
<p>EEGLab Data Processing</p><p>Create EEGLab files</p><p>1) Drag raw netstation files into waveform tools box</p><p>2) Highlight EEGlab_Export script and Run</p><p>3) Transfer to PC compatible USB Stick</p><p>4) Move to Hogwarts </p><p>5) Move to EEGgrid using WinSCP</p><p>************************************************************************************************** Once on EEGGrid</p><p>1) Import Raw Data – Save current set in subject’s Folder as “Subject Initials Raw” (e.g., SG_Raw). </p><p>2) Add Channel Location</p><p> a. Edit</p><p> a.i. Channel Locations</p><p> a.i.1. Read Locations</p><p> a.i.1.a. Navigate to Channel map on desktop (.sfp extension)</p><p> a.i.1.b. Autodetect – Ok</p><p> a.i.1.c. Ok</p><p>3) Filter</p><p> a. Tools</p><p> a.i. Filter the Data</p><p> a.i.1. Basic FIR filter</p><p> a.i.1.a. Filter Higher Edge of the bandpass (aka low pass filter) first at 30 Hz</p><p> a.i.1.a.i. Close pop-up windows</p><p> a.i.1.b. Filter Lower Edge of the bandpass (aka high pass filter) second at 0.1 Hz</p><p> a.i.1.b.i. Rename and Save Data Set in “ProcessingMethod3” folder</p><p> a.i.1.b.i.1. Initials_filtered (e.g., SG_filtered)</p><p> a.i.1.b.ii. Close pop-up windows</p><p>4) Average Re-Reference</p><p> a. Tools a.i. Re-reference</p><p> a.i.1. Select “Compute average reference in pop-up window</p><p> a.i.2. Ok</p><p> a.i.3. Rename and Save data “initials_reref” (e.g., SG_reref) </p><p>5) Import Events</p><p> a. Create event file with 5 columns</p><p> a.i. Latency type condition condition_expanded accuracy</p><p> a.i.1. Extract Frame number for each stim event in the raw EEGlab file</p><p> a.i.1.a. Open EEGlab</p><p> a.i.1.a.i. Load raw EEGfile for a subject</p><p> a.i.1.b. Open script “FrameExtract.m”</p><p> a.i.1.c. Copy and paste script into matlab command window</p><p> a.i.1.d. Open Latency workbook</p><p> a.i.1.e. Save latency.mat file to subject’s folder</p><p> a.i.1.f. You now have the exact times for your stim events</p><p> a.i.1.g. You MUST close eeglab and open a new session before running the script on another subject.</p><p> a.i.2. In excel create your headers for each piece of information you want in your event file (e.g., latency type condition condition_expanded accuracy)</p><p> a.i.3. Open the latency.mat file in matlab and copy and paste your values into the latency column in excel.</p><p> a.i.4. Create your type column (all stim events are 1)</p><p> a.i.5. Use Edat files to create the rest of your event info (e.g., we use condition, condition_expanded, and accuracy info from the edat files)</p><p> a.i.6. Copy and paste only the values into a txt file</p><p> a.i.6.a. Save as “Initials_EventFile” and transfer to EEGGrid</p><p> a.i.7. There should be no headers (text) in your event.txt file</p><p> b. Load events</p><p> b.i. File</p><p> b.i.1. Import Event Info b.i.1.a. From Matlab array or ASCII file</p><p> b.i.1.a.i. Browse to event.txt file</p><p> b.i.1.a.ii. Ok</p><p> b.i.1.a.iii. Input column info (i.e., latency type condition condition_expanded accuracy)</p><p> b.i.1.a.iv. Input time info (i.e., 1E-3) for ms</p><p> b.i.1.a.v. Enter “NaN” into …</p><p> b.i.1.a.vi. OK</p><p> b.i.1.a.vii. Save Current Dataset as “initials_eventsloaded” (e.g., SG_eventsloaded)</p><p> c. Check that Events Loaded Correctly (only if you have more than one type of event)</p><p> c.i. Epoch around event types and make sure that the number of each type of event equals what is in your event file</p><p> c.i.1. If you only have one type of event then the number of events should equal the number of rows in your event file</p><p>6) Channel Reject manually</p><p> a. Identify channels to reject via data scroll (Plot – data scroll)</p><p> b. Edit</p><p> b.i. Select Data</p><p> b.i.1. Check on -> remove these</p><p> b.i.2. Enter channels to remove in Channel Range box – must put and “E” before each channel</p><p> b.i.2.a. (e.g., E256 E45 E22)</p><p> b.i.3. Ok</p><p> b.i.4. Save data set as Initials_channelrej</p><p>7) Extract Epochs</p><p> a. Tools</p><p> a.i. Extract