Girela, Daniel Integral Means and BMOA-Norms of Logarithms of Univalent Functions

Girela, Daniel Integral Means and BMOA-Norms of Logarithms of Univalent Functions

<p>1. J. A. Peláez, Contribuciones a la teoría de ciertos espacios de funciones analíticas, Thesis. Universidad de Málaga. (2004) Citado en: 1. D. Girela, J. A. Peláez and D. Vukotic. Integrability of the derivative of a Blaschke product. Proc. Edinburgh Math. Soc. 50, 3 (2007), 673-687. 2. Daniel Blasi Babot, Interpolating sequences in certain function spaces, Thesis, Universidad Autónoma de Barcelona, (2008) 3. F. Pérez González and J. Rättyä. Univalent functions in Hardy, Bergman, Bloch and related spaces. J. Anal. Math, Vol. 105, 125-148, (2008). 2. D. Girela and J. A. Peláez. On the derivative of infinite Blaschke products. Illinois J. Math. 48 (2004), no. 1, 121-130. Citado en:</p><p>1. J. A. Peláez. Blaschke products with zeros in a Stolz angle. Technical Report n. 8, Department of Mathematics, Aristotle University of Thessaloniki (2003), 13 pp. 2. J. A. Peláez. Contribuciones a la teoría de ciertos espacios de funciones analíticas. Tesis Doctoral, Universidad de Málaga (2004). 3. D. Girela. A class of conformal mappings with applications to function spaces. Recent advances in operator-related function theory, 113-121, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006. 4. D. Girela, J. A. Peláez and D. Vukotic. Integrability of the derivative of a Blaschke product. Proc. Edinburgh Math. Soc. 50, 3 (2007), 673-687. 5. A. Aleman and D. Vukotic, On Blaschke products with derivatives in Bergman spaces with normal weights, Journal of Math. Anal and Appl., (2010), n. 2. 492-505.</p><p>3. D. Girela and J. A. Peláez. Integral means of analytic functions. Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 459-469. Citado en:</p><p>1. D. Girela and J. A. Peláez. Carleson measures for spaces of Dirichlet type. Integral Equations Operator Theory 55 (2006), no. 3, 415-427. 2. D. Girela, M. Pavlovic and J. A. Peláez. Spaces of analytic functions of Hardy-Bloch type. J. Anal. Math. 100 (2006), 53--81. 3. S. Stevic. Area type inequalities and integral means of harmonic functions on the unit ball. J. Math. Soc. Japan 59 (2007), no. 2, 583--601. 4. K. L. Avetisyan. Hardy-Bloch type spaces and lacunary series on the polydisk. Glasg. Math. J. 49 (2007), no. 2, 345--356. 5. K. L. Avetisyan. Lacunary series and sharp estimates in weighted spaces of holomorphic functions, J. of Contemporary Mathematical Analysis, (2007), 47 no. 2, 69--73. 6. S. Stevic. On Bloch-type functions with Hadamard gaps. Abstract and Applied Analysis 2007, Art. ID 39176, 8pp. 7. H. T. Kaptanoglu and E. Üreyen. Analytic properties of Besov spaces via Bergman projections. To appear in Contemporary Mathematics (Proceedings of the International Conference on Complex Analysis and Dynamical Systems III, a conference in honor of D. Aharonov, L. Aizenberg, S. Krushkal and U. Srebo… ) 8. Songxiao Li and S. Stevic. Weighted-Hardy functions with Hadamard gaps on the unit ball. Applied Mathematics and Computation 212 (2009), n. 1, 229-233.. 9. K. L. Avetisyan. Weighted spaces of harmonic and holomorphic functions. Ph. D. Thesis, University of Yerevan. 2009 10.K. L. Avetisyan. Lacunary series in mixed norm spaces in the disc. J. Contemp. Math. Anal. 45 (2010), n. 5. 258-265.</p><p>4. A. Baernstein, D. Girela and J. A. Peláez. Univalent functions, Hardy spaces and spaces of Dirichlet type. Illinois J. Math. 48 (2004), no. 3, 837--859. Citado en:</p><p>1. J. A. Peláez. Contribuciones a la teoría de ciertos espacios de funciones analíticas. Tesis Doctoral, Universidad de Málaga (2004). 