .027052 .057603 .003842 .011596 9.46786 lwhitemg | .000148 -.009725 -.000433 .000418 -.82763 .075052 _cons | -.688452 -1.9552 .151796 -.318368 -1.13814 .034106 443.024</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1413.10 Log likelihood = -742.5797 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0303225 .0357052 0.85 0.396 -.0396584 .1003033 lgdp | 1.050755 .0995901 10.55 0.000 .8555623 1.245948 lgdpau | 1.018883 .7210503 1.41 0.158 -.3943492 2.432116 lgdpdfrati~w | -.0067721 .277348 -0.02 0.981 -.5503643 .5368201 lpopau | 2.507397 2.51685 1.00 0.319 -2.425539 7.440332 lpop | -.3435818 .1494024 -2.30 0.021 -.636405 -.0507585 lxrate1 | -.1281796 .0232327 -5.52 0.000 -.1737149 -.0826443 lremote | -.6012739 .1957407 -3.07 0.002 -.9849186 -.2176292 ldist | -2.988782 .6606883 -4.52 0.000 -4.283707 -1.693857 lopen | -.0477416 .0752314 -0.63 0.526 -.1951925 .0997092 english | .379874 .3377004 1.12 0.261 -.2820066 1.041755 white | 29.08998 2.621298 11.10 0.000 23.95233 34.22763 lwhitemg | -2.717921 .2544333 -10.68 0.000 -3.216601 -2.219241 _cons | -50.11264 24.85224 -2.02 0.044 -98.82213 -1.403149 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001275 lgdp | -.001998 .009918 lgdpau | -.000361 .001536 .519914 lgdpdfrati~w | -.001964 .004371 -.017235 .076922 lpopau | -.00418 -.017838 -1.73848 .05796 6.33453 lpop | .001104 -.010666 -.00316 -.00246 .024086 .022321 lxrate1 | .000038 .000399 .00056 .00089 -.009014 -.000704 .00054 lremote | .001394 .004195 -.018013 -.00367 .022459 -.005233 .000169 ldist | .005413 .016245 -.018135 .001168 -.064681 -.003036 .000928 lopen | .000317 -.000791 -.000322 .004945 -.010206 .001808 -.000333 english | -.001188 .002128 .000695 .002449 -.011968 .007258 .001109 white | .014219 -.055263 .015207 -.027274 -.22154 .087292 .005758 lwhitemg | -.001236 .003638 -.002936 .001867 .02926 -.007038 -.000565 _cons | .038405 .011703 15.5611 -.617401 -59.0603 -.352621 .123166</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .038314 ldist | .058348 .436509 lopen | .00153 .004113 .00566 english | .001977 .08304 -.002 .114042 white | .022914 .069973 -.003372 .213353 6.8712 lwhitemg | -.001084 -.014507 .000515 -.023335 -.655916 .064736 _cons | -.807376 -3.48538 .113312 -.806234 2.18867 -.22319 617.634</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 580.44 Log likelihood = -567.7476 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .394185 .0561231 7.02 0.000 .2841857 .5041843 lgdp | .232193 .0941744 2.47 0.014 .0476146 .4167714 lgdpau | .9511065 .6746746 1.41 0.159 -.3712315 2.273444 lgdpdfrati~w | -.2651242 .2921077 -0.91 0.364 -.8376448 .3073963 lpopau | -3.648066 2.329123 -1.57 0.117 -8.213064 .9169321 lpop | .3484017 .1047008 3.33 0.001 .1431918 .5536116 lxrate1 | -.0739101 .0331603 -2.23 0.026 -.138903 -.0089172 lremote | -.0346674 .2177502 -0.16 0.874 -.46145 .3921151 ldist | -1.611732 .6024258 -2.68 0.007 -2.792465 -.4309989 lopen | .1154453 .0651072 1.77 0.076 -.0121623 .243053 english | -.0776613 .2908886 -0.27 0.789 -.6477926 .4924699 white | 20.12861 1.975163 10.19 0.000 16.25736 23.99986 lwhitemg | -1.87849 .1915793 -9.81 0.000 -2.253979 -1.503002 _cons | 43.01625 22.22836 1.94 0.053 -.5505372 86.58304 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00315 lgdp | -.00263 .008869 lgdpau | -.002067 .006506 .455186 lgdpdfrati~w | -.002409 .00554 -.00251 .085327 lpopau | .003564 -.033903 -1.5214 .021618 5.42482 lpop | .000811 -.006004 -.004562 -.003727 .014434 .010962 lxrate1 | .000267 .000402 -.000287 .000733 -.002771 -.000613 .0011 lremote | .000536 .002787 -.009618 -.015976 .003373 .000514 .001308 ldist | .011344 .000875 -.004766 -.011125 -.061912 .006433 -.000062 lopen | -.000294 .001023 .00191 .000026 -.019799 .001139 -.000101 english | -.003298 .005692 .005857 .002179 -.023089 -.000034 -.0015 white | .020097 -.034985 -.013546 -.066701 .088782 .01056 -.001439 lwhitemg | -.002387 .001876 -.000739 .004035 .002917 -.000035 -.000125 _cons | -.088441 .262938 13.3675 -.185925 -49.0542 -.224053 .038892</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .047415 ldist | .035373 .362917 lopen | .001981 .003029 .004239 english | .005438 .098896 .000227 .084616 white | .09455 .216818 -.008202 .160594 3.90127 lwhitemg | -.006568 -.031974 .000641 -.018752 -.369833 .036703 _cons | -.621434 -2.79716 .19642 -.880546 -3.4983 .306706 494.1</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1566.03 Log likelihood = -262.3729 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0190589 .0296595 -0.64 0.520 -.0771905 .0390727 lgdp | .3333485 .0866602 3.85 0.000 .1634975 .5031994 lgdpau | -.2939749 .5356325 -0.55 0.583 -1.343795 .7558456 lgdpdfrati~w | .2346833 .2351261 1.00 0.318 -.2261555 .695522 lpopau | 1.209064 1.847929 0.65 0.513 -2.412811 4.830939 lpop | -.1110335 .117527 -0.94 0.345 -.3413821 .1193152 lxrate1 | -.0160842 .0228439 -0.70 0.481 -.0608574 .028689 lremote | -.0139239 .1843735 -0.08 0.940 -.3752894 .3474415 ldist | -4.660349 .5177753 -9.00 0.000 -5.67517 -3.645528 lopen | .0250262 .0526593 0.48 0.635 -.0781842 .1282366 english | .0230285 .3185912 0.07 0.942 -.6013989 .6474558 white | 17.20086 2.602789 6.61 0.000 12.09949 22.30223 lwhitemg | -1.209082 .2796942 -4.32 0.000 -1.757272 -.6608914 _cons | 27.7123 18.42598 1.50 0.133 -8.401965 63.82656 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00088 lgdp | -.001058 .00751 lgdpau | .000554 -.002118 .286902 lgdpdfrati~w | -.001007 .002872 -.013443 .055284 lpopau | -.002736 -.001244 -.9598 .060465 3.41484 lpop | .000109 -.00651 -.000349 -.000971 .001618 .013813 lxrate1 | 2.9e-06 .000143 .00123 .001012 -.006387 -.00041 .000522 lremote | .000275 .002259 -.020296 -.004421 .060204 -.002142 -.000221 ldist | .00326 .004464 -.010581 -.001044 -.009132 .014908 -.000595 lopen | .000054 4.1e-06 -.001712 .000947 .001329 .000762 -.000048 english | -.001592 .001872 .001066 .002056 -.000872 .004361 .000547 white | .006276 -.038808 .046343 -.009905 -.288519 .060829 .002758 lwhitemg | -.000644 .001626 -.006219 -.000094 .037925 -.00451 -.000136 _cons | .016078 -.048259 8.73171 -.706306 -31.9474 -.211067 .081334</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .033994 ldist | .016393 .268091 lopen | .000386 .001265 .002773 english | -.000083 .075897 -.000147 .1015 white | -.000127 .160248 -.003358 .118194 6.77451 lwhitemg | .002982 -.02107 .000371 -.012561 -.717795 .078229 _cons | -.93375 -2.64096 -.004295 -.860297 1.90483 -.25233 339.517</p><p>. . . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping Portugal . drop if ccode==454100 (10 observations deleted)</p><p>. . . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 490523.8 1561379 7348 0 1.39e+07 immig | 1000 33286.64 117075.4 2790 0 1137050 gdp | 1000 2.78e+11 9.70e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.6237 16.92502 102.6773 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.95e+07 1.54e+08 1.04e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1041.963 10901.81 13.89535 .0068 270182.6 remote | 1000 6769.02 4134.254 6797 1293 39620 dist | 1000 13323.55 3502.039 14215 2409 17735 open | 1000 .7085053 .3898744 .63425 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.051735 .1811786 1.013736 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou > ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 404172.4 1597756 2944.5 0 1.39e+07 immig | 870 14695.39 27169.74 1403.5 0 158613 gdp | 870 2.36e+11 1.00e+12 1.00e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.74 17.2801 101.6138 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.34e+07 1.65e+08 1.07e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1181.665 11681.86 19.96485 .0068 270182.6 remote | 870 7199.825 4099.067 6955 1293 39620 dist | 870 13147.07 3383.172 14040 2410 17735 phone | 870 153.1578 237.2128 47.025 .54 1449.75 open | 870 .7159618 .4113726 .63155 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.043182 .1860345 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 9156.89 Log likelihood = -550.5136 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3194417 .0306634 10.42 0.000 .2593425 .3795408 lgdp | 1.189474 .0332744 35.75 0.000 1.124257 1.25469 lgdpau | .1675787 .6031747 0.28 0.781 -1.014622 1.349779 lgdpdfrati~w | -.9267291 .2447235 -3.79 0.000 -1.406378 -.4470798 lpopau | -2.670235 2.080182 -1.28 0.199 -6.747317 1.406846 lpop | .03316 .0409384 0.81 0.418 -.0470777 .1133978 lxrate1 | -.1316052 .0166028 -7.93 0.000 -.164146 -.0990643 lremote | -.4242781 .077334 -5.49 0.000 -.57585 -.2727063 ldist | -2.131756 .1645227 -12.96 0.000 -2.454214 -1.809297 lopen | .2790665 .055435 5.03 0.000 .1704159 .3877172 english | .895735 .1296813 6.91 0.000 .6415643 1.149906 white | 4.567365 .5760605 7.93 0.000 3.438307 5.696422 lwhitemg | -.420029 .051105 -8.22 0.000 -.5201929 -.319865 _cons | 42.37089 19.14633 2.21 0.027 4.844767 79.89702 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00094 lgdp | -.000297 .001107 lgdpau | -.00087 .001365 .36382 lgdpdfrati~w | -.0008 .000165 -.009569 .05989 lpopau | .001597 -.007942 -1.23001 .049358 4.32716 lpop | -.000134 -.000748 .000135 .000192 -.000301 .001676 lxrate1 | .000092 .000158 .000368 .000202 -.002631 -.000095 .000276 lremote | .000457 .000015 -.000491 -.001757 -.002758 -.000248 .000065 ldist | .001688 .001116 .001029 -.00108 -.017237 -.000011 .001754 lopen | -.000149 .000585 .002462 .000808 -.016489 .000341 .000148 english | -.001155 .002903 .002827 .002101 -.010374 -.001454 .000563 white | .004492 -.002255 .002986 -.010348 -.024488 .005212 .000165 lwhitemg | -.000561 .000198 -.000299 .000949 .002872 -.000423 -.000043 _cons | -.020976 .07114 10.8355 -.607104 -39.2077 -.003656 .01283</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .005981 ldist | .004498 .027068 lopen | .001349 .00095 .003073 english | -.003466 .003166 -.000859 .016817 white | .000556 -.002304 -.00008 -.00143 .331846 lwhitemg | .000111 -.000421 -.000083 .000258 -.028917 .002612 _cons | -.03117 -.078078 .171207 .047848 .278518 -.030465 366.582</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 76621.88 Log likelihood = -979.2281 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0521938 .0142614 3.66 0.000 .024242 .0801456 lgdp | 1.607838 .0523827 30.69 0.000 1.50517 1.710506 lgdpau | .8629981 .3603255 2.40 0.017 .1567731 1.569223 lgdpdfrati~w | -.4418522 .149149 -2.96 0.003 -.7341788 -.1495256 lpopau | -6.296107 1.217353 -5.17 0.000 -8.682076 -3.910138 lpop | -.3534453 .0864132 -4.09 0.000 -.5228122 -.1840785 lxrate1 | -.1200416 .0204612 -5.87 0.000 -.1601449 -.0799383 lremote | -.9560621 .112675 -8.49 0.000 -1.176901 -.7352232 ldist | -3.217482 .1532159 -21.00 0.000 -3.517779 -2.917184 lopen | -.0527994 .0269156 -1.96 0.050 -.105553 -.0000457 english | .998922 .0838515 11.91 0.000 .834576 1.163268 white | 4.695807 .7596517 6.18 0.000 3.206917 6.184697 lwhitemg | -.4637035 .0711229 -6.52 0.000 -.6031019 -.3243051 _cons | 94.6257 11.53773 8.20 0.000 72.01218 117.2392 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000203 lgdp | -.000224 .002744 lgdpau | -.001204 .002122 .129834 lgdpdfrati~w | -.000559 .000832 -.011569 .022245 lpopau | .004735 -.00868 -.429742 .023138 1.48195 lpop | .000094 -.004301 -.002004 -.000058 .006525 .007467 lxrate1 | -.000021 .000325 2.7e-06 .000422 -.003297 -.000385 .000419 lremote | .000274 -.000779 -.007809 -.004005 .027733 .00065 -.000054 ldist | .00048 -.001604 -.007258 -.002465 .020455 .002319 .000433 lopen | .000036 -.000145 -.001009 .00087 .003725 .000336 -.000079 english | -.000419 .000401 .003222 .00256 -.020493 .000042 .001118 white | .000671 -.013274 -.013236 -.007373 .055678 .019918 -.001489 lwhitemg | -.000081 .000535 .000435 .000339 -.003037 -.00067 .000154 _cons | -.050667 .115143 3.86081 -.058683 -13.6915 -.102377 .047902</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .012696 ldist | .007649 .023475 lopen | .000823 .000344 .000724 english | -.002756 .001424 -.000409 .007031 white | .018271 -.028791 .002154 -.004321 .577071 lwhitemg | -.000254 .004371 -.000126 .000565 -.051677 .005058 _cons | -.430714 -.445866 -.048396 .251134 -.459349 -.003482 133.119</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7363.19 Log likelihood = -945.8043 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .068838 .0178126 3.86 0.000 .0339259 .10375 lgdp | 1.724177 .0666276 25.88 0.000 1.593589 1.854765 lgdpau | .38536 .4539338 0.85 0.396 -.5043338 1.275054 lgdpdfrati~w | -.5289291 .1809548 -2.92 0.003 -.8835939 -.1742643 lpopau | -4.314805 1.56783 -2.75 0.006 -7.387696 -1.241914 lpop | -.5273632 .0807929 -6.53 0.000 -.6857143 -.3690121 lxrate1 | -.143422 .0253086 -5.67 0.000 -.1930259 -.0938181 lremote | -.4650092 .125289 -3.71 0.000 -.710571 -.2194473 ldist | -4.386982 .3280921 -13.37 0.000 -5.030031 -3.743934 lopen | .0160716 .0355646 0.45 0.651 -.0536337 .085777 english | 1.466935 .1468604 9.99 0.000 1.179094 1.754776 white | 10.99874 1.904587 5.77 0.000 7.265814 14.73166 lwhitemg | -.925749 .1895416 -4.88 0.000 -1.297244 -.5542543 _cons | 81.0747 14.9139 5.44 0.000 51.84399 110.3054 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000317 lgdp | -.000507 .004439 lgdpau | -.001536 .003522 .206056 lgdpdfrati~w | -.000585 .001345 -.015158 .032745 lpopau | .004981 -.019079 -.688916 .042063 2.45809 lpop | .000358 -.003859 -.001784 -.000869 .006378 .006527 lxrate1 | -.000013 .000406 -.000113 .000867 -.004366 -.000565 .000641 lremote | -.000082 -.000769 -.007176 -.002335 .024581 -.000815 .000051 ldist | .001324 .008547 -.008611 -.002716 -.013443 -.001554 .000997 lopen | .000075 -.0005 -.000705 .001471 .003367 .000752 -.000169 english | -.000711 .001407 .005549 .002443 -.04202 .004184 .001821 white | .00033 -.030652 -.002149 .002021 .01378 .028237 .004109 lwhitemg | -.000039 .001559 -.000986 -.000547 .004792 -.001761 -.0004 _cons | -.049119 .112299 6.13958 -.302342 -22.5236 -.05456 .061657</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .015697 ldist | .005823 .107644 lopen | .000629 -.000504 .001265 english | -.004646 .00641 -.001186 .021568 white | .013238 -.141034 .002029 .02955 3.62745 lwhitemg | .000712 .010895 -.00007 -.003132 -.353536 .035926 _cons | -.381872 -.803677 -.039128 .422374 1.25637 -.167932 222.425</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2205.13 Log likelihood = -1109.52 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0887634 .0413874 2.14 0.032 .0076456 .1698812 lgdp | .9333425 .0808521 11.54 0.000 .7748752 1.09181 lgdpau | -.3862975 .8441512 -0.46 0.647 -2.040803 1.268208 lgdpdfrati~w | -.4152865 .3491173 -1.19 0.234 -1.099544 .2689709 lpopau | -.0507418 2.893115 -0.02 0.986 -5.721143 5.619659 lpop | .0461238 .0994586 0.46 0.643 -.1488116 .2410591 lxrate1 | -.1396465 .0334941 -4.17 0.000 -.2052937 -.0739994 lremote | .5424014 .2340979 2.32 0.021 .083578 1.001225 ldist | -1.610055 .334205 -4.82 0.000 -2.265085 -.9550252 lopen | .3543255 .0797075 4.45 0.000 .1981017 .5105494 english | 1.72343 .2461027 7.00 0.000 1.241078 2.205783 white | 1.761224 2.214135 0.80 0.426 -2.5784 6.100849 lwhitemg | .1605521 .1944335 0.83 0.409 -.2205306 .5416348 _cons | 2.719749 27.46058 0.10 0.921 -51.102 56.5415 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001713 lgdp | -.001613 .006537 lgdpau | -.001818 .001411 .712591 lgdpdfrati~w | -.000357 .001405 -.011773 .121883 lpopau | .003512 -.009567 -2.38725 .038538 8.37011 lpop | .000339 -.005824 .000257 -.00084 -.001477 .009892 lxrate1 | .000117 .000921 .000525 .001942 -.007596 -.00121 .001122 lremote | .001311 .000702 -.027666 -.015537 .086184 .000444 -.000789 ldist | .004333 -.007146 -.020265 -.00707 .062822 .010914 -.000197 lopen | .00027 -.001152 .005119 .002412 -.027493 .003013 -.000184 english | -.003678 .000944 .009903 .006017 -.019533 -.000356 .001478 white | .003356 -.023984 .102225 .003799 -.408853 .021013 .000423 lwhitemg | -.000488 .000911 -.010741 -.001751 .044203 -.00028 -.000191 _cons | -.039424 .133543 21.328 -.272697 -77.4283 -.112049 .112928</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054802 ldist | .021212 .111693 lopen | .001892 -.000908 .006353 english | -.015358 .012506 -.001919 .060567 white | .039253 -.02978 .007131 .041424 4.90239 lwhitemg | -.000574 .006603 -.000421 -.003025 -.419669 .037804 _cons | -1.39387 -1.79555 .293778 .055313 4.22277 -.522178 754.084</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 63045.95 Log likelihood = -913.6051 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0225708 .0135106 1.67 0.095 -.0039096 .0490511 lgdp | 1.552777 .0522012 29.75 0.000 1.450464 1.655089 lgdpau | .646807 .3624128 1.78 0.074 -.0635091 1.357123 lgdpdfrati~w | -.2594909 .1360017 -1.91 0.056 -.5260494 .0070677 lpopau | -6.53316 1.224569 -5.34 0.000 -8.933272 -4.133048 lpop | -.1594695 .0889229 -1.79 0.073 -.3337552 .0148162 lxrate1 | -.047225 .0183844 -2.57 0.010 -.0832577 -.0111923 lremote | -.5926918 .1447977 -4.09 0.000 -.8764902 -.3088935 ldist | -2.508801 .1555393 -16.13 0.000 -2.813653 -2.20395 lopen | -.0441191 .027556 -1.60 0.109 -.0981278 .0098896 english | 1.132223 .1111613 10.19 0.000 .9143505 1.350095 white | 3.585768 .8722217 4.11 0.000 1.876245 5.295291 lwhitemg | -.2629315 .0800711 -3.28 0.001 -.419868 -.105995 _cons | 92.10852 11.57381 7.96 0.000 69.42427 114.7928 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000183 lgdp | -.00018 .002725 lgdpau | -.000892 .00209 .131343 lgdpdfrati~w | -.000343 .000873 -.007565 .018496 lpopau | .003206 -.007511 -.43504 .012624 1.49957 lpop | .000085 -.004371 -.001934 -.000346 .004838 .007907 lxrate1 | 3.8e-07 .000233 -.000099 .000441 -.00232 -.000279 .000338 lremote | .000027 -.001254 -.013122 -.004074 .046559 .00093 -.000123 ldist | .00076 -.004876 -.004769 .00065 .007286 .008389 .000536 lopen | .000017 -.000095 -.00092 .000893 .003293 .000279 -.000065 english | -.000321 -.00016 .003389 .002538 -.01746 -.000116 .000909 white | .000295 -.014365 -.017899 -.003269 .040778 .024473 .001518 lwhitemg | -.000066 .000564 .000259 -.000139 .000915 -.001085 -.000167 _cons | -.03506 .1343 3.92666 -.01296 -13.8706 -.142945 .034528</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .020966 ldist | -.000993 .024192 lopen | .00111 .000278 .000759 english | -.004064 .005637 -.000475 .012357 white | .022315 .02323 .001214 .004853 .760771 lwhitemg | .000285 -.001037 -8.3e-06 -.000274 -.06671 .006411 _cons | -.584847 -.248684 -.045664 .180955 -.690648 -.009361 133.953</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8564.53 Log likelihood = -977.9686 Prob > chi2 = 0.0000 ------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2377562 .0316952 7.50 0.000 .1756349 .2998776 lgdp | 1.583651 .0723131 21.90 0.000 1.44192 1.725382 lgdpau | -.1290556 .619803 -0.21 0.835 -1.343847 1.085736 lgdpdfrati~w | -.1343049 .2618532 -0.51 0.608 -.6475276 .3789179 lpopau | -1.518139 2.171214 -0.70 0.484 -5.773641 2.737363 lpop | -.4930394 .0817598 -6.03 0.000 -.6532856 -.3327932 lxrate1 | -.1235553 .0278842 -4.43 0.000 -.1782073 -.0689033 lremote | -.3501319 .1231391 -2.84 0.004 -.5914801 -.1087837 ldist | -3.040361 .3321147 -9.15 0.000 -3.691294 -2.389428 lopen | .1167653 .049968 2.34 0.019 .0188299 .2147007 english | .8869861 .1399608 6.34 0.000 .6126679 1.161304 white | 10.60666 1.858105 5.71 0.000 6.96484 14.24848 lwhitemg | -.941202 .1848641 -5.09 0.000 -1.303529 -.5788749 _cons | 35.81365 20.61596 1.74 0.082 -4.592891 76.2202 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001005 lgdp | -.001519 .005229 lgdpau | -.001781 .003471 .384156 lgdpdfrati~w | -.001257 .002742 -.024606 .068567 lpopau | .00475 -.017126 -1.30786 .097098 4.71417 lpop | .000899 -.004384 -.001486 -.001779 .006583 .006685 lxrate1 | .000071 .000297 -.00007 .001157 -.00483 -.000587 .000778 lremote | .000028 -.000538 -.003881 -.000634 .006588 -.001001 .000191 ldist | .004441 .001362 -.010719 -.002878 -.01319 .00108 .001382 lopen | .000142 -.000756 .00177 .001608 -.008523 .001443 -.000263 english | -.001678 .00362 .002744 .004523 -.020391 .000332 .001945 white | .000314 -.02682 .013746 .001938 -.004631 .020476 .004565 lwhitemg | .000037 .00156 -.002145 -.000577 .003946 -.001318 -.000403 _cons | -.058283 .140535 11.7373 -1.03515 -43.6863 -.078728 .064806</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .015163 ldist | .00924 .1103 lopen | .000385 -.000912 .002497 english | -.004446 -.001776 -.001626 .019589 white | .011723 -.162026 .003501 .017218 3.45256 lwhitemg | .0007 .01502 -.000237 -.002158 -.337593 .034175 _cons | -.202202 -.704594 .095103 .226657 1.40248 -.170427 425.018</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8148.68 Log likelihood = -1106.858 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0178994 .0152059 1.18 0.239 -.0119036 .0477024 lgdp | 1.331638 .0497775 26.75 0.000 1.234076 1.4292 lgdpau | .5006555 .4897345 1.02 0.307 -.4592064 1.460517 lgdpdfrati~w | -.0680136 .1587801 -0.43 0.668 -.3792168 .2431896 lpopau | -5.383924 1.664394 -3.23 0.001 -8.646076 -2.121772 lpop | .1095928 .0717597 1.53 0.127 -.0310535 .2502392 lxrate1 | -.0647704 .0193235 -3.35 0.001 -.1026438 -.0268971 lremote | -.7914682 .1603591 -4.94 0.000 -1.105766 -.4771701 ldist | -3.327498 .2148823 -15.49 0.000 -3.748659 -2.906336 lopen | .0734909 .0406687 1.81 0.071 -.0062183 .1532002 english | 2.42674 .1351598 17.95 0.000 2.161832 2.691649 white | 4.215889 1.163981 3.62 0.000 1.934529 6.497249 lwhitemg | -.1994663 .0978518 -2.04 0.042 -.3912524 -.0076803 _cons | 85.93497 15.95197 5.39 0.000 54.66968 117.2002 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000231 lgdp | -.00037 .002478 lgdpau | -.000058 .000049 .23984 lgdpdfrati~w | -.000429 .000604 .001918 .025211 lpopau | -.00135 .001398 -.795903 -.005105 2.77021 lpop | .000173 -.002788 -.000371 .000015 -.001931 .005149 lxrate1 | -.000016 .00022 .000328 .00061 -.002356 -.00039 .000373 lremote | .000169 .000667 -.018251 -.000884 .056777 -.000878 -.000125 ldist | .000571 .000389 -.011434 -.00102 .024465 .000501 .000315 lopen | .00006 -.000291 -.000068 .001831 .000652 .000655 -.000126 english | -.000717 .000261 .002258 .00151 -.00939 .002001 .000962 white | .000265 -.013815 -.005581 -.001131 .010068 .024429 -.000212 lwhitemg | -5.2e-06 .000708 -.000846 .000206 .003021 -.00156 .000078 _cons | .022386 -.044551 7.18269 .012429 -25.8019 .025104 .02741</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .025715 ldist | .016269 .046174 lopen | .000875 .000076 .001654 english | -.003651 .002884 -.001261 .018268 white | .005498 -.008819 .000713 .032976 1.35485 lwhitemg | .001231 .002875 3.4e-06 -.002831 -.110112 .009575 _cons | -.844771 -.71207 -.021727 .05589 -.076177 -.057272 254.465</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 434.85 Log likelihood = -630.9148 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4697487 .053933 8.71 0.000 .364042 .5754553 lgdp | .022172 .0905768 0.24 0.807 -.1553552 .1996993 lgdpau | -.4422498 .687456 -0.64 0.520 -1.789639 .9051392 lgdpdfrati~w | -.3326395 .2347495 -1.42 0.156 -.79274 .1274611 lpopau | .1078994 2.343582 0.05 0.963 -4.485437 4.701236 lpop | .2571117 .0968704 2.65 0.008 .0672492 .4469741 lxrate1 | -.0973829 .0257662 -3.78 0.000 -.1478838 -.046882 lremote | .2793262 .243377 1.15 0.251 -.197684 .7563365 ldist | -2.286463 .5338845 -4.28 0.000 -3.332857 -1.240068 lopen | .0460418 .0576549 0.80 0.425 -.0669597 .1590433 english | .5768711 .2528838 2.28 0.023 .081228 1.072514 white | 12.15188 .9488234 12.81 0.000 10.29222 14.01154 lwhitemg | -1.108393 .0926167 -11.97 0.000 -1.289919 -.9268676 _cons | 28.27745 22.51177 1.26 0.209 -15.8448 72.3997 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002909 lgdp | -.001464 .008204 lgdpau | -.000509 -.000046 .472596 lgdpdfrati~w | -.001177 .002612 -.006145 .055107 lpopau | -.001918 -.012732 -1.56197 .015403 5.49238 lpop | -.000235 -.0056 -.001113 -.001455 .007695 .009384 lxrate1 | .000072 .000047 .000368 .001419 -.00444 -.000496 .000664 lremote | .002723 .004166 -.025009 -.007154 .056865 -.003632 .00071 ldist | .01001 -.007682 -.022358 -.001865 -.001753 .013311 .001687 lopen | -.000589 .002102 -.00204 -.000019 -.002215 -.000291 -.000049 english | -.000073 .000577 .005414 .006881 -.034375 .005483 .001162 white | .015037 -.021013 .003025 -.001074 -.034915 .024564 .004189 lwhitemg | -.001537 .000475 -.001884 -.000535 .010255 -.001164 -.000259 _cons | -.056683 .157025 13.9658 -.106858 -50.4369 -.210449 .043795</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .059232 ldist | .045593 .285033 lopen | .001104 -.001104 .003324 english | -.008695 .013588 .00027 .06395 white | .021199 -.029937 -.004737 .081187 .900266 lwhitemg | .000527 .006705 .000066 -.006267 -.082257 .008578 _cons | -1.28693 -2.6087 .053667 .230592 .515416 -.165851 506.78</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 4428.64 Log likelihood = -609.5744 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1242194 .0269618 4.61 0.000 .0713752 .1770635 lgdp | .2244857 .0475986 4.72 0.000 .1311942 .3177772 lgdpau | -.1033974 .0512206 -2.02 0.044 -.2037879 -.0030069 lgdpdfrati~w | -.1184796 .0346341 -3.42 0.001 -.1863612 -.0505979 lpopau | 2.748969 .2191367 12.54 0.000 2.319469 3.178469 lpop | .7920654 .0982543 8.06 0.000 .5994906 .9846403 lxrate1 | -.0115917 .0068792 -1.69 0.092 -.0250747 .0018914 lremote | .1452456 .0276377 5.26 0.000 .0910768 .1994145 ldist | -3.350071 .3328372 -10.07 0.000 -4.00242 -2.697722 lopen | .0050815 .0257721 0.20 0.844 -.0454309 .0555939 english | .757898 .2739758 2.77 0.006 .2209153 1.294881 white | 24.22543 2.957618 8.19 0.000 18.42861 30.02225 lwhitemg | -2.236796 .2745222 -8.15 0.000 -2.774849 -1.698742 _cons | -24.56247 4.806475 -5.11 0.000 -33.98299 -15.14195 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000727 lgdp | -.000378 .002266 lgdpau | -.000505 -.000468 .002624 lgdpdfrati~w | .000257 -.00089 .000555 .0012 lpopau | .003614 .000564 -.009204 .000289 .048021 lpop | -.000237 -.001854 .001165 .000416 -.003454 .009654 lxrate1 | .000014 .000069 -.000039 .000027 .000516 -.000189 .000047 lremote | -.000246 .000964 -.00047 -.000729 .000085 -.000587 .000022 ldist | .002594 -.000078 -.002309 .000082 .017791 -.002071 -.000039 lopen | -.00029 -.000216 .000226 -.000301 -.003228 .000904 -.000126 english | -.000496 -.000528 .000631 .000363 -.005327 .000058 .000029 white | .002185 -.004683 .001152 .001764 .000135 .02804 -.000395 lwhitemg | -.000408 .000109 .00012 -.00007 -.001994 -.002989 .000033 _cons | -.061695 -.02512 .105123 -.002969 -.705348 -.056984 -.006322</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .000764 ldist | -.000039 .110781 lopen | .000131 -.000731 .000664 english | -.000364 .056621 -7.5e-06 .075063 white | -.002094 .021655 .000942 .040822 8.7475 lwhitemg | .000083 -.004314 .000019 -.003183 -.799957 .075362 _cons | -.00594 -1.27783 .047244 -.470388 -.594722 .118918 23.1022</p><p>. . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 521.02 Log likelihood = -557.0863 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5071861 .0501343 10.12 0.000 .4089247 .6054475 lgdp | -.0254319 .0782283 -0.33 0.745 -.1787565 .1278927 lgdpau | 1.930076 .7896047 2.44 0.015 .3824794 3.477673 lgdpdfrati~w | -.6742177 .2816909 -2.39 0.017 -1.226322 -.1221138 lpopau | -9.325848 2.714417 -3.44 0.001 -14.64601 -4.005689 lpop | .376943 .0966015 3.90 0.000 .1876075 .5662785 lxrate1 | -.1161943 .0261251 -4.45 0.000 -.1673987 -.06499 lremote | .0315782 .2519475 0.13 0.900 -.4622298 .5253863 ldist | -1.684051 .3165797 -5.32 0.000 -2.304536 -1.063567 lopen | .0427608 .0538152 0.79 0.427 -.0627152 .1482367 english | -.0196011 .224803 -0.09 0.931 -.4602069 .4210046</p><p> white | 9.567148 1.093808 8.75 0.000 7.423323 11.71097 lwhitemg | -.8432237 .0966972 -8.72 0.000 -1.032747 -.6537007 _cons | 117.5571 25.72403 4.57 0.000 67.13887 167.9752 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002513 lgdp | -.001405 .00612 lgdpau | .000522 -.000293 .623476 lgdpdfrati~w | -.001264 .001746 -.017981 .07935 lpopau | -.006571 -.006076 -2.08273 .068991 7.36806 lpop | -.000293 -.004327 -.00057 -.000777 .000219 .009332 lxrate1 | .000175 -.000128 .000541 .000951 -.004995 -.000412 .000683 lremote | .001698 .004172 -.021751 -.012091 .06124 -.003121 .000284 ldist | .005138 .002104 -.008143 -.002462 -.016976 .002747 .000976 lopen | -.000261 .000715 .000327 -.000408 -.009914 .000609 8.1e-06 english | -.002343 .001381 .004198 .004773 -.01934 .000385 .000932 white | .012826 -.026545 .015882 -.006696 -.074949 .031006 .005482 lwhitemg | -.001339 .001303 -.002902 -.000261 .014694 -.001764 -.000487 _cons | .051584 -.008544 18.4862 -.64839 -67.8661 -.036359 .062214</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .063478 ldist | .029349 .100223 lopen | .001168 .002152 .002896 english | -.011371 .018286 -.000031 .050536 white | .016502 -.001625 -.001729 .022887 1.19642 lwhitemg | .000793 -.000118 .000079 -.001136 -.101071 .00935 _cons | -1.31773 -.837153 .103655 .0859 .657484 -.160985 661.726</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1479.97 Log likelihood = -343.5619 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval]</p><p>------+------limmig | .0263825 .0171724 1.54 0.124 -.0072749 .0600398 lgdp | .1791172 .0535608 3.34 0.001 .0741399 .2840945 lgdpau | -.2630462 .3062056 -0.86 0.390 -.8631982 .3371058 lgdpdfrati~w | -.4279195 .2008109 -2.13 0.033 -.8215016 -.0343375 lpopau | 2.82563 1.093471 2.58 0.010 .6824649 4.968794 lpop | .1686898 .0682549 2.47 0.013 .0349127 .3024669 lxrate1 | -.0833828 .0184504 -4.52 0.000 -.1195449 -.0472206 lremote | -.1198235 .1104546 -1.08 0.278 -.3363104 .0966635 ldist | -1.397671 .2475275 -5.65 0.000 -1.882816 -.9125261 lopen | .0124218 .02562 0.48 0.628 -.0377926 .0626361 english | 2.056049 .218207 9.42 0.000 1.628371 2.483727 white | 9.812052 1.781019 5.51 0.000 6.321319 13.30279 lwhitemg | -.7186988 .1831724 -3.92 0.000 -1.07771 -.3596874 _cons | -30.73952 11.20156 -2.74 0.006 -52.69417 -8.784869 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000295 lgdp | -.000321 .002869 lgdpau | .000282 -.001468 .093762 lgdpdfrati~w | -.00042 -.000402 -.001312 .040325 lpopau | -.001297 .006732 -.321549 .022487 1.19568 lpop | .000132 -.002779 .000916 .000971 -.007747 .004659 lxrate1 | -.000011 .000161 .001219 .000774 -.005816 -.000146 .00034 lremote | .000186 .000893 -.006866 -.003307 .024219 -.000405 -.000368 ldist | .000955 .000876 -.002789 -.000931 -.000114 .002739 -.000299 lopen | .000028 -.000274 -.00016 .001068 -.000894 .000339 -9.3e-06 english | -.000172 -.002789 .003229 .003654 -.014305 .005173 .000257 white | .001603 -.022867 .014301 .003622 -.080163 .024837 .001008 lwhitemg | -.000156 .001417 -.001231 -.000073 .006192 -.001727 -.000079 _cons | .007442 -.107403 2.9741 -.351966 -11.6385 .070206 .067337</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .0122 ldist | .003227 .06127 lopen | -.000116 -.000076 .000656 english | -.002909 .025204 -.000068 .047614 white | .010934 -.035523 .001416 .062783 3.17203 lwhitemg | -.000487 .002425 -.000072 -.00578 -.32208 .033552 _cons | -.36814 -.603791 .020865 -.090336 1.29156 -.092208 125.475</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1094.96 Log likelihood = -837.9038 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0968771 .0638685 1.52 0.129 -.0283028 .222057 lgdp | .5212526 .1078169 4.83 0.000 .3099355 .7325698 lgdpau | -2.380939 1.090517 -2.18 0.029 -4.518313 -.2435646 lgdpdfrati~w | -1.09083 .441698 -2.47 0.014 -1.956543 -.2251182 lpopau | 5.598692 3.737466 1.50 0.134 -1.726606 12.92399 lpop | .2452029 .1231848 1.99 0.047 .0037652 .4866406 lxrate1 | -.1715976 .0389703 -4.40 0.000 -.247978 -.0952172 lremote | 1.766789 .2797282 6.32 0.000 1.218531 2.315046 ldist | -2.035304 .4352921 -4.68 0.000 -2.888461 -1.182147 lopen | -.0078974 .0752148 -0.10 0.916 -.1553156 .1395209 english | .288331 .2557889 1.13 0.260 -.213006 .789668 white | 11.19059 1.525278 7.34 0.000 8.2011 14.18008 lwhitemg | -.8347942 .1471931 -5.67 0.000 -1.123287 -.5463011 _cons | -37.92606 35.10888 -1.08 0.280 -106.7382 30.88608 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004079 lgdp | -.004175 .011624 lgdpau | -.002079 .005785 1.18923 lgdpdfrati~w | -.00177 .004558 -.000669 .195097 lpopau | .003513 -.027716 -3.97471 .05161 13.9686 lpop | .001309 -.010012 -.00268 -.002838 .013224 .015174 lxrate1 | .000075 .001547 .000777 .001427 -.009133 -.001531 .001519 lremote | .001704 -.003358 -.03462 -.022181 .090247 .002926 .000927 ldist | .011478 -.009775 -.009396 -.010328 .003332 .010802 -.002528 lopen | .00033 -.000781 .006408 .000841 -.032952 .002034 -.000361 english | -.005361 .010697 .007168 .001257 -.027449 -.008691 -.000441 white | .025743 -.050143 -.043163 -.04219 .074852 .04837 .004574 lwhitemg | -.002864 .002934 -.000087 .001242 .010061 -.002313 -.000707 _cons | -.074106 .337795 35.057 -.797983 -128.002 -.287642 .129693</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .078248 ldist | .02042 .189479 lopen | .002766 .004235 .005657 english | -.003627 .022804 -.000676 .065428 white | .126338 .113996 .002121 .027893 2.32647 lwhitemg | -.004881 -.01455 -.000107 -.004796 -.214028 .021666 _cons | -1.4342 -1.7852 .303441 -.008392 -2.07835 .005157 1232.63</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 564.79 Log likelihood = -93.35484 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0284354 .0282932 1.01 0.315 -.0270182 .0838891 lgdp | .1361638 .0588475 2.31 0.021 .0208247 .2515028 lgdpau | .3390156 .3995034 0.85 0.396 -.4439967 1.122028 lgdpdfrati~w | .3561704 .1837151 1.94 0.053 -.0039046 .7162453 lpopau | 2.304246 1.409654 1.63 0.102 -.4586252 5.067117 