Objective Response Bank

Objective Response Bank

<p> Year 12 General Mathematics</p><p>Objective Response Bank Year 11 General Mathematics Worked solutions</p><p>Earning money Main Menu Solution Criteria Let x be Abbey sales in a month 1875+ 0.04�x 1953 1 1 Mark: C 78 x = = $1950 0.04 30� $20创 (2 $20 = x ) 840 600+ 40x = 840 2 1 Mark: C 40x = 240 x = 6 Earnings = 2创 8 19.20 + 6 创 1.5 19.20 3 1 Mark: C = $480 A: $1442.22 per week = $1442.22� 52 $74 995.44 p.a. 4 B: $2884.68 per fortnight = $2884.68� 26 $75 001.68 p.a. 1 Mark: B C: $6247.50 per month = $6247.50� 12 $74 970 p.a. Pay= 8� 22.60 创 3 1.5 22.60 5 1 Mark: C = $282.50 Normal pay= 38 $26.00 Holiday loading= 0.175创 $988 4 6 1 Mark: B = $988 = $691.60 Weekly earnings= 0.08� $8620 $425 7 1 Mark: D = $1114.60 Royality payment= 0.15 $35850 8 1 Mark: A = $5377.50 Net wage= $835.12 - ($103.84 + $33.40 + $5.00) 9 1 Mark: A = $692.88 Banking costs= 9� $12 � 20 $0.50 8 $0.60 10 1 Mark: D = $122.80</p><p>1 Year 12 General Mathematics</p><p>Investing money Main Menu Solution Criteria Let x be original price of the broken window 1 110% of x = 165 1 1 Mark: C 165 GST is $15. x = = $150 1.10 0.08 1 A =1600� (1 )12 I =2029.19 - 1600 2 4 1 Mark: B = $429.19 = $2029.19</p><p>1 I= Pr n 3 = $250创 0.055 2 1 Mark: B = $27.50 Doubling the investment requires interest of $4000 I= Pr n 1 $4000= $4000创 0.10 n 4 1 Mark: C $4000 n = $4000 0.10 = 10 1 1 The value of I from the graph when n = 2 is $50 5 2 1 Mark: B</p><p> n 1 A= P(1 + r ) 6 = $70000� (1 0.07)5 1 Mark: D = $98 178.62 $98 179 I= Pr n 1 $600= $8000创r 3 7 $600 1 Mark: A r = $8000 3 =0.025 = 2.5% A= P(1 + r )n 1 0.09 8 = $6000� (1 )36 1 Mark: B 12 = $7851.872225 $7852 1 Total cost= 800� $10.20 $38 9 = $8198 1 Mark: C</p><p> n 2 A= P(1 + r ) 0 = $460000� (1 0.07)4 1 Mark: D = $602 966.1646 $602 966</p><p>2 Year 12 General Mathematics</p><p>3 Year 12 General Mathematics</p><p>Taxation Main Menu Solution Criteria 2 Tax deduction= $484 + $720 + $860 + $1455 1 = $3519 1 Mark: D</p><p>2 Taxable income= $43720 - $4690 2 = $39 030 1 Mark: A</p><p>2 Medicare levy= 0.015 $53684 3 = $805.26 1 Mark: B</p><p>2 Tax= $3600 + ($69410 - $30000) 0.30 4 = $15 423 1 Mark: B</p><p>2 Taxable income= $56140 - $8460 5 = $47 680 1 Mark: A</p><p>2 Tax= $3600 + ($45680 - $30000) 0.30 6 = $8 304 1 Mark: C</p><p>1.5% of Taxable income= $989.70 2 0.015� Taxable income $989.70 7 $989.70 1 Mark: D Taxable income = 0.015 = $65 980 2 GST= 10% of $360 8 = 0.10� $360 $36 1 Mark: C</p><p>110% of Original price= $495 2 1.10� Original price $495 GST= $495 - $450 9 1 Mark: B $495 = $45 Original price= = $450 1.1 121% of Original price= 115 3 1.21� Original price 115 0 115 1 Mark: C Original price = 1.21 = 95.04 Euros</p><p>4 Year 12 General Mathematics</p><p>Statistics and society, data collection and sampling Main Menu