2. D. Girela and J. A. Peláez. Integral means of analytic functions. Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 459--469. 3. D. Girela and J. A. Peláez. Non-stable classes of analytic functions. Int. J. Pure Appl. Math. 21 (2005), no. 4, 553--563. 4. D. Girela and J. A. Peláez. Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type. J. Aust. Math. Soc. 80 (2006), no. 3, 397--418. 5. D. Girela, M. Pavlovic and J. A. Peláez. Spaces of analytic functions of Hardy-Bloch type. J. Anal. Math. 100 (2006), 53--81. 6. D. Girela and J. A. Peláez. Boundary behaviour of analytic functions in spaces of Dirichlet type. J. Inequal. Appl. 2006, Art. ID 92795, 12 pp. 7. H. T. Kaptanoglu. Carleson measures for Besov spaces on the ball with applications. J. Functional Analysis 250, no. 2, (2007), 483-520. 8. D. Girela. Conformal mappings and spaces of analytic functions. Function Spaces and Classes. Joensuu 2006. 9-31. Univ. Joensuu Dept. Math. Rep. Ser., 12, Univ. Joensuu, Joensuu, 2007. 9. H. T. Kaptanoglu and E. Üreyen. Analytic properties of Besov spaces via Bergman projections. To appear in Contemporary Mathematics (Proceedings of the International Conference on Complex Analysis and Dynamical Systems III, a conference in honor of D. Aharonov, L. Aizenberg, S. Krushkal and U. Srebo… ) 10.M. Lengfield. A nested embedding theorem for Hardy-Lorentz spaces with applications to coefficients multiplier problems. Rocky Mountain J. Math Vol. 38, 1215-1251, (2008). 11.F. Pérez González and J. Rättyä. Univalent functions in Hardy, Bergman, Bloch and related spaces. J. Anal. Math, Vol. 105, 125-148, (2008). 12.Y. C. Kim and T. Sugawa. Uniformly locally univalent functions and Hardy spaces. J. Math. Anal. Appl. Vol. 353, n. 1, p. 61-67, (2009). 13.C. González y J. A. Peláez, Univalent functiones in Hardy spaces in terms of the growth of arc-length, Journal of Geometric Analysis, Vol. 19, n. 4., 755- 771, 2009. 14.J. J. Donaire, D. Girela and D. Vukotic. On the growth and range of functions in Möbius invariant spaces. J. d´Analyse Math, 112 (2010), 237-260 15. M. Pavlovic and J. A. Peláez. Remarks on the area theorem in the theory of univalent functions. Proc. Amer. Math. Soc. Vol 139, n. 4, 909- 916, 2011.</p><p>5. D. Girela and J. A. Peláez. Non-stable classes of analytic functions. Int. J. Pure Appl. Math. 21 (2005), no. 4, 553--563. Citado en:</p><p>1. D. Girela and J. A. Peláez. Boundary behaviour of analytic functions in spaces of Dirichlet type. J. Inequal. Appl. 2006, Art. ID 92795, 12 pp.</p><p>6. D. Girela, M. Márquez and J. A. Peláez. On the zeros of functions in Bergman spaces and in some other related classes of functions. Journal of Mathematical Analysis and Applications, (2005), Vol. 309, p 534-543. Citado en:</p><p>1. Jordi Pau and J. A. Peláez, On the zeros of functions in Dirichlet-type spaces, aceptado para su publicación en Transactions of the American Mathematical Society</p><p>7. D. Girela, C. González and J. A. Peláez. Toeplitz operators and division by inner functions. Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, 85--103, Univ. Sevilla Secr. Publ., Seville, 2006. Citado en:</p><p>1. D. Girela. A class of conformal mappings with applications to function spaces. Recent advances in operator-related function theory, 113-121, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006.