Epochs</p><p> a.i.1. Enter Event of interests (in our case it is 1 to epoch around the stim)</p><p> a.i.2. Enter the length of the epoch (currently we are using -0.2 1)</p><p> a.i.3. Name new data set “initials_epochs” (e.g., SG_epochs) a.i.4. Save new data set</p><p> a.i.5. OK</p><p> a.i.6. Ok to baseline removal</p><p>8) Examine data epochs and remove bad epochs</p><p> a. Tools</p><p> a.i. Reject data epochs</p><p> a.i.1. Reject by inspection</p><p> a.i.1.a. Click second checkbox to reject data at once (instead of simply marking epochs for rejection)</p><p> a.i.1.b. OK</p><p> a.i.2. In scrolling window click epochs to reject</p><p> a.i.3. Reject</p><p> a.i.4. Save data set as Initials_epochrej</p><p>9) Run ICA – After ICA completes save data</p><p> a. “initials_ICA”</p><p>10) Review ICA components</p><p> a. Tools</p><p> a.i. Reject Data using ICA</p><p> a.i.1. Remove components by map</p><p> a.i.1.a. If you don’t know what you’re looking for then don’t do this step.</p><p> a.i.2. Tools</p><p> a.i.2.a. Remove Components</p><p> a.i.2.a.i. Make sure rejected components are entered into components to reject or enter components to retain.</p><p> a.i.2.a.ii. OK</p><p> a.i.2.a.iii. Save data as “Initials_Pruned_ICA_xx” the xx represents the attempt number.</p><p>11) Check ERPs a. Create averages for events of interest (Distractors; 2=Fear, 3 = Sad, 5 = Neu: Targets; 22 = TaFear, 33 = TaSad, 55 = TaNeu) </p><p> b. Plot</p><p> b.i. Sum/compare ERPs</p><p> b.i.1. Enter datasets to use</p><p> b.i.2. Uncheck avg and Check all ERPS</p><p> b.i.3. In last box Change -1 to 1 to have positive voltage going up on the y-axis</p><p>12) Check ERPs to make sure they look good and (if appropriate that patterns are retained from the non-pruned data) </p><p> a. If they don’t look good compared to the non-pruned data </p><p> a.i. 1) retry pruning the ICA with different components.</p><p> a.ii. Repeat until you are satisfied with the pruned data.</p><p> a.iii. Record final Pruned data set chosen in EEG data processing record kept on Hogwarts and delete other pruned ICAs that are no longer necessary.</p><p>13) Channel Interpolate - Once you have finalized ICA artifact rejected data set then re-interpolate your missing channels.</p><p> a. Clear all data sets</p><p> a.i. Load data set with full channel array (Initials_reref)</p><p> a.ii. Load data set to be interpolated (Initials_pruned_ICA_xx)</p><p> a.iii. Tools</p><p> a.iii.1. Interpolate Electrodes</p><p> a.iii.2. Select data from another dataset</p><p> a.iii.2.a. Enter number of dataset with full channel array (1)</p><p> a.iii.2.b. Ok</p><p> a.iii.2.c. Select every channel</p><p> a.iii.2.d. OK</p><p> a.iii.2.e. Interpolation method = spherical</p><p> a.iii.2.f. Ok</p><p> a.iii.2.g. Save as “Initials_InterpolatedElect”</p><p>14) Plot ERPs by condition – make sure you do this on ‘Initials_Interpolated_Elect’ a. Edit</p><p> a.i. Select epochs or events</p><p> a.i.1. Conditions to Create </p><p> a.i.1.a. Initials_NeuPics, Initials_FearPics, Initials_SadPics, Initials_TaT, Initials_TaN, Initials_TaF, Initials_TaS</p><p> a.ii. Only create for correct trials by entering 1 in the accuracy slot </p><p>15) Make Arrays to Export</p><p> a. Must Export each condition separately</p><p> a.i. Select Condition to export by ensuring it is your working dataset in eeglab</p><p> a.ii. Size(EEG.data)</p><p> a.ii.1. To double check you have correct dataset. </p><p> a.ii.2. This command outputs a 1x3 array (channels, frames, trials)</p><p> a.ii.3. Average all trials </p><p> a.ii.3.a. Condition e.g., Fear = mean(EEG.data,3);</p><p> a.ii.3.b. Need to flip array</p><p> a.ii.3.c. So that channels are in columns and frames are in rows</p><p> a.ii.3.d. Enter Condition’ e.g., Fear_b = Fear’ </p><p> a.ii.3.e. Change directory to where file is to be saved</p><p> a.ii.3.f. Write csv file</p><p> a.ii.3.f.i. Csvwrite(‘MT_Fear.txt’, Fear_b) Plot(ERP(15,: ))</p><p>Figure</p><p>Plot(ERP(15,:))</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages7 Page
-
File Size-