Solution Criteria 3 Median = 20.5, Mode = 22, Mean 19.6 1 Statement I is true and statement II is false 1 Mark: D</p><p>3 Type of motor vehicle is a name - categorical 2 1 Mark: C</p><p>3 Age is an exact number – discrete data. 3 1 Mark: C</p><p>3 Number of people = 0.30� 250 75 4 1 Mark: D</p><p>3 Bottles of milk are divided into a structured sample size. 5 Systematic 1 Mark: D</p><p>3 Yes or No is categorical data 6 1 Mark: A</p><p>3 Ten shoppers drawn from a box. 7 Each shopper has an equal chance of being selected 1 Mark: C</p><p>3 Sample is divided into categories (boys and girls) 8 Stratified sample 1 Mark: C</p><p>A: The age of a student – Discrete 3 B: The length of a playground. – Continuous 9 1 Mark: C C: The colour of a wall – Categorical D: The capacity of a swimming pool - Continuous 4 Primary source 0 1 Mark: A</p><p>5 Year 12 General Mathematics</p><p>Displaying single data sets Main Menu Solution Criteria 4 Class centre is 87 1 1 Mark: C</p><p>Class Frequency Cumulative Frequency 80-84 2 2 4 85-89 4 6 2 90-94 3 9 1 Mark: C 95-99 6 15</p><p>4 Total number of marks is 200 3 1 Mark: D</p><p>Mark Frequency Cumulative Frequency 10 50 50 4 20 25 75 4 30 25 100 1 Mark: A 40 0 100 50 100 200</p><p>10 4 Number of people= 300 5 100 1 Mark: B = 30 20 4 Angle size= 360° 6 100 1 Mark: D = 72° 4 Range= 10 - 3 7 = 7 1 Mark: D</p><p>1 4 Angle size= 360° 8 10 1 Mark: D = 36°</p><p>4 Range= Upper extreme - Lower extreme 9 =39 - 17 1 Mark: C = 22 5 12, 14, 15, 15, 16, 18, 20, 22, 28, 52 0 Interquartile range= 22 - 15 1 Mark: A = 7</p><p>6 Year 12 General Mathematics</p><p>Summary statistics Main Menu Solution Criteria 5 Mode is the score with the highest frequency. 1 Mode is 5 1 Mark: C</p><p>5 $3.80, $4.40, $4.50, $4.80, $5.00, $5.30 2 $4.50+ $4.80 1 Mark: C Median= = $4.65 2 5 There are 24 scores. Median is the average of the 12th and 13th score. 3 Median is 2. 1 Mark: B</p><p>Scor Frequenc fx fx e y Mean = 1 8 8 5 f 2 5 10 4 60 1 Mark: C = 3 5 15 24 4 3 12 = 2.5 5 3 15 24 60 5 Population standard deviation is 4.525966748… or 4.5 5 1 Mark: A</p><p>5 Mode is the score with the highest frequency. 6 Mode is 7 1 Mark: B</p><p>30+ 35 5 Class centre = 7 2 1 Mark: B = 32.5 Sum of scores Mean = Number of scores 5 2+ 5 + 5 + 7 + x 8 4 = 1 Mark: A 5 19+x = 20 x = 1 5 Mode is the score with the highest frequency. 9 Mode is 5 1 Mark: C</p><p>6 Population standard deviation is 1.581897595… or 1.58 0 1 Mark: C</p><p>7 Year 12 General Mathematics</p><p>Units of measurement Main Menu Solution Criteria 6 0.00206= 2.06 10-3 . (3 significant figures) 1 1 Mark: B</p><p>6 Total parts = 2 + 3 = 5 2 3 1 Mark: C White roses = of 30 = 18 5 6 425 000= 4.3� 105 430 000 . (2 significant figures) 3 1 Mark: D</p><p>6 New price = $60创 1.20 0.80 4 = $57.60 1 Mark: B</p><p>6 Smallest numbers have the lowest powers