</p><p>8. D. Girela, C. González and J. A. Peláez. Multiplication and division by inner functions in the space of Bloch functions. Proc. Amer. Math. Soc. 134 (2006), no. 5, 1309—1314. Citado en: 1. D. Girela. A class of conformal mappings with applications to function spaces. Recent advances in operator-related function theory, 113-121, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006. 2. D. Girela, C. González and J. A. Peláez. Toeplitz operators and division by inner functions. Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, 85--103, Univ. Sevilla Secr. Publ., Seville, 2006. 3. D. Girela and D. Suárez, On Blaschke products, Bloch functions and normal functions. Rev. Mat. Complutense. Vol 24, n. 1, 2011, 49-57.</p><p>9. D. Girela and J. A. Peláez. Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type. J. Aust. Math. Soc. 80 (2006), no. 3, 397--418. Citado en:</p><p>1. D. Girela and J. A. Peláez. Integral means of analytic functions. Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 459—469. 2. A. Baernstein, D. Girela and J. A. Peláez. Univalent functions, Hardy spaces and spaces of Dirichlet type. Illinois J. Math. 48 (2004), no. 3, 837--859. 3. D. Girela and J. A. Peláez. Carleson measures for spaces of Dirichlet type. Integral Equations and Operator Theory 55 (2006), no. 3, 415-427. 4. D. Girela and J. A. Peláez. Non-stable classes of analytic functions. Int. J. Pure Appl. Math. 21 (2005), no. 4, 553--563. 5. D. Girela, M. Pavlovic and J. A. Peláez. Spaces of analytic functions of Hardy-Bloch type. J. Anal. Math. 100 (2006), 53—81. 6. D. Girela and J. A. Peláez. Boundary behaviour of analytic functions in spaces of Dirichlet type. J. Inequal. Appl. 2006, Art. ID 92795, 12 pp. 7. K. L. Avetisyan. Hardy-Bloch type spaces and lacunary series on the polydisk. Glasgow Math. J. 49 (2007), no. 2, 345--356. 8. E. S. Doubtsov. Boundary behaviour of functions in Bergman-Sobolev spaces. Steklov Institute of Mathematics at St. Petersburg, preprint 17/2008. 9. D. Girela. Conformal mappings and spaces of analytic functions. Function Spaces and Classes. Joensuu 2006. 9-31. Univ. Joensuu Dept. Math. Rep. Ser., 12, Univ. Joensuu, Joensuu, 2007. 10.K. L. Avetisyan. Weighted spaces of harmonic and holomorphic functions. Ph. D. Thesis, University of Yerevan. 2009. 11.K. L. Avetisyan. Lacunary series in mixed norm spaces in the disc. J. Contemp. Math. Anal. 45 (2010), n. 5. 258-265. 12.P. Galanopoulos, D. Girela and J. A. Peláez. Multipliers and integration operators on Dirichlet spces. Trans. Amer. Math. Soc. Vol. 363, 2011, 1855-1886.</p><p>10.D. Girela and J. A. Peláez. Carleson measures for spaces of Dirichlet type. Integral Equations and Operator Theory 55 (2006), no. 3, 415-427. Citado en:</p><p>1. D. Girela and J. A. Peláez. Carleson measures, multipliers and integration operators for spaces of Dirichlet type. J. Funct. Anal. 241 (2006), no. 1, 334--358. 2. D. Girela, M. Pavlovic and J. A. Peláez. Spaces of analytic functions of Hardy-Bloch type. J. Anal. Math. 100 (2006), 53--81. 3. D. Girela and J. A. Peláez. Boundary behaviour of analytic functions in spaces of Dirichlet type. J. Inequal. Appl. 2006, Art. ID 92795, 12 pp. 4. J. Rättyä. Linear differential equations with solutions in Hardy spaces. Complex Variables and Elliptic Functions 52 (2007), no. 9, 785-795. 5. D. Girela. Conformal mappings and spaces of analytic functions. Function Spaces and Classes. Joensuu 2006. 9-31. Univ. Joensuu Dept. Math. Rep. Ser., 12, Univ. Joensuu, Joensuu, 2007. 6. H. T. Kaptanoglu. Carleson measures for Besov spaces on the ball with applications. J. Functional Analysis 250, no. 2, (2007), 483-520. 