PROBLEM 51 (Page 113): How Many Tangent Lines to the Curve Pass Through the Point

PROBLEM 51 (Page 113): How Many Tangent Lines to the Curve Pass Through the Point

<p> x PROBLEM 51 (Page 113): How many tangent lines to the curve y  pass x  1 through the point (1, 2) ? At which points do these tangent lines touch the curve?</p><p> x First, check to see if the point (1, 2) is on the curve y  : x  1</p><p>1 x y(1)   2 . Thus, the point (1, 2) is not on the curve y  . 2 x  1</p><p>In general, we have the following picture:</p><p>NOTE: The point ( x, f ( x ) ) is the tangent point.</p><p>Since the two points of ( x, f ( x ) ) and ( a , b ) are two points on the tangent line, we can find the slope of the tangent line using algebra:</p><p> f ( x )  b m  tan x  a</p><p>Of course, we can find the slope of the tangent line to the graph of y  f ( x ) at the point ( x, f ( x ) ) using calculus: m tan  f ( x ) f ( x )  b x Thus, we have that f ( x )  . For this problem, f ( x )  . x  a x  1</p><p>1(x  1)  x (1) x  1  x 1 Thus, f ( x )  = = and ( x  1) 2 ( x  1) 2 ( x  1) 2</p><p> x x f ( x )  b  2  2 x  2( x  1) = x  1 = x  1 x  1 = = x  a  ( x  1) ( x  1) x  1 x  1 x  1</p><p> x  2 x  2  x  2  ( x  2) = = ( x  1)( x  1) ( x  1)( x  1) ( x  1)( x  1)</p><p> f ( x )  b 1  ( x  2) Thus, f ( x )     x  a ( x  1) 2 ( x  1)( x  1)</p><p>( x  1) ( x  1)   ( x  2)( x  1) 2  </p><p>( x  1)( x  1)  ( x  2)( x  1) 2  0 </p><p>( x  1)[ x  1  ( x  2)( x  1)]  0 </p><p>( x  1)( x  1  x 2  3x  2)  0  ( x  1)( x 2  4x  1)  0  x  1  0 or x 2  4x  1  0</p><p> x  1  0  x   1. Since the domain of the function f is all real numbers except  1 , then we do not have a tangent point at  1 .</p><p> b  b 2  4 a c  4  16  4(1)(1) x 2  4x  1  0  x    2 a 2  4  16  4  4  12  4  2 3 = = =  2  3 2 2 2 x These are the x-coordinates of the tangent points to the graph of y  of the x  1 tangent lines that pass through the point (1, 2) . Thus, there are two tangent lines that pass through the point (1, 2) .  2  3  2  3 If x   2  3 , then f (  2  3 )  = =  2  3  1 3  1</p><p> 2  3 3  1  2 3  2  3  3 1  3  = = . Thus, one 3  1 3  1 3  1 2  1  3    2  3 ,  tangent point is   .  2   2  3  2  3 If x   2  3 , then f (  2  3 )  = =  2  3  1  1  3</p><p>2  3 2  3 1  3 2  2 3  3  3  1  3 =  = = = 1  3 1  3 1  3 1  3  2</p><p>1  3  1  3    2  3 ,  . Thus, the other tangent point is   . 2  2 </p><p>Maple commands to solve this problem and draw the graph.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us