of ten. 5 4.8 10-2 , 5.6 10-2 , 4.0 10-1 1 Mark: A</p><p>6 Total parts = 3 + 5 + 2 = 10 6 3 1 Mark: C Blue paint = of 4000 mL = 1200 mL 10</p><p>6 Amount of salt in the mixture=( 20 + 10) +( 40 + 40 + 20) = 130 7 130g 32.5g 1 Mark: B Concentration = = 400mL 100mL 2 parts= 2.5 L 2.5 6 1 part = 2 8 1 Mark: D 2.5 5 parts= 5 2 = 6.25 L 8 L fuel= 25 km 25 6 4 L fuel= km 2 9 1 Mark: D 25 20 L fuel= 5 km 2 = 62.5 km distance Speed = 7 time 0 d 1 Mark: D 750 = 5 d = 3750 km</p><p>8 Year 12 General Mathematics</p><p>Applications of area and volume Main Menu Solution Criteria 7 Triangular pyramid. 1 4 vertices, 4 faces and 6 edges. 1 Mark: C</p><p>7 AB =752 + 30 2 2 1 Mark: D = 80.77747211... 81</p><p>1 V= Ah 7 3 3 1 Mark: C 1 =创5 5 � 6 50 m3 3 1 7 A= bh 2 4 1 Mark: B 1 =创5 8 = 20 m2 2 7 SA =(2创 2.5 3) + (2 创 2.5 2.8) + (2 创 3 2.8) 5 = 45.8 m2 1 Mark: D</p><p>7 V = 63 Capacity= 216 1000 L 6 1 Mark: B = 216 m3 = 216 kL</p><p>1 A= bh x2=3 2 + 4 2 2 7 Slant height: =9 + 16 1 2 7 =创8 3 = 12 m x = 5 1 Mark: A 2 SA =(2� 12) � (12 创 8) (2 5 12) = 240 m2</p><p>7 V= Ah 8 = 12 12 1 Mark: A = 144 m3 1 V= Ah 3 7 1 9 3.5= 创A 1.2 1 Mark: D 3 3 3.5 A = = 8.75 m2 1.2</p><p>9 Year 12 General Mathematics</p><p>4 V= p r3 8 3 0 4 1 Mark: D = 创p 453 3 = 381 703.5074... 380 000 m3</p><p>10 Year 12 General Mathematics</p><p>Similarity of two-dimensional figures Main Menu Solution Criteria 8 1.5 1 Scale factor = = 1 7.5 5 1 Mark: A</p><p>8 Similar triangles are the same shape. 2 1 Mark: A</p><p>8 6 1 Scale factor = = 3 12 2 1 Mark: D</p><p>8 4 1 Mark: C</p><p>Rectangle B is similar to rectangle C 6 1 (Scale factor = = ) 12 2 12 20 = 8 c 15 5 1 Mark: B 20c = 180 c = 9 x 24 = 8 3 1.5 6 1 Mark: D 1.5x = 72 x = 48</p><p>8 Corresponding sides are in the same proportion 7 XY YZ 1 Mark: A = PQ QR 1 0.95 = 8 h 4.75 8 1 Mark: C 0.95h = 4.75 h = 5 m</p><p>8 Actual distance= 50 1500 cm 9 = 75000 cm 1 Mark: B = 750 m</p><p>9 Master suite= 2.5 150 0 = 375 cm 1 Mark: B =3.75 m</p><p>11 Year 12 General Mathematics</p><p>12 Year 12 General Mathematics</p><p>Right-angled triangles Main Menu Solution Criteria h 9 tan 34° = 1 42 1 Mark: A h = 42 tan34° x2=12 2 + 16 2 9 =144 + 256 2 1 Mark: B = 400 x = 20 cm 4 9 cosq = 3 7 1 Mark: B</p><p>9 9 cosq = 4 15 1 Mark: A</p><p> x 9 sin58° = 5 18 1 Mark: B x = 18 sin58° 45 cos34° = 9 x 6 1 Mark: C 45 x = cos34° 7 sin39° = 9 x 7 7 1 Mark: C x = sin39° =11.1231101 11.12</p><p>-1 9 B = tan 0.5 8 = 26.56505118.... 1 Mark: B = 26° 34' 5 cosq = 9 6.5 9 1 Mark: C q = 39.71513723... 40° 465 tan 47° = 1 x 0 465 1 Mark: C 0 x = tan 47° = 433.6195151 433.6 m</p><p>13 Year 12 General Mathematics</p><p>14 Year 12 General Mathematics</p><p>The language of chance Main Menu Solution Criteria 1 1 0 Probability of is unlikely. 