7. K. L. Avetisyan. Hardy-Bloch type spaces and lacunary series on the polydisk. Glasg. Math. J. 49 (2007), no. 2, 345--356. 8. N. Arcozzi, R. Rochberg and E. Sawyer. Some problems on Carleson measures for Besov-Sobolev spaces. Topics in Complex Analysis and Operator Theory, Proceedings of the Winter School held in Antequera, Malaga, Spain (February 5-9 2006). Serv. Publ. Universidad de Málaga (2007). 141-148. 9. D. Girela, J. A. Peláez, F. Pérez-González and J. Rättyä, Carleson measures for the Bloch space. Integral Equations and Operator theory, Vol 61, p. 511-547, (2008). 10.K. L. Avetisyan. Weighted spaces of harmonic and holomorphic functions. Ph. D. Thesis, University of Yerevan. 2009. 11. S. Kumar. A study of weighted composition operators and analytic function theory. Ph. D. Thesis, University of Jammu (India) (2009). 12.P. Galanopoulos, D. Girela and J. A. Peláez. Multipliers and integration operators on Dirichlet spces. Trans. Amer. Math. Soc. Vol. 363, 2011, 1855-1886. 13.K. L. Avetisyan. Lacunary series in mixed norm spaces in the disc. J. Contemp. Math. Anal. 45 (2010), n. 5. 258-265.</p><p>11.D. Girela and J. A. Peláez. On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain. Canad. Math. Bull. 49 (2006), no. 3, 381--388. Citado en: 1. D. Girela, J. A. Peláez and D. Vukotic. Integrability of the derivative of a Blaschke product. Proc. Edinburgh Soc. 50, 3, (2007), 673-687. 2. D. Girela, J. A. Peláez and D. Vukotic. Interpolating Blaschke products: Stolz and tangential approach regions. Constr. Approx. 27 (2008), no. 2, 203--216. 3. J. A. Peláez. Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Mathematicum, Vol. 20, n. 6, 1039-1054, (2008). 4. F. Pérez González and J. Rättyä. Inner functions in the Möbius invariant Besov-type spaces. To appear in Proc. Edinburgh Math. Soc. 5. A. Aleman and D. Vukotic, On Blaschke products with derivatives in Bergman spaces with normal weights, Journal of Math. Anal and Appl., (2010), n. 2. 492-505. 6. J. Heittogangas. On interpolating Blaschke products and Blaschke- oscillatory equations. To appear in Constructive Approximation. 7. S. Favorov and L. Golinskii. On critical points of Blaschke products. Preprint: arxiv.org/abs/1009.1755 12 D. Girela and J. A. Peláez. Boundary behaviour of analytic functions in spaces of Dirichlet spaces. J. of Inequalities and Applications, Vol. 2006, (2006), Article ID 92795, 12 pages.</p><p>Citado en: </p><p>1. E. S. Doubtsov. Boundary behaviour of functions in Bergman-Sobolev spaces. Steklov Institute of Math. at St. Petersburgh, preprint 17/2008. 2. Y. C. Kim and T. Sugawa. Uniformly locally univalent functions and Hardy spaces. J. Math. Anal. Appl. Vol. 353, n. 1, p. 61-67, (2009). 3. N. Arcozzi, R. Rochberg and E. Sawyer, Capacity, Carleson measures, Boundary convergence and exceptional sets. Perspectives in Partial Differential Equations., Harmonic Analysis and Applications. A volume in honor of in Vladimir G. Mazya’s 70th birthday. American Mathematical Society 1-21. Proceedings of Symposia in Pure Mathematics.</p><p>14.D. Girela, M. Pavlovic and J. A. Peláez. Spaces of analytic functions of Hardy-Bloch type. J. Anal. Math. 100 (2006), 53--81. Citado en:</p><p>1. M. Pavlovic and J. A. Peláez. Weighted integrals of higher order derivatives of analytic functions. Acta Sci. Math. (Szeged) 72 (2006), no. 1-2, 73--93. 2. K. L. Avetisyan. Hardy-Bloch type spaces and lacunary series on the polydisk. Glasg. Math. J. 49 (2007), no. 2, 345--356. 3. K. L. Avetisyan. Lacunary series and sharp estimates in weighted spaces of holomorphic functions, J. of Contemporary Mathematical Analysis, (2007), 47 no. 2, 69--73. 