lpop | .3099671 .0784223 3.95 0.000 .1562623 .4636719 lxrate1 | -.0301747 .0164441 -1.83 0.067 -.0624045 .0020551</p><p> lremote | -.0278513 .125686 -0.22 0.825 -.2741914 .2184887 ldist | -2.262419 .4228087 -5.35 0.000 -3.091109 -1.43373 lopen | .0566143 .0373959 1.51 0.130 -.0166803 .1299088 english | .884231 .1847197 4.79 0.000 .522187 1.246275 white | 16.18959 1.215571 13.32 0.000 13.80711 18.57206 lwhitemg | -1.360877 .1131472 -12.03 0.000 -1.582641 -1.139112 _cons | -33.17937 14.5341 -2.28 0.022 -61.66568 -4.693056 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000801 lgdp | -.000584 .003463 lgdpau | -.000509 -.00014 .159603 lgdpdfrati~w | -.000683 .000811 -.000584 .033751 lpopau | .00134 .001671 -.535051 .016764 1.98712</p><p> lpop | -.000129 -.002549 .000376 .000582 -.004907 .00615 lxrate1 | .000053 .000103 .000217 .000545 -.002612 -.000121 .00027 lremote | .000838 .002019 -.007107 -.003313 .020559 -.001557 .000106 ldist | .002396 -.003353 -.009739 -.007708 .000129 .008101 .000133 lopen | -.000022 -.000043 .000061 .000324 -.003928 .000517 -.000047 english | -.001229 -.000841 .003005 .002615 -.014742 .004665 .00011 white | .003656 -.017101 .028662 -.004176 -.262907 .025476 .003358 lwhitemg | -.000443 .000926 -.002945 .000236 .025758 -.001919 -.000363 _cons | -.027536 -.044611 4.84229 -.221022 -19.0805 -.032232 .03343</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .015797 ldist | .016579 .178767 lopen | .000045 .000294 .001398 english | -.004791 .00583 .000152 .034121 white | -.00604 -.025689 -.000354 .046786 1.47761 lwhitemg | .000642 .003249 .000053 -.003951 -.134379 .012802 _cons | -.470422 -1.66111 .054096 .091974 3.84745 -.373046 211.24</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 257.33 Log likelihood = 163.268 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0100409 .0181377 -0.55 0.580 -.04559 .0255083 lgdp | .2575036 .0505501 5.09 0.000 .1584273 .35658 lgdpau | -.3040616 .3471429 -0.88 0.381 -.9844491 .376326 lgdpdfrati~w | -.1133802 .1412982 -0.80 0.422 -.3903196 .1635592 lpopau | 4.272561 1.264313 3.38 0.001 1.794552 6.750569 lpop | -.0506741 .0601367 -0.84 0.399 -.1685399 .0671917 lxrate1 | -.1012378 .0150807 -6.71 0.000 -.1307954 -.0716802 lremote | .3539631 .1270154 2.79 0.005 .1050175 .6029087 ldist | -1.385574 .2746741 -5.04 0.000 -1.923925 -.8472223 lopen | .0245476 .0283501 0.87 0.387 -.0310176 .0801129 english | .2764998 .1698855 1.63 0.104 -.0564696 .6094692</p><p> white | 9.606983 1.989022 4.83 0.000 5.708571 13.5054 lwhitemg | -.7997218 .1888978 -4.23 0.000 -1.169955 -.4294889 _cons | -56.78443 13.43348 -4.23 0.000 -83.11357 -30.45529 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000329 lgdp | -.000372 .002555 lgdpau | .000199 -.000691 .120508 lgdpdfrati~w | -.000448 .000434 -.005468 .019965 lpopau | -.002052 .003775 -.413391 .024934 1.59849 lpop | .000063 -.00213 -.000091 -.00007 .000149 .003616 lxrate1 | -1.9e-06 -2.1e-06 .000455 .000461 -.00424 -.000112 .000227 lremote | .000293 .001771 -.007426 -.001235 .0264 -.001348 -.000064 ldist | .001641 -.001904 -.002497 -.001537 .00463 .004592 .000046 lopen | -6.5e-06 .000012 .000135 .000192 -.001876 .000177 -.000028 english | -.000411 -.001791 .000123 .000725 .019736 .004736 .000212 white | .002335 -.014676 .016905 -.00463 -.133648 .015725 .001864 lwhitemg | -.00025 .000929 -.001946 .000464 .01331 -.001257 -.000132 _cons | .016989 -.063293 3.80422 -.27395 -16.0365 -.04201 .058846 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016133 ldist | .007276 .075446 lopen | .000068 -.000464 .000804 english | -.001331 .015677 -.000323 .028861 white | -.001545 .015707 -.000686 .036922 3.95621 lwhitemg | .000691 -.002352 .000087 -.003497 -.369585 .035682 _cons | -.470924 -.834926 .028795 -.50867 1.69357 -.152482 180.458</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 461.02 Log likelihood = -678.8746 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]</p><p>------+------limmig | .1722142 .0530418 3.25 0.001 .0682541 .2761743 lgdp | .7386342 .103786 7.12 0.000 .5352174 .942051 lgdpau | -.6500304 .6705563 -0.97 0.332 -1.964297 .6642358 lgdpdfrati~w | -.3490698 .2808695 -1.24 0.214 -.8995639 .2014244 lpopau | 3.758096 2.310149 1.63 0.104 -.7697132 8.285906 lpop | -.2965176 .1474685 -2.01 0.044 -.5855505 -.0074847 lxrate1 | -.1499564 .0317175 -4.73 0.000 -.2121216 -.0877912 lremote | .1421966 .2342146 0.61 0.544 -.3168556 .6012488 ldist | -3.310665 .6939471 -4.77 0.000 -4.670776 -1.950553 lopen | .0387889 .0644589 0.60 0.547 -.0875482 .1651261 english | -.4358269 .4318843 -1.01 0.313 -1.282305 .4106507 white | 20.4735 4.176446 4.90 0.000 12.28782 28.65918 lwhitemg | -1.829563 .3833548 -4.77 0.000 -2.580924 -1.078201 _cons | -24.06906 22.79283 -1.06 0.291 -68.74218 20.60406 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002813 lgdp | -.002332 .010772 lgdpau | .001386 -.001577 .449646 lgdpdfrati~w | -.001904 .00354 -.011003 .078888 lpopau | -.009337 .000928 -1.49634 .063014 5.33679 lpop | -.000097 -.007978 -.001416 -.001849 -.006763 .021747 lxrate1 | .000151 .000511 .002031 .001268 -.010649 -.000804 .001006 lremote | .001045 .00429 -.020427 -.012144 .039904 -.002887 .000484 ldist | .011413 .010509 -.006085 -.004485 -.052645 .005274 .000409 lopen | .000459 -.00103 -.000918 -.000164 -.010407 .001839 -.000196 english | -.006155 .002928 .001199 .006031 -.014833 .017149 .000532 white | .00746 -.033866 .125105 .018196 -.375749 .073487 .005208 lwhitemg | -.001285 .001374 -.013101 -.002928 .04241 -.005569 -.000599 _cons | .043517 -.222525 13.3166 -.735198 -49.0387 -.037842 .110456</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054856 ldist | .032676 .481563 lopen | .000639 .003122 .004155 english | -.00401 .128725 -.00144 .186524 white | .028702 .259039 .004525 .293684 17.4427 lwhitemg | -.000231 -.03906 -.000306 -.031967 -1.57439 .146961 _cons | -.964621 -4.24204 .157471 -1.33219 -.336198 .090882 519.513</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1175.49 Log likelihood = -575.5818 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1739229 .045648 3.81 0.000 .0844544 .2633913 lgdp | .5545926 .096714 5.73 0.000 .3650367 .7441485 lgdpau | .6649297 .6216074 1.07 0.285 -.5533984 1.883258 lgdpdfrati~w | -.0103192 .2736234 -0.04 0.970 -.5466112 .5259728 lpopau | -2.846907 2.148375 -1.33 0.185 -7.057646 1.363831 lpop | .5841719 .1226859 4.76 0.000 .343712 .8246318 lxrate1 | -.0964526 .0301166 -3.20 0.001 -.15548 -.0374252 lremote | -.2571137 .2227487 -1.15 0.248 -.6936932 .1794657 ldist | -2.299946 .4563953 -5.04 0.000 -3.194464 -1.405427 lopen | -.0729371 .068514 -1.06 0.287 -.2072221 .0613479 english | 1.221383 .3233516 3.78 0.000 .587626 1.855141 white | 24.24393 3.098551 7.82 0.000 18.17088 30.31698 lwhitemg | -2.294231 .2740661 -8.37 0.000 -2.831391 -1.757072 _cons | 35.25527 20.69399 1.70 0.088 -5.304211 75.81475 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002084 lgdp | -.001777 .009354 lgdpau | -.002345 .004663 .386396 lgdpdfrati~w | -.0018 .002755 -.005257 .07487 lpopau | .006977 -.032265 -1.29073 .019274 4.61552 lpop | .000335 -.007426 -.002752 -.001899 .012853 .015052 lxrate1 | .000068 .000611 .000395 .00123 -.005038 -.000779 .000907 lremote | .000485 .003668 -.016635 -.017164 .036458 -.002766 .000483 ldist | .007607 -.001185 -.008749 -.001687 -.007484 .015988 .000445 lopen | .000215 -.000228 .000635 .001973 -.012938 .001567 -.000095 english | -.003278 .001532 .005507 .005663 -.023866 .0009 .00061 white | .005753 -.03148 .017814 -.012108 -.019671 .052156 .004678 lwhitemg | -.000877 .001027 -.003154 -.000391 .011008 -.003744 -.000471 _cons | -.104674 .304018 11.457 -.115616 -42.486 -.337344 .058817</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .049617 ldist | .006307 .208297 lopen | .001324 .002212 .004694 english | -.008032 .062886 -.001566 .104556 white | .025282 .034792 .004894 .015469 9.60102 lwhitemg | .000247 -.007841 -.000472 .000457 -.834297 .075112 _cons | -.686506 -1.9586 .145877 -.344229 -.867983 .015512 428.241 . xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1695.69 Log likelihood = -761.6325 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0604128 .0349294 1.73 0.084 -.0080476 .1288733 lgdp | 1.036239 .0993471 10.43 0.000 .841522 1.230955 lgdpau | .7430203 .732011 1.02 0.310 -.691695 2.177736 lgdpdfrati~w | -.1012687 .2931925 -0.35 0.730 -.6759154 .473378 lpopau | 3.775588 2.548039 1.48 0.138 -1.218478 8.769653 lpop | -.4573398 .1456388 -3.14 0.002 -.7427867 -.1718929 lxrate1 | -.1516339 .0251384 -6.03 0.000 -.2009042 -.1023636</p><p> lremote | -.3001995 .2006969 -1.50 0.135 -.6935582 .0931592 ldist | -1.413843 .7642149 -1.85 0.064 -2.911677 .0839903 lopen | -.0318307 .0741464 -0.43 0.668 -.1771549 .1134936 english | .0421561 .3364824 0.13 0.900 -.6173373 .7016496 white | 28.46025 2.589472 10.99 0.000 23.38498 33.53552 lwhitemg | -2.652407 .2491352 -10.65 0.000 -3.140703 -2.164111 _cons | -79.46205 25.3572 -3.13 0.002 -129.1613 -29.76284 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00122 lgdp | -.00198 .00987 lgdpau | .000017 .000604 .53584 lgdpdfrati~w | -.00228 .00411 -.017367 .085962 lpopau | -.007402 -.008212 -1.79153 .073875 6.4925</p><p> lpop | .001809 -.012119 -.003844 -.003499 .026591 .021211 lxrate1 | .000015 .000496 .001123 .001002 -.010996 -.000909 .000632 lremote | .00141 .00435 -.018801 -.005417 .016068 -.003504 .000352 ldist | .007667 .011952 -.026473 -.008344 -.06997 .01237 .00148 lopen | .000249 -.000497 -.002218 .005105 -.00161 .000823 -.000271 english | -.00145 .003656 .00439 .004595 -.010017 -.001231 .001094 white | .017964 -.057835 .047152 -.031899 -.44538 .070234 .009189 lwhitemg | -.00163 .003932 -.005902 .00247 .049933 -.005014 -.000906 _cons | .049207 -.059584 16.137 -.757766 -60.429 -.489633 .134988</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .040279 ldist | .073446 .584024 lopen | .001583 .001917 .005498 english | -.000067 .054343 -.00105 .11322 white | .039448 .112013 -.008457 .215034 6.70536 lwhitemg | -.002713 -.017804 .001007 -.024188 -.635142 .062068 _cons | -.873087 -4.87866 .0499 -.54216 4.82046 -.478835 642.988</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 489.61 Log likelihood = -588.7158 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3625979 .0568412 6.38 0.000 .2511912 .4740047 lgdp | .2298792 .0964948 2.38 0.017 .040753 .4190055 lgdpau | 1.117573 .7365248 1.52 0.129 -.3259894 2.561135 lgdpdfrati~w | -.5360761 .3131689 -1.71 0.087 -1.149876 .0777236 lpopau | -4.391215 2.54419 -1.73 0.084 -9.377735 .5953052 lpop | .3817684 .1030221 3.71 0.000 .1798488 .583688 lxrate1 | -.1042807 .0327675 -3.18 0.001 -.1685038 -.0400576 lremote | .0482848 .2206614 0.22 0.827 -.3842036 .4807732 ldist | -1.563309 .5932678 -2.64 0.008 -2.726093 -.4005258 lopen | .0919748 .0707299 1.30 0.193 -.0466532 .2306029 english | -.0408124 .2816846 -0.14 0.885 -.5929041 .5112792</p><p> white | 19.54097 2.076355 9.41 0.000 15.47139 23.61055 lwhitemg | -1.802088 .196605 -9.17 0.000 -2.187427 -1.416749 _cons | 49.80833 24.04697 2.07 0.038 2.677136 96.93953 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003231 lgdp | -.003067 .009311 lgdpau | -.002256 .006403 .542469 