5 1 Mark: B 1</p><p>1 There are 7 days in the week. 0 Number of selections = 7 1 Mark: A 2</p><p>1 Probability of 0.75 is likely 0 1 Mark: C 3</p><p>1 Number of elements = 6 5 0 = 30 1 Mark: C 4</p><p>1 Number of elements = 7 7 0 = 49 1 Mark: D 5</p><p>1 Possible outcomes= 2创 2 2 2 0 = 16 1 Mark: C 6</p><p>1 Equally likely that a raffle ticket will win. 0 1 Mark: B 7</p><p>1 There are 6 months. 0 Number of selections = 6 1 Mark: A 8</p><p>1 Arrangements = 2创 3 2 = 12 0 1 Mark: D 9</p><p>1 Arrangements = 6创 5 4 创 3 2 1 1 = 720 1 Mark: D 0</p><p>15 Year 12 General Mathematics</p><p>Relative frequency and probability Main Menu Solution Criteria 5 1 Relative frequency = 1 40 1 Mark: A 1 1 = 8 13 1 P(diamond) = 1 52 1 Mark: C 2 1 = 4 500 1 Relative frequency = 1 5000 1 Mark: A 3 1 = = 10% 10 1 Odd numbers end in 5, 7 or 9 1 3 1 Mark: C 4 P(odd)= = 0.75 4</p><p>1 3 1 P(White) = 13 1 Mark: B 5</p><p>1 Even number or divisible by 5 is {2, 4, 5} 1 3 1 Mark: C 6 P(E)= = 60% 5</p><p>1 1 1 P(20) = 40 1 Mark: A 7 = 0.025</p><p>1 P(White)= 1 - 0.3 - 0.6 1 = 0.1 1 Mark: A 8</p><p>1 Not a consonant is {i, o} 1 2 1 1 Mark: B 9 P(E) = = 6 3</p><p>1 P( E )= 1 - P ( E ) 2 =1 - 0.32 1 Mark: C 0 = 0.68</p><p>16 Year 12 General Mathematics</p><p>Basic algebraic skills Main Menu Solution Criteria 1 2x- x2 = 2� - 3 - ( 3) 2 2 = -6 - 9 = - 15 1 Mark: A 1</p><p> a= 2 xy2 1 2 32= 2创x 2 2 32 1 Mark: B 2 x = 2 22 = 4 1 Profit = $(x - 20) - $( x + 10) 2 =x -20 - x - 10 1 Mark: B 3 = -$30</p><p>1 4(x2+ 7 x ) - 3 x ( x + 2) = 4 x 2 + 28 x - 3 x 2 - 6 x 2 2 1 Mark: D 4 =x + 22 x</p><p>1 Yellow balls purchased is 20 × 5 or 100. 2 White balls purchased is 400 – 100 or 300. 1 Mark: D 5 300 Boxes of white balls = x 1 9x4- 5 x 4 = 4 x 4 2 1 Mark: C 6</p><p>1 6- 4(2x - 1) = 6 - 8 x + 4 2 =10 - 8x 1 Mark: D 7</p><p> k m = 1 5 2 24 1 Mark: B 8 = 5 = 2.19089023... 2.2 1 2x - 7 = 21 2 2x = 28 1 Mark: C 9 x =14</p><p>17 Year 12 General Mathematics</p><p>4x- 5 = x + 13 1 3 4x= x + 18 1 Mark: C 0 3x = 18 x = 6</p><p>18 Year 12 General Mathematics</p><p>Modelling linear relationships Main Menu Solution Criteria 1 2 3 Gradient is and y-intercept is 2 3 1 Mark: A 1</p><p> d= mt 1 3 60= m 3 1 Mark: C 2 60 m = = 20 km/h 3 1 Gradient is 3 and y-intercept is -3 . 3 Equation y= mx + b or y=3 x - 3 1 Mark: A 3</p><p>1 v= -40 t + 150 3 = -40� 2 150 1 Mark: A 4 = 70</p><p>1 y-intercept is +1 3 1 Mark: C 5</p><p>1 (0,1) satisfies both equations. 3 y= x +1 y= - x +1 1 Mark: B 6 1= 0 + 1 1= - 0 + 1</p><p>1 240 3 Gradient= = 30 , y-intercept is 0 8 1 Mark: C 7 Equation of the line is c= 30 n</p><p>1 30 cents is $0.30 3 Formula is c=0.30 x + 80 1 Mark: B 8</p><p>1 3 3 Gradient= = + 0.5 6 1 Mark: C 9</p><p>1 Crosses the x-axis when y = 0 1 Mark: B 4 y= -3 x + 9 0 0= - 3x + 9 3x = 9 x = 3</p><p>19 Year 12 General Mathematics</p><p>Point is (3, 0)</p><p>20</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us