4. D. Girela and J. A. Peláez. Carleson measures, multipliers and integration operators for spaces of Dirichlet type. J. Funct. Anal. 241 (2006), no. 1, 334-358. 5. F. Pérez González and J. Rättyä. Univalent functions in Hardy, Bergman, Bloch and related spaces. J. Anal. Math, Vol. 105, 125-148, (2008). 6. M. Jevtic. Blaschke products in Lipschitz spaces. To appear in Proc. Edinburgh Math. Soc 7. D. Girela, J. A. Peláez, F. Pérez-González and J. Rättyä, Carleson measures for the Bloch space. Integral Equations and Operator theory, Vol 61, p. 511-547, (2008). 8. Y. C. Kim and T. Sugawa, Uniformly locally univalent functions and Hardy spaces. J. Math. Anal. Appl. Vol. 353, n. 1, p. 61-67, (2009). 9. D. Girela, Conformal mappings and spaces of analytic functions. Function Spaces and Classes. Joensuu 2006. 9-31. Univ. Joensuu Dept. Math. Rep. Ser., 12, Univ. Joensuu, Joensuu, 2007. 10.C. González y J. A. Peláez, Univalent functiones in Hardy spaces in terms of the growth of arc-length, Journal of Geometric Analysis, Vol. 19, n. 4., 755-771. 11.P. Galanopoulos, D. Girela and J. A. Peláez. Multipliers and integration operators on Dirichlet spces. Trans. Amer. Math. Soc. Vol. 363, 2011, 1855-1886. 12.K. L. Avetisyan. A note on mixed norm spaces of analytic functions. To appear in Australian J. Math. Anal. Appl. 13.K. L. Avetisyan. Weighted spaces of harmonic and holomorphic functions. Ph. D. Thesis, University of Yerevan. 2009. 14.K. L. Avetisyan. Lacunary series in mixed norm spaces in the disc. J. Contemp. Math. Anal. 45 (2010), n. 5. 258-265. 15.O. Blasco and M. Pavlovic, Coefficients multilppliers on Banach spaces of analytic functions, preprint. 16.M. Nowak and M. Pavlovic. On the Libera operator. J. Math. Anal. Appl. 370, 2 (2010), 588-599.</p><p>15.D. Girela and J. A. Peláez. Carleson measures, multipliers and integration operators for spaces of Dirichlet type. J. Funct. Anal. 241 (2006), no. 1, 334-358. Citado en:</p><p>1. J. A. Peláez. Sharp results on the integrability of the derivative of an interpolating Blaschke product. To appear in Forum Math. 2. D. Girela, J. A. Peláez, F. Pérez-González and J. Rättyä, Carleson measures for the Bloch space. Integral Equations and Operator theory, 61 (2008), n. 4, 511-547. 3. Xue-bin Wang. Multipliers on the Dirichlet type spaces. Hunan Met. J. 2007, 3, 134-136 4. S. Kumar. Weighted composition operators between spaces of Dirichlet type. Revista Matemática Complutense 22 (2009), n. 2, 469-488. 5. R. Peng, C. Ouyang, Riemann-Stieltjes operators and multipliers on Q_p spaces in the unit ball of C^n. Preprint: arxiv.org/pdf/0901.0336 6. A. Aleman and O. Constantin, Spectra of integration operators on weighted Bergman spaces, J. Anal. Math., Vol 109, n.1, 199-231, (2009). 7. P. Galanopoulos, D. Girela and J. A. Peláez. Multipliers and integration operators on Dirichlet spces. Trans. Amer. Math. Soc. Vol. 363, 2011, 1855-1886. 8. Ru Peng and Caiheng Ouyang. Riemann-Stieljes operators and multipliers on $Q_p$ spaces in the unit ball of $\mathbb C^n$. J. Math. Anal. Appl. 377, 1 (2011), 180-193. 9. S. Kumar. A study of weighted composition operators and analytic function theory. Ph. D. Thesis, University of Jammu (India) (2009 10.A. Aleman and A. M. Persson. Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Func. Analysis 258, 1 (2010), 67-98. 11. J. Pau and J. A. Peláez. Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Functional Analysis, Vol 259, n.10 2727-2756. 