lgdpdfrati~w | -.002709 .005805 -.009812 .098075 lpopau | .005143 -.034298 -1.81523 .049071 6.4729 lpop | .001157 -.005965 -.004044 -.003719 .010687 .010614 lxrate1 | .00019 .000364 -.000242 .00077 -.003184 -.000463 .001074 lremote | .000378 .002977 -.007575 -.015711 -.005752 .000606 .001249 ldist | .011028 .003332 -.002399 -.009429 -.085664 .004738 .000526 lopen | -.000315 .000778 .00222 .000046 -.022574 .001645 -.000149 english | -.003132 .007548 .006459 .00323 -.032127 -.001295 -.000995 white | .023335 -.036658 -.000775 -.067676 .06839 .012073 -.000091 lwhitemg | -.002575 .002009 -.001607 .004158 .004119 -.000199 -.000242 _cons | -.101397 .238401 15.9139 -.486114 -58.4002 -.157124 .038342</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .048691 ldist | .038537 .351967 lopen | .002327 .003853 .005003 english | .00782 .098095 .00005 .079346 white | .105288 .216157 -.00788 .141376 4.31125 lwhitemg | -.007617 -.032043 .000723 -.017449 -.399497 .038654 _cons | -.570283 -2.41796 .221895 -.783673 -3.59239 .320645 578.257</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1527.34 Log likelihood = -240.4558 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval]</p><p>------+------limmig | -.0000556 .0252608 -0.00 0.998 -.0495659 .0494547 lgdp | .4086143 .0817787 5.00 0.000 .248331 .5688975 lgdpau | -.361918 .472482 -0.77 0.444 -1.287966 .5641297 lgdpdfrati~w | .1579953 .223798 0.71 0.480 -.2806408 .5966314 lpopau | 1.492688 1.630188 0.92 0.360 -1.702422 4.687798 lpop | -.2053141 .1154418 -1.78 0.075 -.4315759 .0209477 lxrate1 | -.0421345 .0222725 -1.89 0.059 -.0857879 .0015189 lremote | .0054632 .1650747 0.03 0.974 -.3180772 .3290037 ldist | -3.957252 .5079682 -7.79 0.000 -4.952852 -2.961653 lopen | -.0024782 .0483103 -0.05 0.959 -.0971646 .0922082 english | -.0679611 .2803388 -0.24 0.808 -.617415 .4814927 white | 17.10944 2.547544 6.72 0.000 12.11634 22.10253 lwhitemg | -1.261077 .2724716 -4.63 0.000 -1.795112 -.7270426 _cons | 17.76772 16.4016 1.08 0.279 -14.37882 49.91426 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000638 lgdp | -.000765 .006688 lgdpau | .00014 -.002198 .223239 lgdpdfrati~w | -.001067 .002667 -.009161 .050086 lpopau | -.001145 .002051 -.74451 .051463 2.65751 lpop | .000151 -.006132 -.000019 -.001042 -.003966 .013327 lxrate1 | -.000034 .00016 .00132 .000967 -.00625 -.000461 .000496 lremote | .000152 .00222 -.016332 -.003253 .046982 -.002228 -.000086 ldist | .002545 .002882 -.011041 -.001777 -.012228 .017699 -.000321 lopen | .000059 -.000216 -.001941 .001359 .001935 .000811 -.000015 english | -.001306 .000616 .001414 .002318 -.002967 .004649 .000527 white | .004016 -.037367 .033911 -.016505 -.230634 .062945 .001961 lwhitemg | -.000443 .00167 -.004034 .000971 .027541 -.004965 -.000016 _cons | .002702 -.074223 6.79312 -.662233 -24.8644 -.153545 .073426</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .02725 ldist | .01372 .258032 lopen | .000053 .000833 .002334 english | -.000178 .053566 .000134 .07859 white | .002735 .154832 .000057 .107396 6.48998 lwhitemg | .001988 -.019639 .000072 -.010905 -.684509 .074241 _cons | -.732687 -2.46165 .002094 -.595266 1.25072 -.138681 269.012</p><p>. . . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping Malaysia . drop if ccode==454580 (10 observations deleted)</p><p>. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 478531.1 1559266 7348 0 1.39e+07 immig | 1000 32694.03 117003.3 2790 0 1137050 gdp | 1000 2.78e+11 9.70e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.5849 16.88431 102.6773 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.94e+07 1.54e+08 1.02e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1043.094 10901.71 16.2185 .0068 270182.6 remote | 1000 6730.858 4145.482 6764 1293 39620 dist | 1000 13438.77 3463.287 14305 2409 17972 open | 1000 .6976544 .3745764 .63155 .0671 3.2192 english | 1000 .37 .4830459 0 0 1 gdpdfratio~w | 1000 1.051367 .1809408 1.013736 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------</p><p>. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou > ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 390387.7 1594626 2944.5 0 1.39e+07 immig | 870 14014.22 26332.15 1403.5 0 158613 gdp | 870 2.36e+11 1.00e+12 1.00e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.6954 17.23196 101.6138 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.33e+07 1.65e+08 1.03e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1182.965 11681.74 22.9426 .0068 270182.6 remote | 870 7155.961 4116.651 6927 1293 39620 dist | 870 13279.51 3343.661 14051 2410 17972 phone | 870 156.6631 242.0474 47.025 .54 1449.75 open | 870 .7034895 .3949042 .6248 .0671 3.2192 english | 870 .3793103 .4854945 0 0 1 gdpdfratio~w | 870 1.04276 .1857486 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8769.08 Log likelihood = -552.3821 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3319121 .0308639 10.75 0.000 .27142 .3924042 lgdp | 1.188423 .0331268 35.87 0.000 1.123495 1.25335 lgdpau | .0546165 .6094788 0.09 0.929 -1.13994 1.249173 lgdpdfrati~w | -.9819625 .2481502 -3.96 0.000 -1.468328 -.4955971 lpopau | -2.436458 2.100719 -1.16 0.246 -6.553792 1.680877 lpop | .0271248 .040996 0.66 0.508 -.0532259 .1074755 lxrate1 | -.1376873 .0173529 -7.93 0.000 -.1716984 -.1036763 lremote | -.4295646 .0757036 -5.67 0.000 -.5779409 -.2811883 ldist | -2.166136 .1720829 -12.59 0.000 -2.503412 -1.828859 lopen | .2977019 .0574748 5.18 0.000 .1850534 .4103505 english | .8885425 .1279535 6.94 0.000 .6377582 1.139327 white | 4.56261 .5723084 7.97 0.000 3.440907 5.684314 lwhitemg | -.4254808 .0509182 -8.36 0.000 -.5252786 -.325683 _cons | 41.97249 19.38767 2.16 0.030 3.973362 79.97162 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000953 lgdp | -.000297 .001097 lgdpau | -.000887 .001301 .371464 lgdpdfrati~w | -.000775 .000085 -.007577 .061579 lpopau | .001623 -.007857 -1.25471 .043208 4.41302 lpop | -.000147 -.000745 .000154 .000205 -.000204 .001681 lxrate1 | .000074 .000154 .000325 .000203 -.002217 -.000072 .000301 lremote | .000468 .000077 -.000575 -.00176 -.00286 -.000237 .000107 ldist | .001476 .000993 .000167 -.001279 -.010838 .000217 .002018 lopen | -.000135 .000614 .002512 .000688 -.017782 .00029 .000085 english | -.001141 .002787 .002824 .002072 -.010536 -.001397 .000523 white | .004742 -.002074 .003194 -.010107 -.027212 .004974 .000172 lwhitemg | -.00058 .000187 -.000304 .000945 .003053 -.000391 -.000032 _cons | -.01897 .072401 11.0529 -.555764 -40.0435 -.008238 .003945</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .005731 ldist | .005243 .029613 lopen | .00135 .000137 .003303 english | -.003302 .00248 -.000749 .016372 white | -.000312 -.002231 .000083 -.000256 .327537 lwhitemg | .00014 -.00023 -.000103 .00018 -.028679 .002593 _cons | -.03397 -.19292 .199521 .057899 .322282 -.035486 375.882</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 72690.02 Log likelihood = -993.4403 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0507731 .0135944 3.73 0.000 .0241285 .0774177 lgdp | 1.651868 .0501365 32.95 0.000 1.553602 1.750134 lgdpau | .8288366 .3495792 2.37 0.018 .1436741 1.513999 lgdpdfrati~w | -.5101017 .1461042 -3.49 0.000 -.7964608 -.2237427 lpopau | -6.184542 1.181515 -5.23 0.000 -8.50027 -3.868815 lpop | -.4310168 .0838222 -5.14 0.000 -.5953053 -.2667282 lxrate1 | -.1151397 .0205117 -5.61 0.000 -.1553419 -.0749375 lremote | -.8981665 .0994518 -9.03 0.000 -1.093088 -.7032446 ldist | -2.823473 .1584179 -17.82 0.000 -3.133966 -2.512979 lopen | -.0699412 .0265698 -2.63 0.008 -.122017 -.0178654 english | .9939125 .0858138 11.58 0.000 .8257204 1.162105 white | 3.81619 .7964741 4.79 0.000 2.255129 5.37725 lwhitemg | -.3764344 .0762765 -4.94 0.000 -.5259336 -.2269353 _cons | 89.58546 11.10597 8.07 0.000 67.81817 111.3528 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000185 lgdp | -.000241 .002514 lgdpau | -.001179 .00181 .122206 lgdpdfrati~w | -.000553 .000454 -.011169 .021346 lpopau | .00465 -.007056 -.404097 .021364 1.39598 lpop | .000146 -.003972 -.001583 .000581 .003938 .007026 lxrate1 | -.000025 .000265 -.000067 .000439 -.003209 -.000278 .000421 lremote | .000358 .000067 -.006822 -.003517 .024742 -.000799 .000015 ldist | .000708 -.003719 -.006321 -.000097 .013421 .006487 .000558 lopen | .000041 -.000097 -.000983 .000889 .003698 .000252 -.00008 english | -.000396 .000177 .002975 .002755 -.020505 .000439 .001154 white | .000964 -.011506 -.011248 -.003057 .039195 .017902 -.000586 lwhitemg | -.000083 .000509 .000432 .000109 -.002234 -.00072 .000095 _cons | -.053198 .110254 3.6179 -.067777 -12.8375 -.100048 .046121</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .009891 ldist | .001361 .025096 lopen | .000673 .000319 .000706 english | -.002797 .003441 -.000422 .007364 white | .008723 .003026 .001626 -.000676 .634371 lwhitemg | .000016 .000962 -.00011 .000273 -.059029 .005818 _cons | -.318431 -.334712 -.04687 .237006 -.480609 .015913 123.342 . . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7870.40 Log likelihood = -950.2895 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0950162 .0222862 4.26 0.000 .0513359 .1386964 lgdp | 1.798205 .0713393 25.21 0.000 1.658382 1.938027 lgdpau | .1967765 .5643969 0.35 0.727 -.9094212 1.302974 lgdpdfrati~w | -.4589376 .210714 -2.18 0.029 -.8719294 -.0459457 lpopau | -3.124809 1.944532 -1.61 0.108 -6.936022 .6864033 lpop | -.7369972 .078161 -9.43 0.000 -.89019 -.5838044 lxrate1 | -.1450545 .0271775 -5.34 0.000 -.1983215 -.0917875 lremote | -.3929521 .1303276 -3.02 0.003 -.6483895 -.1375146 ldist | -4.19125 .3645294 -11.50 0.000 -4.905715 -3.476786 lopen | .0591057 .0424221 1.39 0.164 -.02404 .1422515 english | .9865931 .1379477 7.15 0.000 .7162206 1.256966 white | 9.353472 1.96826 4.75 0.000 5.495753 13.21119 lwhitemg | -.8118031 .1970068 -4.12 0.000 -1.197929 -.4256768 _cons | 65.44854 18.39358 3.56 0.000 29.39777 101.4993 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000497 lgdp | -.000849 .005089 lgdpau | -.001944 .004921 .318544 lgdpdfrati~w | -.000751 .001859 -.016436 .0444 lpopau | .005715 -.025174 -1.06462 .044616 3.7812 lpop | .000626 -.00404 -.002433 -.000979 .010973 .006109 lxrate1 | .00001 .000583 -.000034 .001028 -.005079 -.000826 .000739 lremote | -.00008 -.001118 -.009126 -.001416 .030966 -.001531 .000227 ldist | .002043 .009224 -.010014 -.003499 -.015848 -.001855 .001323 lopen | .000084 -.000534 -.000136 .001973 .000557 .000958 -.000179 english | -.000857 .003415 .006743 .002756 -.037381 .00083 .001742 white | .001562 -.030623 .000719 .004304 .026199 .020678 .003445 lwhitemg | -.000129 .00155 -.001848 -.000836 .00655 -.001341 -.0004 _cons | -.054812 .161014 9.43408 -.332633 -34.6026 -.092193 .066407</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016985 ldist | .006066 .132882 lopen | .000522 -.000769 .0018 english | -.006424 .007318 -.001355 .01903 white | .014194 -.166337 .002611 .005543 3.87405 lwhitemg | .00104 .012756 -.000147 -.001747 -.38002 .038812 _cons | -.433338 -.985531 -.00658 .331057 1.3331 -.201689 338.324</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2093.85 Log likelihood = -1102.658 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0877301 .0421807 2.08 0.038 .0050575 .1704026 lgdp | .9250313 .0816721 11.33 0.000 .7649569 1.085106 lgdpau | -.4391755 .8188661 -0.54 0.592 -2.044123 1.165772 lgdpdfrati~w | -.4545578 .3446277 -1.32 0.187 -1.130016 .2209001 lpopau | .0931077 2.81162 0.03 0.974 -5.417567 5.603782 lpop | .0614884 .1004838 0.61 0.541 -.1354563 .258433 lxrate1 | -.1297017 .0333195 -3.89 0.000 -.1950067 -.0643966 lremote | .5386806 .2295831 2.35 0.019 .0887059 .9886553 ldist | -1.525142 .3471277 -4.39 0.000 -2.205499 -.8447837 lopen | .3196298 .0797412 4.01 0.000 .16334 .4759196 english | 1.683746 .2440313 6.90 0.000 1.205453 2.162038 white | 1.539698 2.185708 0.70 0.481 -2.744211 5.823606 lwhitemg | .1887808 .1927763 0.98 0.327 -.1890539 .5666155 _cons | .8545275 26.80095 0.03 0.975 -51.67437 53.38343 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001779 lgdp | -.00168 .00667 lgdpau | -.001379 .00107 .670542 lgdpdfrati~w | -.0003 .001657 -.008789 .118768 lpopau | .001981 -.008148 -2.24722 .03443 7.90521 lpop | .000337 -.00591 .000237 -.001275 -.00241 .010097 lxrate1 | .00012 .000882 .000592 .002066 -.007577 -.001144 .00111 lremote | .001303 .000746 -.027457 -.0143 .083169 .000213 -.000657 ldist | .004426 -.007319 -.019224 -.006203 .058758 .011444 -.000087 lopen | .000294 -.001106 .005045 .001656 -.028502 .00287 -.00019 english | -.003729 .001275 .008992 .005777 -.014943 -.000647 .001432 white | .004243 -.024938 .113501 .007475 -.460947 .022036 .000899 lwhitemg | -.000588 .000996 -.011917 -.002064 .049368 -.000356 -.000213 _cons | -.025141 .118746 20.0994 -.299457 -73.3321 -.100269 .108317</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .052708 ldist | .020312 .120498 lopen | .001795 -.000997 .006359 english | -.014123 .013848 -.00188 .059551 white | .036657 -.026081 .006414 .038155 4.77732 lwhitemg | -.00042 .006189 -.000392 -.002688 -.410332 .037163 _cons | -1.32129 -1.83836 .316267 -.023153 4.77489 -.574333 718.291</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 55884.36 Log likelihood = -922.2653 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0252197 .0135892 1.86 0.063 -.0014146 .051854 lgdp | 1.558779 .0539686 28.88 0.000 1.453003 1.664556 lgdpau | .6597161 .3583793 1.84 0.066 -.0426945 1.362127 lgdpdfrati~w | -.2909801 .140794 -2.07 0.039 -.5669313 -.015029 lpopau | -6.552746 1.213705 -5.40 0.000 -8.931565 -4.173927 lpop | -.1769547 .0934082 -1.89 0.058 -.3600313 .0061219 lxrate1 | -.0484403 .0192136 -2.52 0.012 -.0860982 -.0107824 lremote | -.650715 .1509658 -4.31 0.000 -.9466025 -.3548274 ldist | -2.502114 .170603 -14.67 0.000 -2.83649 -2.167738 lopen | -.0536621 .0269762 -1.99 0.047 -.1065345 -.0007897 english | 1.159382 .1099805 10.54 0.000 .9438242 1.37494 white | 3.558418 .8872718 4.01 0.000 1.819397 5.297439 lwhitemg | -.2679494 .0818223 -3.27 0.001 -.428318 -.1075807 _cons | 92.69599 11.48846 8.07 0.000 70.17903 115.213 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000185 lgdp | -.000192 .002913 lgdpau | -.000944 .002046 .128436 lgdpdfrati~w | -.000361 .000654 -.007825 .019823 lpopau | .00344 -.006806 -.425746 .011517 1.47308 lpop | .000113 -.004761 -.001749 .000193 .00277 .008725 lxrate1 | -1.1e-06 .000213 -.000033 .000511 -.002888 -.000215 .000369 lremote | -.000027 -.000936 -.013228 -.005491 .04899 .000158 -.000257 ldist | .000809 -.005423 -.004419 .00167 .002678 .009892 .000737 lopen | .000019 -.000101 -.000984 .0008 .003628 .00027 -.000072 english | -.000322 -.00018 .003761 .003131 -.020692 .000224 .001044 white | .000464 -.016638 -.016068 -.000874 .022359 .029586 .002388 lwhitemg | -.000087 .000784 .000118 -.000444 .002624 -.001588 -.000259 _cons | -.03771 .128402 3.84461 .009935 -13.633 -.126031 .040768</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .022791 ldist | -.003076 .029105 lopen | .001129 .000227 .000728 english | -.004725 .006214 -.000488 .012096 white | .016971 .032762 .001034 .007594 .787251 lwhitemg | .000937 -.002084 .000014 -.000625 -.069401 .006695 _cons | -.611418 -.223488 -.048857 .219476 -.512371 -.026043 131.985</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8739.02 Log likelihood = -980.905 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1248714 .02467 5.06 0.000 .0765192 .1732236 lgdp | 1.825572 .070182 26.01 0.000 1.688018 1.963126 lgdpau | .0249068 .5948312 0.04 0.967 -1.140941 1.190755 lgdpdfrati~w | -.4335251 .2280058 -1.90 0.057 -.8804083 .0133581 lpopau | -2.675511 2.041263 -1.31 0.190 -6.676312 1.32529 lpop | -.7800982 .075145 -10.38 0.000 -.9273796 -.6328167 lxrate1 | -.1366665 .0278533 -4.91 0.000 -.1912579 -.0820751 lremote | -.3368959 .1233527 -2.73 0.006 -.5786626 -.0951291 ldist | -3.600693 .3466666 -10.39 0.000 -4.280147 -2.921239 lopen | .0809146 .0452894 1.79 0.074 -.007851 .1696803 english | .8328061 .1240826 6.71 0.000 .5896086 1.076004 white | 9.228247 1.950654 4.73 0.000 5.405035 13.05146 lwhitemg | -.8322535 .1951462 -4.26 0.000 -1.214733 -.4497739 _cons | 56.33691 19.21466 2.93 0.003 18.67687 93.99694 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000609 lgdp | -.001061 .004926 lgdpau | -.002082 .004581 .353824 lgdpdfrati~w | -.000926 .002232 -.018861 .051987 lpopau | .00676 -.02494 -1.17993 .048527 4.16675 lpop | .000791 -.003996 -.002604 -.001128 .014092 .005647 lxrate1 | .000011 .00057 -.000244 .001144 -.00497 -.000852 .000776 lremote | -.0001 -.000934 -.007114 -.00121 .021 -.000958 .000266 ldist | .002499 .005377 -.012058 -.004552 -.002019 .00077 .001165 lopen | .000087 -.000614 .000298 .00234 -.001723 .001244 -.000199 english | -.000861 .00362 .004373 .002802 -.024357 -.001308 .001721 white | .001499 -.027417 .003958 .005282 .029549 .013457 .003482 lwhitemg | -.000098 .00149 -.001812 -.000961 .004451 -.000748 -.000384 _cons | -.071053 .204425 10.4381 -.33835 -38.0851 -.162747 .071778</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .015216 ldist | .006332 .120178 lopen | .000322 -.001206 .002051 english | -.00461 .008998 -.001184 .015396 white | .017667 -.16782 .003977 -.009854 3.80505 lwhitemg | .000471 .0145 -.000287 -.000091 -.374011 .038082 _cons | -.321557 -1.00149 .02293 .175618 1.22587 -.188196 369.203</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7943.73 Log likelihood = -1105.774 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0193193 .0152058 1.27 0.204 -.0104835 .0491222 lgdp | 1.334891 .0490521 27.21 0.000 1.23875 1.431031 lgdpau | .4745109 .4805468 0.99 0.323 -.4673435 1.416365 lgdpdfrati~w | -.0828652 .1551472 -0.53 0.593 -.3869481 .2212177 lpopau | -5.348937 1.63314 -3.28 0.001 -8.549832 -2.148042 lpop | .0910258 .0714394 1.27 0.203 -.0489928 .2310443 lxrate1 | -.0579902 .0191233 -3.03 0.002 -.0954711 -.0205093 lremote | -.7260258 .1579493 -4.60 0.000 -1.035601 -.4164508 ldist | -3.154192 .2203222 -14.32 0.000 -3.586016 -2.722369 lopen | .0627187 .0401126 1.56 0.118 -.0159005 .141338 english | 2.395015 .1351291 17.72 0.000 2.130166 2.659863 white | 4.044611 1.151494 3.51 0.000 1.787724 6.301498 lwhitemg | -.1709226 .0968186 -1.77 0.077 -.3606835 .0188384 _cons | 83.99528 15.67968 5.36 0.000 53.26367 114.7269 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000231 lgdp | -.000375 .002406 lgdpau | -.00005 4.4e-06 .230925 lgdpdfrati~w | -.000405 .000563 .001937 .024071 lpopau | -.001334 .001686 -.766026 -.005187 2.66714 lpop | .000176 -.002722 -.00021 .000029 -.002675 .005104 lxrate1 | -.000015 .000202 .000299 .000589 -.002218 -.000374 .000366 lremote | .000164 .00066 -.017809 -.000682 .055382 -.001009 -.00009 ldist | .000581 .000154 -.011749 -.000962 .025256 .000539 .000383 lopen | .000056 -.000271 .000046 .001772 .000277 .000634 -.00013 english | -.000709 .000278 .002344 .001436 -.009876 .002073 .000932 white | .000305 -.01327 -.003665 -.000767 .001729 .024428 -.000157 lwhitemg | -7.3e-06 .000677 -.00102 .000183 .00373 -.001601 .000082 _cons | .021873 -.04522 6.91866 .012779 -24.8662 .033262 .025121</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .024948 ldist | .016487 .048542 lopen | .000806 -.00008 .001609 english | -.00378 .00238 -.001216 .01826 white | .003208 -.007239 .000712 .034101 1.32594 lwhitemg | .001443 .002904 -.000014 -.002992 -.107699 .009374 _cons | -.826757 -.737778 -.016401 .066434 .004485 -.065294 245.852</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 450.63 Log likelihood = -654.5953 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5338211 .0550389 9.70 0.000 .4259469 .6416954 lgdp | .0269234 .0938892 0.29 0.774 -.157096 .2109428 lgdpau | -.7293405 .7927076 -0.92 0.358 -2.283019 .8243379 lgdpdfrati~w | -.523833 .3114311 -1.68 0.093 -1.134227 .0865608 lpopau | .5244073 2.71081 0.19 0.847 -4.788682 5.837497 lpop | .2375072 .0982911 2.42 0.016 .0448601 .4301542 lxrate1 | -.1278113 .0297886 -4.29 0.000 -.1861959 -.0694267 lremote | .3946583 .2519649 1.57 0.117 -.0991838 .8885004 ldist | -1.859803 .5313172 -3.50 0.000 -2.901166 -.8184408 lopen | .0316061 .0625833 0.51 0.614 -.091055 .1542671 english | .5200914 .2558086 2.03 0.042 .0187158 1.021467 white | 12.06072 .9818357 12.28 0.000 10.13635 13.98508 lwhitemg | -1.107911 .0954537 -11.61 0.000 -1.294997 -.9208251 _cons | 23.90025 25.78718 0.93 0.354 -26.6417 74.4422 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003029 lgdp | -.00186 .008815 lgdpau | -.000956 .00064 .628385 lgdpdfrati~w | -.002363 .004066 .000776 .096989 lpopau | -.00013 -.017092 -2.08287 .021827 7.34849 lpop | -.000033 -.005876 -.001774 -.001096 .012278 .009661 lxrate1 | .000043 .000144 .001522 .001497 -.009152 -.000655 .000887 lremote | .002868 .003978 -.021884 -.011639 .041186 -.003638 .000717 ldist | .010071 -.00893 -.019073 -.006611 -.018884 .014256 .001874 lopen | -.000795 .00265 -.002708 -.001281 -.004494 -.000549 .000014 english | -.000397 .000756 .007752 .010843 -.039831 .005349 .00157 white | .01605 -.023152 .012926 -.003035 -.06049 .02504 .005263 lwhitemg | -.001578 .000623 -.002502 -.000722 .011681 -.001214 -.000347 _cons | -.069772 .216471 18.4463 -.389946 -67.2459 -.277636 .089346</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .063486 ldist | .047996 .282298 lopen | .001393 -.001353 .003917 english | -.010062 .015497 .000328 .065438 white | .022537 -.017646 -.006216 .079715 .964001 lwhitemg | .000696 .006067 .000146 -.006166 -.087861 .009111 _cons | -1.15956 -2.38829 .103446 .248002 .585167 -.170706 664.979</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000</p><p>Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2907.56 Log likelihood = -616.3773 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1402468 .0343343 4.08 0.000 .0729528 .2075407 lgdp | .2533077 .0581338 4.36 0.000 .1393676 .3672478 lgdpau | -.1330392 .0772249 -1.72 0.085 -.2843972 .0183189 lgdpdfrati~w | -.1195086 .0501241 -2.38 0.017 -.2177501 -.0212671 lpopau | 2.193367 .3048959 7.19 0.000 1.595782 2.790952 lpop | .7796286 .1015577 7.68 0.000 .5805791 .9786781 lxrate1 | -.0119991 .0102345 -1.17 0.241 -.0320582 .0080601 lremote | .1295857 .0380937 3.40 0.001 .0549235 .2042479 ldist | -3.317351 .3551619 -9.34 0.000 -4.013455 -2.621246 lopen | -.0210881 .0360066 -0.59 0.558 -.0916597 .0494835 english | .6390322 .2696306 2.37 0.018 .1105659 1.167498 white | 23.13174 2.908814 7.95 0.000 17.43057 28.83291 lwhitemg | -2.17589 .272055 -8.00 0.000 -2.709108 -1.642672 _cons | -15.20298 5.429719 -2.80 0.005 -25.84503 -4.560924 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001179 lgdp | -.000808 .00338 lgdpau | -.000789 -.000415 .005964 lgdpdfrati~w | .000433 -.001249 .001187 .002512 lpopau | .005409 -.000749 -.01992 .000486 .092961 lpop | -.000193 -.002344 .001234 .000422 -.005645 .010314 lxrate1 | 4.6e-06 .000126 -.000059 .000054 .00099 -.000283 .000105 lremote | -.000445 .00141 -.000945 -.001348 -.000025 -.000752 .000052 ldist | .00416 .000715 -.004217 -.000455 .023646 -.00357 -.000127 lopen | -.000384 -.000335 .000217 -.000659 -.005578 .001255 -.000252 english | -.001037 -.001203 .001525 .000742 -.006904 .003322 .000026 white | .003563 -.007181 .001089 .002464 -.002349 .028591 -.0007 lwhitemg | -.000622 .000263 .000191 -.000154 -.001836 -.003005 .000058 _cons | -.090778 -.031939 .216296 -.006708 -1.17395 -.006303 -.013126</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .001451 ldist | .000351 .12614 lopen | .000311 -.000976 .001296 english | -.00067 .058062 .000098 .072701 white | -.003056 .014225 .001681 .037631 8.4612 lwhitemg | .000196 -.004623 .000017 -.002671 -.779607 .074014 _cons | -.007366 -1.47747 .086145 -.513545 -.433674 .114647 29.4819</p><p>. . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 518.50 Log likelihood = -571.5843 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5506437 .0496053 11.10 0.000 .4534192 .6478683 lgdp | -.0624212 .0690227 -0.90 0.366 -.1977033 .0728608 lgdpau | 1.951153 .8025235 2.43 0.015 .3782363 3.524071 lgdpdfrati~w | -.7602772 .2899309 -2.62 0.009 -1.328531 -.1920231 lpopau | -9.79757 2.757821 -3.55 0.000 -15.2028 -4.39234 lpop | .420478 .0808545 5.20 0.000 .2620062 .5789499 lxrate1 | -.1182201 .0257038 -4.60 0.000 -.1685988 -.0678415 lremote | .0830013 .2510091 0.33 0.741 -.4089674 .57497 ldist | -1.355502 .3079915 -4.40 0.000 -1.959154 -.7518497 lopen | .0239292 .0543644 0.44 0.660 -.0826231 .1304815 english | -.2347975 .2208761 -1.06 0.288 -.6677067 .1981118 white | 9.558887 1.056939 9.04 0.000 7.487324 11.63045 lwhitemg | -.8449663 .0950509 -8.89 0.000 -1.031263 -.65867 _cons | 121.3033 26.0882 4.65 0.000 70.17139 172.4353 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002461 lgdp | -.001482 .004764 lgdpau | .00047 -.001464 .644044 lgdpdfrati~w | -.001334 .001226 -.017699 .08406 lpopau | -.006211 -.00061 -2.15155 .074661 7.60558 lpop | -.000143 -.002376 .000749 -.000574 -.005831 .006537 lxrate1 | .000166 -.000166 .000564 .000766 -.004684 -.000522 .000661 lremote | .001643 .004714 -.021028 -.01238 .056484 -.003481 .000376 ldist | .004307 .003293 -.00744 -.00236 -.018847 .001843 .001049 lopen | -.000224 .000347 .000319 -.000626 -.010327 .001109 -9.6e-06 english | -.002129 .000489 .00376 .004932 -.016566 .001041 .001121 white | .014086 -.019527 .021452 -.007443 -.095432 .019254 .004951 lwhitemg | -.001388 .001146 -.002996 -7.3e-06 .014395 -.001362 -.000407 _cons | .054691 -.084569 19.0808 -.74409 -69.9774 .041845 .057829</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .063006 ldist | .02854 .094859 lopen | .001459 .002585 .002955 english | -.011148 .023558 -.000534 .048786 white | .015843 -.002916 .000075 .018756 1.11712 lwhitemg | .000725 .000084 .000031 -.000642 -.096838 .009035 _cons | -1.25256 -.776429 .104513 .008801 .899502 -.158107 680.594</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1294.98 Log likelihood = -341.1891 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0341623 .0175423 1.95 0.051 -.0002201 .0685446 lgdp | .226508 .0574338 3.94 0.000 .1139398 .3390761 lgdpau | -.2357906 .3299163 -0.71 0.475 -.8824147 .4108335 lgdpdfrati~w | -.417591 .20598 -2.03 0.043 -.8213045 -.0138776 lpopau | 2.682141 1.173807 2.28 0.022 .3815208 4.982761 lpop | .098146 .0725962 1.35 0.176 -.0441401 .240432 lxrate1 | -.0788137 .0189773 -4.15 0.000 -.1160085 -.0416188 lremote | -.1465019 .1173703 -1.25 0.212 -.3765435 .0835397 ldist | -1.320355 .2267935 -5.82 0.000 -1.764862 -.8758479 lopen | .0063611 .0269268 0.24 0.813 -.0464144 .0591366 english | 2.037492 .2286799 8.91 0.000 1.589288 2.485696 white | 9.337921 1.792701 5.21 0.000 5.824292 12.85155 lwhitemg | -.6995349 .1846708 -3.79 0.000 -1.061483 -.3375867 _cons | -29.54573 11.86655 -2.49 0.013 -52.80374 -6.28771 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000308 lgdp | -.000333 .003299 lgdpau | .000244 -.001511 .108845 lgdpdfrati~w | -.000494 -.000416 -.001518 .042428 lpopau | -.001201 .007105 -.372732 .024231 1.37782 lpop | .000134 -.003244 .000902 .000932 -.007455 .00527 lxrate1 | -.000016 .00019 .001294 .000788 -.006202 -.000204 .00036 lremote | .000205 .001186 -.007633 -.003702 .027056 -.000669 -.000407 ldist | .00084 .000587 -.001885 -.001193 -.002579 .002789 -.000307 lopen | .000029 -.000286 -.000129 .001145 -.001111 .000378 -9.7e-06 english | -.000242 -.002485 .003594 .003812 -.010273 .004509 .000297 white | .001834 -.024 .013568 .00335 -.072713 .026854 .000831 lwhitemg | -.000183 .001363 -.001141 -.000036 .005208 -.001783 -.000062 _cons | .008083 -.114221 3.42648 -.370633 -13.3321 .068399 .072364</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .013776 ldist | .001503 .051435 lopen | -.000091 -.000094 .000725 english | -.003944 .015918 .00003 .052295 white | .011003 -.02896 .001739 .080985 3.21378 lwhitemg | -.000485 .001747 -.000103 -.007942 -.326366 .034103 _cons | -.393838 -.470183 .023235 -.065109 1.11584 -.069723 140.815</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 862.57 Log likelihood = -853.4692 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1479942 .066684 2.22 0.026 .017296 .2786924 lgdp | .4785117 .1135271 4.21 0.000 .2560027 .7010206 lgdpau | -2.557765 1.145473 -2.23 0.026 -4.80285 -.3126794 lgdpdfrati~w | -1.172274 .4552319 -2.58 0.010 -2.064512 -.2800355 lpopau | 5.504458 3.932279 1.40 0.162 -2.202667 13.21158 lpop | .3207497 .1307636 2.45 0.014 .0644578 .5770416 lxrate1 | -.1519091 .0403824 -3.76 0.000 -.2310571 -.072761 lremote | 1.85293 .2752625 6.73 0.000 1.313425 2.392434 ldist | -1.021746 .5609298 -1.82 0.069 -2.121148 .0776565 lopen | -.0568908 .0769925 -0.74 0.460 -.2077933 .0940116 english | .3373416 .2724529 1.24 0.216 -.1966563 .8713395 white | 11.3185 1.494644 7.57 0.000 8.389048 14.24794 lwhitemg | -.8540065 .1442011 -5.92 0.000 -1.136635 -.5713775 _cons | -42.62506 37.00964 -1.15 0.249 -115.1626 29.91249 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004447 lgdp | -.004662 .012888 lgdpau | -.001809 .005271 1.31211 lgdpdfrati~w | -.001717 .004214 -.005786 .207236 lpopau | .002367 -.028279 -4.39169 .074297 15.4628 lpop | .001526 -.010748 -.001532 -.002196 .009333 .017099 lxrate1 | .000074 .001706 .001 .001632 -.010933 -.001584 .001631 lremote | .001665 -.002191 -.028547 -.018328 .069615 .001592 .000929 ldist | .013795 -.012344 -.010598 -.009545 -.011805 .020561 -.002037 lopen | .000284 -.000688 .008754 .001401 -.040184 .002024 -.000364 english | -.005555 .01106 .007086 .002247 -.029903 -.008003 -.000494 white | .028913 -.05246 -.030454 -.031689 .028334 .051404 .005479 lwhitemg | -.00327 .003225 -.000614 .000687 .013391 -.002718 -.000874 _cons | -.078103 .359411 38.7056 -1.09825 -141.468 -.349695 .145786</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .075769 ldist | .023571 .314642 lopen | .002954 .002849 .005928 english | -.006091 .030653 -.001047 .074231 white | .116598 .159039 .001 .048807 2.23396 lwhitemg | -.004706 -.02077 .000068 -.007393 -.205611 .020794 _cons | -1.2664 -2.83435 .371164 -.039485 -2.01141 .024999 1369.71</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 614.86 Log likelihood = -42.69433 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0365132 .0269416 1.36 0.175 -.0162913 .0893177 lgdp | .1152563 .052178 2.21 0.027 .0129892 .2175233 lgdpau | .3509277 .3410792 1.03 0.304 -.3175753 1.019431 lgdpdfrati~w | .2941357 .1558234 1.89 0.059 -.0112725 .599544 lpopau | 2.473032 1.217139 2.03 0.042 .0874835 4.858581 lpop | .3628207 .0665913 5.45 0.000 .2323041 .4933373 lxrate1 | -.0160641 .0140239 -1.15 0.252 -.0435504 .0114222 lremote | -.0211016 .1098 -0.19 0.848 -.2363058 .1941025 ldist | -1.843604 .3970552 -4.64 0.000 -2.621818 -1.065391 lopen | -.001002 .028692 -0.03 0.972 -.0572373 .0552333 english | .9302966 .1641363 5.67 0.000 .6085953 1.251998 white | 14.95784 1.112051 13.45 0.000 12.77826 17.13742 lwhitemg | -1.233811 .1029094 -11.99 0.000 -1.43551 -1.032112 _cons | -40.79778 12.87815 -3.17 0.002 -66.03849 -15.55708 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000726 lgdp | -.000511 .002723 lgdpau | -.00052 .000029 .116335 lgdpdfrati~w | -.0006 .00052 .000478 .024281 lpopau | .001881 -.000351 -.393292 .011795 1.48143 lpop | -.000064 -.001738 .000317 .000184 -.00082 .004434 lxrate1 | .000062 .000026 .000277 .000414 -.002173 -.000091 .000197 lremote | .000647 .001515 -.006377 -.002898 .019173 -.000995 3.4e-06 ldist | .003133 -.002548 -.010087 -.008561 .010393 .004453 -.000015 lopen | -.000086 .000056 .00062 .000103 -.004098 .000212 -.000037 english | -.000676 -.00044 .002726 .001982 -.006124 .003309 .000147 white | .003315 -.013241 .028271 -.004627 -.227041 .017931 .002667 lwhitemg | -.000424 .000739 -.002872 .000432 .022438 -.001418 -.000288 _cons | -.044151 -.015022 3.61934 -.139542 -14.516 -.059167 .028417</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .012056 ldist | .013828 .157653 lopen | .000074 -.000417 .000823 english | -.003403 .000725 -.000122 .026941 white | -.005239 -.0207 -.000861 .037836 1.23666 lwhitemg | .000595 .001895 .000138 -.003486 -.11184 .01059 _cons | -.405346 -1.55933 .051275 .005966 3.24975 -.311007 165.847</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 194.79 Log likelihood = 140.9592 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .002055 .0175499 0.12 0.907 -.0323422 .0364522 lgdp | .207372 .045768 4.53 0.000 .1176682 .2970757 lgdpau | -.3316978 .3521151 -0.94 0.346 -1.021831 .358435 lgdpdfrati~w | -.1804499 .144403 -1.25 0.211 -.4634746 .1025748 lpopau | 3.908241 1.28204 3.05 0.002 1.395488 6.420994 lpop | -.0603147 .0556283 -1.08 0.278 -.1693442 .0487147 lxrate1 | -.0828674 .0148211 -5.59 0.000 -.1119163 -.0538184 lremote | .3497872 .1296483 2.70 0.007 .0956813 .6038932 ldist | -1.112946 .2822746 -3.94 0.000 -1.666194 -.5596976 lopen | -.0044375 .0290108 -0.15 0.878 -.0612976 .0524226 english | .0850584 .1478965 0.58 0.565 -.2048134 .3749301 white | 9.364784 2.552984 3.67 0.000 4.361027 14.36854 lwhitemg | -.7343207 .253771 -2.89 0.004 -1.231703 -.2369386 _cons | -51.46792 13.68056 -3.76 0.000 -78.28132 -24.65452 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000308 lgdp | -.000312 .002095 lgdpau | .000139 -.000795 .123985 lgdpdfrati~w | -.000418 .000361 -.004791 .020852 lpopau | -.001762 .006971 -.426314 .020177 1.64363 lpop | .000046 -.001815 -.000066 -.000196 -.002359 .003095 lxrate1 | -.00001 -.000023 .000474 .000497 -.00449 -.000057 .00022 lremote | .000234 .001474 -.009144 -.001379 .035123 -.000716 -.000078 ldist | .00152 -.001672 -.003265 -.002271 .005875 .004544 .00009 lopen | .000014 -.000046 .000381 .000314 -.002633 .000116 -.000022 english | -.000587 -.001384 -.00007 .000243 .01226 .003977 .000306 white | .002069 -.014834 .024225 -.002267 -.206158 .016043 .002539 lwhitemg | -.000241 .001033 -.002825 .000319 .020518 -.001295 -.000193 _cons | .014443 -.108241 3.95158 -.202363 -16.5639 -.00464 .061866 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016809 ldist | .007842 .079679 lopen | -.000052 -.000299 .000842 english | -.000546 .009841 -.000582 .021873 white | -.003216 .014665 -.00113 .028819 6.51773 lwhitemg | .001037 -.002324 .000136 -.002423 -.639876 .0644 _cons | -.585041 -.883021 .036432 -.326069 2.72675 -.253973 187.158</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 431.98 Log likelihood = -691.0528 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1913406 .0549612 3.48 0.000 .0836187 .2990626 lgdp | .8233892 .1086583 7.58 0.000 .610423 1.036355 lgdpau | -.7092657 .6996954 -1.01 0.311 -2.080643 .662112 lgdpdfrati~w | -.3237112 .2959639 -1.09 0.274 -.9037898 .2563674 lpopau | 3.339293 2.41337 1.38 0.166 -1.390825 8.069411 lpop | -.2964811 .1520925 -1.95 0.051 -.5945769 .0016147 lxrate1 | -.145279 .0315891 -4.60 0.000 -.2071926 -.0833654 lremote | .2586802 .2379501 1.09 0.277 -.2076933 .7250538 ldist | -2.430754 .6583423 -3.69 0.000 -3.721081 -1.140427 lopen | .0353004 .077052 0.46 0.647 -.1157187 .1863195 english | -.2029521 .4282801 -0.47 0.636 -1.042366 .6364614 white | 19.7012 4.251035 4.63 0.000 11.36932 28.03307 lwhitemg | -1.820594 .3893784 -4.68 0.000 -2.583761 -1.057426 _cons | -27.0673 23.65843 -1.14 0.253 -73.43697 19.30237 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003021 lgdp | -.002817 .011807 lgdpau | .000987 -.000647 .489574 lgdpdfrati~w | -.001978 .00407 -.008872 .087595 lpopau | -.006313 -.005089 -1.63103 .057579 5.82435 lpop | 3.2e-06 -.008896 -.001387 -.001811 -.004936 .023132 lxrate1 | .000172 .000515 .002159 .001374 -.011225 -.000782 .000998 lremote | .000817 .003577 -.021325 -.01289 .04228 -.002843 .000498 ldist | .011301 .003542 -.004812 -.003321 -.039299 .010351 .000559 lopen | .000317 -.000833 -.000253 .001044 -.016811 .002313 -.000127 english | -.006608 .001702 .003307 .006709 -.017077 .01816 .000424 white | .008922 -.043989 .136738 .032156 -.33393 .082674 .005153 lwhitemg | -.001382 .002247 -.014379 -.004269 .039871 -.006246 -.000616 _cons | .014959 -.079687 14.4774 -.726388 -53.6525 -.120114 .114609</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .05662 ldist | .02385 .433415 lopen | .000852 .002439 .005937 english | -.007532 .102558 -.001475 .183424 white | .018314 .229133 .007698 .274134 18.0713 lwhitemg | .001257 -.034206 -.000539 -.030258 -1.62639 .151616 _cons | -.893584 -3.8758 .239628 -1.05111 -.893813 .099357 559.721</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1522.60 Log likelihood = -595.3658 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2118056 .0472209 4.49 0.000 .1192545 .3043568 lgdp | .4334084 .0833099 5.20 0.000 .2701239 .5966928 lgdpau | .581719 .6679271 0.87 0.384 -.7273941 1.890832 lgdpdfrati~w | -.0829084 .2844702 -0.29 0.771 -.6404597 .4746429 lpopau | -2.767788 2.304217 -1.20 0.230 -7.28397 1.748394 lpop | .724758 .1009963 7.18 0.000 .5268088 .9227071 lxrate1 | -.0872913 .028634 -3.05 0.002 -.1434128 -.0311698 lremote | -.1910399 .2342325 -0.82 0.415 -.6501272 .2680474 ldist | -2.100939 .4166308 -5.04 0.000 -2.91752 -1.284357 lopen | -.1484158 .0735086 -2.02 0.043 -.29249 -.0043415 english | .8986697 .3142428 2.86 0.004 .2827652 1.514574 white | 22.39045 3.398967 6.59 0.000 15.72859 29.0523 lwhitemg | -2.13102 .2984844 -7.14 0.000 -2.716039 -1.546002 _cons | 34.07892 21.91525 1.56 0.120 -8.87418 77.03201 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00223 lgdp | -.001942 .006941 lgdpau | -.001989 .002886 .446127 lgdpdfrati~w | -.001798 .00146 -.015867 .080923 lpopau | .005742 -.021603 -1.49173 .058512 5.30941 lpop | .000277 -.003954 -.000754 -.000329 .000448 .0102 lxrate1 | .000043 .000481 .000676 .001289 -.006405 -.000586 .00082 lremote | .000571 .004002 -.015062 -.017707 .032292 -.002971 .000397 ldist | .007694 .003139 -.005166 -.000345 -.018779 .003645 .000556 lopen | .000277 -.001113 -.000621 .002141 -.007846 .0029 -.000091 english | -.003115 -.003431 .00215 .003188 -.003124 .007885 .000388 white | .006995 -.021166 .052409 -.000357 -.136769 .037629 .004516 lwhitemg | -.000967 .000897 -.005612 -.001047 .018194 -.003441 -.000416 _cons | -.091278 .13016 13.1918 -.498617 -48.6503 -.066006 .074064</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054865 ldist | .007632 .173581 lopen | .001329 .003191 .005404 english | -.009051 .05846 -.00327 .098749 white | .021846 .000243 .010673 .037611 11.553 lwhitemg | .000732 -.005287 -.000796 -.000658 -.999949 .089093 _cons | -.721179 -1.44738 .083748 -.54502 .512748 -.068823 480.278</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1740.90 Log likelihood = -765.6579 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0686035 .035967 1.91 0.056 -.0018904 .1390975 lgdp | 1.075977 .1033084 10.42 0.000 .8734966 1.278458 lgdpau | .3858196 .7561438 0.51 0.610 -1.096195 1.867834 lgdpdfrati~w | -.1428155 .3064407 -0.47 0.641 -.7434283 .4577974 lpopau | 4.695421 2.620582 1.79 0.073 -.440825 9.831667 lpop | -.5319849 .1470803 -3.62 0.000 -.820257 -.2437128 lxrate1 | -.1390734 .0271226 -5.13 0.000 -.1922326 -.0859141 lremote | -.2127817 .1997174 -1.07 0.287 -.6042207 .1786573 ldist | -1.059271 .7687087 -1.38 0.168 -2.565912 .4473703 lopen | -.023556 .076032 -0.31 0.757 -.172576 .125464 english | .0246626 .3364269 0.07 0.942 -.634722 .6840471 white | 26.8348 2.79959 9.59 0.000 21.3477 32.32189 lwhitemg | -2.495829 .2709482 -9.21 0.000 -3.026878 -1.96478 _cons | -89.273 26.19387 -3.41 0.001 -140.612 -37.93396 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001294 lgdp | -.002175 .010673 lgdpau | -.000014 -.000731 .571754 lgdpdfrati~w | -.002312 .003318 -.010589 .093906 lpopau | -.007508 -.002132 -1.90896 .056744 6.86745 lpop | .001921 -.012793 -.002505 -.002138 .022568 .021633 lxrate1 | -.000018 .000635 .001428 .0012 -.011699 -.001076 .000736 lremote | .001446 .005202 -.02013 -.006316 .0204 -.004138 .000417 ldist | .006221 .017382 -.033278 -.007092 -.018509 .007465 .00163 lopen | .000279 -.000498 -.00248 .004905 -.002506 .000817 -.000224 english | -.001285 .003731 .004255 .004147 -.014242 -.001284 .001407 white | .018566 -.062297 .068087 -.023228 -.486092 .069712 .007736 lwhitemg | -.001661 .004374 -.007515 .001872 .051923 -.005082 -.000754 _cons | .067695 -.19136 17.2193 -.668586 -64.1494 -.397727 .135553</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .039887 ldist | .077179 .590913 lopen | .002051 .00326 .005781 english | .001285 .063739 -.001207 .113183 white | .025167 .020206 -.005923 .191803 7.8377 lwhitemg | -.001663 -.009645 .000809 -.021496 -.747487 .073413 _cons | -.95015 -5.69359 .054926 -.572873 6.05837 -.565941 686.119</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 581.48 Log likelihood = -603.3401 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4222855 .0581391 7.26 0.000 .308335 .536236 lgdp | .1433391 .0905419 1.58 0.113 -.0341198 .3207981 lgdpau | 1.054676 .8043717 1.31 0.190 -.5218637 2.631215 lgdpdfrati~w | -.5605185 .3355624 -1.67 0.095 -1.218209 .0971717 lpopau | -4.594573 2.767635 -1.66 0.097 -10.01904 .8298913 lpop | .4320484 .096287 4.49 0.000 .2433294 .6207674 lxrate1 | -.0826161 .0341734 -2.42 0.016 -.1495948 -.0156375 lremote | .0951663 .2294555 0.41 0.678 -.3545582 .5448907 ldist | -1.249281 .5597692 -2.23 0.026 -2.346408 -.1521532 lopen | .0390512 .0745575 0.52 0.600 -.1070788 .1851812 english | -.2478168 .2756301 -0.90 0.369 -.7880418 .2924082 white | 20.39 2.025967 10.06 0.000 16.41918 24.36082 lwhitemg | -1.880687 .1976264 -9.52 0.000 -2.268028 -1.493347 _cons | 52.27307 26.01926 2.01 0.045 1.276257 103.2699 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00338 lgdp | -.002922 .008198 lgdpau | -.001541 .003577 .647014 lgdpdfrati~w | -.001795 .003024 -.001299 .112602 lpopau | .001571 -.023328 -2.15787 .029583 7.6598 lpop | .00077 -.004688 -.001743 -.001982 .00055 .009271 lxrate1 | .000321 .000363 -.000143 .00097 -.004268 -.000511 .001168 lremote | -.000466 .005165 -.010401 -.016195 -.001265 -.000902 .001447 ldist | .007762 .011966 .004491 -.004954 -.094573 -.003911 .000874 lopen | -.000188 .000225 .001518 -.000944 -.022543 .002414 -.00019 english | -.004324 .007948 .004718 .001347 -.019994 -.000602 -.001359 white | .019695 -.029082 .00888 -.052481 .03155 .008785 -.000629 lwhitemg | -.002319 .001561 -.002688 .002945 .007641 -.000119 -.00025 _cons | -.021222 .035101 18.8282 -.410601 -69.1054 .040087 .048432</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .05265 ldist | .031718 .313342 lopen | .003195 .00604 .005559 english | .009368 .094673 -.00063 .075972 white | .106849 .156134 -.005861 .123434 4.10454 lwhitemg | -.007455 -.026919 .000651 -.014804 -.391984 .039056 _cons | -.561119 -2.06766 .212621 -.932219 -2.78763 .248935 677.002</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1438.56 Log likelihood = -267.813 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0011183 .0231062 -0.05 0.961 -.0464057 .044169 lgdp | .4457468 .0828292 5.38 0.000 .2834046 .608089 lgdpau | -.342732 .5198446 -0.66 0.510 -1.361609 .6761446 lgdpdfrati~w | .0911286 .2333234 0.39 0.696 -.3661768 .5484341 lpopau | 1.359956 1.793152 0.76 0.448 -2.154557 4.874469 lpop | -.2210392 .1168356 -1.89 0.059 -.4500328 .0079543 lxrate1 | -.0425862 .0237795 -1.79 0.073 -.0891932 .0040208 lremote | -.0052482 .1751979 -0.03 0.976 -.3486297 .3381333 ldist | -3.44841 .520911 -6.62 0.000 -4.469377 -2.427443 lopen | .0013466 .0529162 0.03 0.980 -.1023672 .1050604 english | -.1840383 .3165908 -0.58 0.561 -.804545 .4364683 white | 14.94325 2.76683 5.40 0.000 9.520358 20.36613 lwhitemg | -1.043887 .2975052 -3.51 0.000 -1.626986 -.4607871 _cons | 14.13057 17.84937 0.79 0.429 -20.85355 49.1147 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000534 lgdp | -.000686 .006861 lgdpau | -9.0e-07 -.001507 .270238 lgdpdfrati~w | -.00091 .002001 -.007918 .05444 lpopau | -.000954 -.000707 -.902314 .044433 3.21539 lpop | .000221 -.006389 -.000074 -.00087 -.00251 .013651 lxrate1 | -.000026 .000146 .001355 .001216 -.006751 -.000502 .000565 lremote | .000139 .002285 -.017775 -.00483 .051035 -.002457 -.000149 ldist | .002432 .001838 -.008903 -.002735 -.017109 .019906 -.000033 lopen | .000062 -.0002 -.001619 .001115 .000071 .000856 -.000048 english | -.000967 -.001994 .0043 .00187 -.006137 .008057 .000881 white | .004562 -.0408 .060989 -.005178 -.361924 .065506 .003376 lwhitemg | -.000483 .001918 -.00745 -.000111 .043561 -.005245 -.000143 _cons | .001873 -.036237 8.15494 -.549254 -29.9256 -.195276 .078936</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .030694 ldist | .013872 .271348 lopen | .000159 .000209 .0028 english | -.001535 .066747 -.000658 .10023 white | -.006 .16421 -.00248 .124596 7.65535 lwhitemg | .003363 -.020219 .000344 -.011882 -.812775 .088509 _cons | -.789677 -2.57725 .029263 -.73314 2.72464 -.321238 318.6</p><p>. closed on: 26 Jul 2006, 07:50:30 ------</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    80 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us