Department of Statistics, Yale University s1

Department of Statistics, Yale University s1

<p>Department of Statistics, Yale University STAT242b Theory of Statistics</p><p>Suggested Solutions to Homework 4</p><p>Compiled by Marco Pistagnesi</p><p>Problem 9.3c For this problem, I will use the delta method, which is faster and easier. 2 X1, , X n iid ~N (m , s ) . Following the book notation (and results), we have;  2 0  1  1  1  2  g( , ) 1.64 J n  I n   ; we then notice          g    ; n  0   1 . 6 4   2 </p><p>ˆ 2 0  1  1  1  ˆ 2  ˆ ˆ T ˆ ˆ  2  ˆ 2 2 s e (  )  ( g ) J n ( g )  1 1 . 6 4  ˆ      ( 1 . 6 4 )  n  0  1 . 6 4  n  2   2  2 where ö2  n1 X  X  i  I do not report the numeric calculations.</p><p>Problem 9.4 ˆ We take Y= max{ X1 , , X n} and we know that Y = qMLE . Consider: P{Y-q > e} = P{ q - Y > e} = P { Y < q - e} (1) We consider for any fixed c that n P{Y< c} = P{max{ X1 , , Xn} < c} = P{ X 1 < c}创 ⋯ P { X n < c} = ( c q ) (2) Thus we use (2) to evaluate (1): n P {Y <q - e} =(( q - e) q ) We take the limit as n goes large and thus show that the MLE is consistent: n limY -q < e = lim( q - e) q = 0 . nP { } n  ( ) Problem 9.6a)   P N ,1  0  P N 0,1    1      . We know             the MLE is q = X . Thus by the equivariance of the MLE we have ö   ö   X .     b) given that ö   ö , we can apply delta method to evaluate its st. error:   ö  ö ö ö se(ö)   se()  () se() , where (.) is the standard normal density. Since</p><p>ˆ 1 1 ˆ 1 X 1 , K , X n : N ( 0 , 1 )  I 1 (  )  1 , hence s e (  )    s e (  )   ( X ) . n I 1 (  ) n n Thus the approximate 95% confidence interval is (ö  1.96 * se(ö)) . c) By the weak law of large numbers,  is consistence. d) Because Y 1 , K , Y n : B e r ( p ) , p    (  ) , we can apply the CLT to state :   1   ö ö %   ()1 ()   Y : approxN  ,  , hence: sµe ö  .  n    n s e ( ˆ )   ( X ) 1 In part b) we computed n . (ö) Hence AREö,% . (Plot omitted) (ö) 1 (ö)   e) From before, we have ö   X . Hence, by the WLLN and its property oif   preservation under continuous transformations, we have:</p><p>. X  p   ( X )  ˆ  p (  )</p><p>But if the data are not normal, (  )  p ( X i  0 )   .</p><p>Hence, ˆ  p  .</p><p>Problem 5 a) The MLE of p for a binomial distribution is pˆ MLE = X n .From that we get: ö  pö  pö  X n  X n . MLE 1 MLE 2 MLE 1 1 2 2 b) We write the likelihood function: n- x n - x L p, p f x , p f x , p px1 1 p1 1 p x 2 1 p 2 2 ( 1 2) =( 1( 1 1))( 1( 1 1)) =( 1( - 1) )( 2( - 2 ) ) We take the log-likelihood function:</p><p> lnL ( p1 , p 2) = x 1 ln p 1 +( n 1 - x 1) ln( 1 - p 1) + x 2 ln p 2 +( n 2 - x 2) ln( 1 - p 2 ) . From this we can compute:</p><p> xi ni  xi lnL p1, p2   , i=1,2 p p 1 p i i i 2 2 We now take the second derivatives. Note: mixed derivatives 抖 p1 p 2 and 抖 p2 p 1 are zero. We have: 2  xi ni  xi 2 lnL p1, p2   2  2 , for i=1,2 pi pi 1 p  i  next step: 骣抖2lnLn p n- n p n 骣 2 ln L n -E琪 =1 1 + 1 1 1 = 1 and also - E 琪 = 2 p2 p 22 p1 p p 2 p 1 p 桫�1 1(1- p1 ) 1( � 1) 桫 2 2( 2 ) Thus the Fisher information matrix is:</p><p>轾n1 p 1(1- p 1 ) 0 I( p1, p 2 ) = 犏 臌 0n2 p 2( 1- p 2 ) c) We ultimately want to use the formula: T ˆ se(yˆ ) = (蜒g) Jn ( g)</p><p>To find the standard error we notice that y =g( p1, p 2) = p 1 - p 2 . We take the gradient:</p><p>轾抖g p 轾�( p p) p 轾1 T �g=1 =1 2 1 垩 ( = g) - [ 1 1] 犏抖 犏 犏 臌g p2 臌�( p1 p 2) p 2 臌-1</p><p>We also know that Jn is the inverse of the fisher information matrix (7) 2-1 2 轾n1 p 1(1- p 1) 0 轾 p 1( 1 - p 1) n 1 0 Jn =犏2 = 犏 2 臌0n2 p 2( 1- p 2) 臌 0 p 2( 1 - p 2) n 2 ˆ Taking Jn instead of Jn means we insert the estimators of the parameters instead of the real values. Thus, 轾pˆ(1- p ˆ ) n 0 轾1 se(yˆ ) =[ 1 - 1] 1 1 1 = 犏 ˆ ˆ 犏 臌 0p2( 1- p 2) n 2 臌-1 pˆ(1-p ˆ) p ˆ( 1 - p ˆ ) se(yˆ ) =1 1 + 2 2 n1 n 2 d) from before we have: ö  X n  X n  160  148 200 = 1.54 1 1 2 2  </p><p> pˆ1(1-p ˆ 1) p ˆ 2( 1 - pˆ 2 ) 200 160骣 160 148 骣 148 se(yˆ ) = + =琪 1 - + 琪 1 - = 0.04197 n1 n 2 200 200桫 200 200 桫 200 It is thus simple to find a 90-percent confidence interval: 1.54  1.25 0.04197  1.487,1.593 .    </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us