12.C. Cascante and J. M. Ortega. Carleson measures for weighted holomorphic Besov spaces. Ark. Mat. 49 (2011), 31-59.</p><p>16.M. Pavlovic and J. A. Peláez. Weighted integrals of higher order derivatives of analytic functions. Acta Sci. Math. (Szeged) 72 (2006), no. 1-2, 73--93. Citado en: 1. A. Aleman, Some open problems on a class of integral operators on spaces of analytic functions.Topics in Complex Analysis and Operator Theory, Proceedings of the Winter School held in Antequera, Malaga, Spain (February 5-9 2006). Serv. Publ. Universidad de Málaga (2007). 139-150.</p><p>17.D. Girela, J. A. Peláez and D. Vukotic. Integrability of the derivative of a Blaschke product. Proc. Edinburgh Math. Soc. 50, 3 (2007), 673-687. Citado en:</p><p>1. D. Protas. Mean growth of the derivative of a Blaschke product. Kodai Math. J. 27 (2004), no. 3, 354--359. 2. D. Girela and J. A. Peláez. On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain. Canad. Math. Bull. 49 (2006), no. 3, 381—388. 3. D. Girela, J. A. Peláez and D. Vukotic. Uniformly discrete sequences in regions with tangential approach to the unit circle. Complex Var. Elliptic Equ. 52 (2007), no. 2-3, 161--173. 4. D. Girela, J. A. Peláez and D. Vukotic. Interpolating Blaschke products: Stolz and tangential approach regions. Constr. Approx. 27 (2008), no. 2, 203--216. 5. J. A. Peláez. Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Mathematicum, Vol. 20, n. 6, 1039-1054, (2008). 6. M. Jevtic. Blaschke products in Lipschitz spaces. Proc. Edinburgh Math. Soc. 52 (2009), n. 3, 689-705. 7. 7. J. A. Peláez, Inner functions as improving multipliers. Journal of functional Analysis, Vol 225, Issue 6, 1403-1418, (2008). 8. F. Pérez González and J. Rättyä. Inner functions in the Möbius invariant Besov-type spaces. Proc. Edinburgh Math. Soc. 52 (2009), 751-770. 9. A. Aleman and D. Vukotic. On Blaschke products with derivatives in Bergman spaces with normal weights. J. Math. Anal. Appl. 361 (2010), n. 2, 492-505. 10. I. Chyzhykov. Argument of bounded analytic functions and Frostman's type conditions. Illinois J. Math. 53 (2009), n. 2, 515-531. 11. J. J. Donaire, D. Girela and D. Vukotic. On the growth and range of functions in Möbius invariant spaces. J. d´Analyse Math, 112 (2010), 237-260 12. D. Protas. Blaschke products with derivative in function spaces. Preprint: arxiv.org/abs/1001.5098 13. J. Heittogangas, On interpolating Blaschke products and Blaschke- oscillatory equations. To appear in Constructive Approximation. 14. D. Van Vliet, Properties of a nonlinear Blaschke product decomposition algorithm, Advances in Adaptive Data Analysis, Vol. 1, n. 4, (2009), 529- 542. 15. Favorov and L. Golinskii. On critical points of Blaschke products. Preprint: arxiv.org/abs/1009.1755 18.D. Girela, J. A. Peláez and D. Vukotic. Uniformly discrete sequences in regions with tangential approach to the unit circle. Complex Var. Elliptic Equ. 52 (2007), no. 2-3, 161--173. Citado en:</p><p>1. J. A. Peláez. Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Mathematicum, Vol. 20, n. 6, 1039-1054, (2008). 2. D. Girela, J. A. Peláez, F. Pérez-González and J. Rättyä, Carleson measures for the Bloch space. Integral Equations and Operator theory, 61 (2008), n. 4, (2008). 3. A. Aleman and D. Vukotic, On Blaschke products with derivatives in Bergman spaces with normal weights, Journal of Math. Anal and Appl., (2010), n. 2. 492-505. 4. J. Heittogangas, On interpolating Blaschke products and Blaschke- oscillatory equations. To appear in Constructive Approximation</p><p>19.D. Girela, J. A. Peláez and D. Vukotic. Interpolating Blaschke products: Stolz and tangential approach regions. Constr. Approx. 27 (2008), no. 2, 203--216. Citado en:</p><p>1. P. L. Duren, A. Schuster and D. Vukotic. On uniformly discrete sequences in the disk. Quadrature domains and their applications, 131-- 150, Oper. Theory Adv. Appl., 156, Birkhäuser, Basel, 2005. 2. D. Girela, J. A. Peláez and D. Vukotic. Uniformly discrete sequences in regions with tangential approach to the unit circle. Complex Var. Elliptic Equ. 52 (2007), no. 2-3, 161--173. 3. D. Girela, M. Márquez and J. A. Peláez. On the zeros of functions in Bergman spaces and in some other related classes of functions. Journal of Mathematical Analysis and Applications, (2005), Vol. 309, p 534-543. 4. J. A. Peláez. Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Mathematicum, Vol. 20, n. 6, 1039-1054, (2008). 5. F. Pérez González and J. Rättyä. Inner functions in the Möbius invariant Besov-type spaces. Proc. Edinburgh Math. Soc. 52 (2009), 751-770. 6. A. Aleman and D. Vukotic. On Blaschke products with derivatives in Bergman spaces with normal weights. J. Math. Anal. Appl. 361 (2010), n. 2, 492-505 7. J. Heittogangas, On interpolating Blaschke products and Blaschke- oscillatory equations. To appear in Constructive Approximation 8. S. Favorov and L. Golinskii. On critical points of Blaschke products. Preprint: arxiv.org/abs/1009.1755</p><p>20.M. Pavlovic and J. A. Peláez, An equivalence for weighted integrals of an analytic function and its derivative, Matematische Nachrichten, Vol. 281, Issue 11, (2008), p. 1612-1623. Citado en: 1. M. Pavlovic and J. A. Peláez. Weighted integrals of higher order derivatives of analytic functions. Acta Sci. Math. (Szeged) 72 (2006), no. 1-2, 73--93. 2. E. G. Kwon. Quantities equivalent to the norm of a weighted Bergman space. J.Math. Anal. Appl. 338, no. 2 (2008), 758-770. 3. D. Girela, J. A. Peláez, F. Pérez-González and J. Rättyä, Carleson measures for the Bloch space. Integral Equations and Operator theory, 61 (2008), n. 4, 511- 547 4 C. González y J. A. Peláez, Univalent functiones in Hardy spaces in terms of the growth of arc-length, Journal of Geometric Analysis 19 (2009), n. 4, 755-771. 5. J. Pau and J. A. Peláez. Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Functional Analysis, Vol 259, n.10 2727-2756 6. J. Pau and J. A. Peláez Volterra type operators on Bergman spaces with exponential weights, preprint.</p><p>21.Jordi Pau and J. A. Peláez, Multipliers of Möbius invariant Q_s spaces, Matematische Zeitschrift, Volumen 261, Issue 3, (2009), p. 545-555. Citado en: 1. J. Xiao, The Q_p Carleson problem, Advances in Math., 217 (2008), 2075-2088. 2. Jordi Pau and J. A. Peláez, On the zeros of functions in Dirichlet- type spaces, Transactions of the American Mathematical Society, Vol 363, 1981-2002, (2011). 3. R. Peng, C. Ouyang, Riemann-Stieltjes operators and multipliers on Q_p spaces in the unit ball of C^n. Preprint: arxiv.org/pdf/0901.0336</p><p>22. J. A. Peláez, Inner functions as improving multipliers, Journal of functional Analysis, Vol. 225, Issue 6, 1403-1418, (2008). Citado en:</p><p>1. J. A. Peláez, Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Mathematicum, Vol. 20, n.6 1039-1054, (2008). 2. Jordi Pau and J. A. Peláez, Multipliers of Möbius invariant Q_s spaces, Matematische Zeitschrift, Volumen 261, Issue 3, (2009), p. 545-555. 3. Jordi Pau and J. A. Peláez, On the zeros of functions in Dirichlet-type spaces, Transactions of the American Mathematical Society, Vol 363, n. 4, 1981-2002. 23.J. A. Peláez, Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Math. Vol. 20 n. 6, 1039- 1054, (2008) Citado en:</p><p>1. J. A. Peláez, Inner functions as improving multipliers. Journal Functional Analysis, Vol 225, Issue 6, 1403-1418, (2008) 2 Jordi Pau and J. A. Peláez, On the zeros of functions in Dirichlet-type spaces, Aceptado en Trans. Amer. Math. Society 3 A. Aleman and D. Vukotic. On Blaschke products with derivatives in Bergman spaces with normal weights. J. Math. Anal. Appl. 361 (2010), n. 2, 492-505 4 D. Protas. Blaschke products with derivative in function spaces. Preprint: arxiv.org/abs/1001.5098</p><p>24.D. Girela, J. A. Peláez, F. Pérez González and J. Rättyä. Carleson measures for the Bloch space. Integral Equations and Operator Theory 61 (2008), n. 4, 511-547. Citado en: 1. Xiaohong Fu and Xiangling Zhu. Weighted composition operators on some weighted spaces in the unit ball. Abstract and Applied Analysis, Vol. 2008, Article ID 605807, 8 pages, 2008. doi:10.1155/2008/605807 2. E. S. Doubtsov. Bloch-Carleson measures and Aleksandrov-Ryll- Wojtaszczyk polynomials.(In Russian). Steklov Institute of Mathematics at St. Petersburg, preprint 14/2008. 3. E. S. Doubtsov. Weighted composition operators on growth spaces. Steklov Institute of Mathematics at St. Petersburg, preprint 15/2008. 4. Dinggui Gu, Extended Cesáro operators from logarithmic type spaces to Bloch type spaces, preprint. 5. E. Doubtsov. Growth spaces on circular domains: composition operators and Carleson mesaures. Comp. Rendus Math. 347 (2009), n. 11-12, 609- 612 6. E. Doubtsov, Carleson-Sobolev measures for weighted Bloch spaces, To appear in J. Functional Analysis. 7. Sei-Ichiro Ueki. Order bounded weighted composition operators mapping into the Bergman space. To appear in Complex Analysis and Operator Theory. 8. E. Abakumov and E. Doubtsov. Reverse estimates in growth spaces. To appear in Math. Z.</p><p>25.Jordi Pau and J. A. Peláez, On the zeros of functions in Dirichlet- type spaces, Transactions of the American Mathematical Society, Vol 363, n.4, 1981-2002, (2011).</p><p>Citado en: 1. K. Kellay, Poincare type inequality for Dirichlet spaces and application to the uniqueness set. To appear in Math. Scand. 2. K. Kellay and J. Mashregui, On the zero sets in the Dirichlet space, Arxiv.org.Math. Arxiv:1102.5596</p><p>26.Jordi Pau and J. A. Peláez, Logarithms of univalent functions in Q_p spaces, Journal of Math. Anal. Appl. Vol 350. 184-194 (2009) Citado en: 1. F. Pérez-González and J. Rättyä, Dirichlet and VMOA domains via Schwarzian derivative, J. Math. Anal and Appl., Vol 359, n. 2., (2009), 543-546. 2. P. Galanopoulos, D. Girela and R. Hernández, Univalent functions, VMOA and related spaces, to appear in J. Geom. Anal 3. N. Zorboska, Schwarzian derivative and general Besov-type domains, J. Math. Anal. Appl. Vol 379, n.1, 2011, 48-57.</p><p>27. J. Pau and J. A. Peláez, Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Functional Analysis, Vol 259, n.10 2727-2756. Citado en:</p><p>1. J. Pau and J. A. Peláez Volterra type operators on Bergman spaces with exponential weights, preprint. 2. E. Abakumov and E. Doubtsov. Reverse estimates in growth spaces. To appear in Math. Z.</p><p>27.Galanopoulos, D. Girela and J. A. Peláez. Multipliers and integration operators on Dirichlet spaces. Trans. Amer. Math. Soc. Vol. 363, 2011, 1855-1886.</p><p>Citado en:</p><p>1.J. Pau and J. A. Peláez. Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Functional Analysis, Vol 259, n.10 2727-2756</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us