<p>Chapter 11 Inferences About Population Variances</p><p>Learning Objectives</p><p>1. Understand the importance of variance in a decision-making situation.</p><p>2 Understand the role of statistical inference in developing conclusions about the variance of a single population.</p><p>3. Know that the sampling distribution of (n - 1) s2/ 2 has a chi-square distribution and be able to use this result to develop a confidence interval estimate of 2.</p><p>4. Be able to compute p-values using the chi-square distribution.</p><p>5. Know how to test hypotheses involving 2.</p><p>6. Understand the role of statistical inference in developing conclusions about two population variances.</p><p>2 2 7. Know that the sampling distribution of s1/ s 2 has an F distribution and be able to use this result to test hypotheses involving two population variances. </p><p>8. Be able to compute p-values using the F distribution.</p><p>11 - 1 Chapter 11</p><p>Solutions:</p><p>1. a. 11.070</p><p> b. 27.488</p><p> c. 9.591</p><p> d. 23.209</p><p> e. 9.390</p><p>2. s2 = 25</p><p>2 2 a. With 19 degrees of freedom .05 = 30.144 and .95 = 10.117</p><p>19(25) 19(25) 2 30.144 10.117</p><p>15.76 2 46.95</p><p>2 2 b. With 19 degrees of freedom .025 = 32.852 and .975 = 8.907</p><p>19(25) 19(25) 2 32.852 8.907</p><p>14.46 2 53.33</p><p> c. 3.8 7.3</p><p>2 2 2 (n 1) s (16 1)(9.5) 3. 2 27.08 0 50</p><p>Degrees of Freedom = (16 - 1) = 15</p><p>Using 2 table, p-value is between .025 and .05</p><p>Actual p-value = .0281</p><p> p-value .05, reject H0 </p><p>Critical value approach </p><p>2 .05 = 24.996</p><p>2 Reject H0 if 24.996</p><p>27.08 > 24.996, reject H0</p><p>11 - 2 Inferences About Population Variances</p><p>4. a. n = 18</p><p> s2 = .36</p><p>2 .05 = 27.587</p><p>2 .95 = 8.672 (17 degrees of freedom)</p><p>17(.36) 17(.36) 2 27.587 8.672</p><p>.22 2 .71</p><p> b. .47 .84</p><p>(x x )2 5. a. s2 i 31.07 n 1</p><p> s 31.07 5.57</p><p>2 2 b. .025 = 16.013 .975 = 1.690</p><p>(8 1)(31.07) (8 1)(31.07) 2 16.013 1.690</p><p>13.6 2 128.7</p><p> c. 3.7 11.3</p><p>(x x )2 6. a. s2 i 176.96 n 1</p><p> s 176.96 13.30</p><p>2 2 b. .025 = 11.143 .975 = 0.484</p><p>(5 1)(176.96) (5 1)(176.96) 2 11.143 .484</p><p>63.5 2 1462.5</p><p>8.0 38.2</p><p>(x x )2 7. a. s2 i 2.62 n 1</p><p> s 2.62 1.62</p><p>11 - 3 Chapter 11</p><p>2 2 b. .025 = 16.013 .095 = 1.690</p><p>(8 1)(2.62) (8 1)(2.62) 2 16.013 1.690</p><p>1.14 2 10.85</p><p> c. 1.07 3.29</p><p>(x x )2 .0929 8. a. s2 i .00845 n 1 12 1</p><p> b. s .00845 .092</p><p> c. 11 degrees of freedom</p><p>2 2 .025 = 21.920 .975 = 3.816</p><p>(12 1).00845 (12 1).00845 2 21.920 3.816</p><p>.0042 2 .0244</p><p>.065 .156</p><p>2 9. H0: .0004</p><p>2 Ha: .0004</p><p>2 2 (n 1) s (30 1)(.0005) 2 36.25 0 .0004</p><p>Degrees of freedom = n - 1 = 29</p><p>Using 2 table, p-value is greater than .10</p><p>Actual p-value = .1664</p><p> p-value > .05, do not reject H0. The product specification does not appear to be violated.</p><p>10. 2 .75)2 = .5625</p><p>2 H0: .5625</p><p>2 Ha: .5625</p><p>(n 1) s2 (30 1)(.95) 2 2 46.53 2 .5625</p><p>Degrees of freedom = n - 1 = 29</p><p>11 - 4 Inferences About Population Variances</p><p>Using 2 table, p-value is between .01 and .025</p><p>Actual p-value = .0208</p><p> p-value .05, reject H0. The standard deviation for television sets is greater than the standard deviation for VCR’s.</p><p>2 11. H0: = .009216</p><p>2 Ha: .009216</p><p>(n 1) s2 (20 1)(.114) 2 2 26.79 2 .009216</p><p>Degrees of freedom = n - 1 = 19</p><p>Using 2 table, area in upper tail is greater than .10</p><p>Two-tail p-value is greater than .20</p><p>Actual p-value = .2191</p><p> p-value > .05, do not reject H0. Cannot conclude the variance in interest rates has changed.</p><p>(x x )2 12. a. s2 i .8106 n 1</p><p>2 b. H0: .94</p><p>2 Ha: .94</p><p>2 2 (n 1) s (12 1)(.8106) 2 9.49 0 .94</p><p>Degrees of freedom = n - 1 = 11</p><p>Using 2 table, area in upper tail is greater than .10</p><p>Two-tail p-value is greater than .20</p><p>Actual p-value = .8457</p><p> p-value > .05, cannot reject H0.</p><p>13. a. F.05 = 3.33</p><p> b. F.025 = 2.76</p><p> c. F.01 = 4.50</p><p> d. F.10 1.94</p><p>11 - 5 Chapter 11</p><p>2 s1 5.8 14. a. F 2 2.4 s2 2.4</p><p>Degrees of freedom 15 and 20</p><p>Using F table, p-value is between .025 and .05</p><p>Actual p-value = .0334</p><p>2 2 p-value .05, reject H0. Conclude 1 2</p><p> b. F.05 = 2.20</p><p>Reject H0 if F 2.20</p><p>2 2 2.4 2.20, reject H0. Conclude 1 2</p><p>2 15. a. Larger sample variance is s1</p><p>2 s1 8.2 F 2 2.05 s2 4</p><p>Degrees of freedom 20 and 25</p><p>Using F table, area in tail is between .025 and .05</p><p>Two-tail p-value is between .05 and .10 </p><p>Actual p-value = .0904</p><p> p-value > .05, do not reject H0. </p><p> b. Since we have a two-tailed test</p><p>F / 2 F .025 2.30</p><p>Reject H0 if F 2.30</p><p>2.05 < 2.30, do not reject H0 </p><p>2 2 16. H0 : 1 2</p><p>2 2 Ha :1 2</p><p>2 2 s1 94 F 2 2 2.63 s2 58 Degrees of freedom 25 and 29</p><p>Using F table, p-value is less than .01 </p><p>11 - 6 Inferences About Population Variances</p><p>Actual p-value = .0067</p><p> p-value .01, reject H0. Conclude adults have a greater variance in online times.</p><p>17. a. Population 1 is 4 year old automobiles</p><p>2 2 H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>2 2 s1 170 b. F 2 2 2.89 s2 100</p><p>Degrees of freedom 25 and 24</p><p>Using F table, p-value is less than .01 </p><p>Actual p-value = .0057</p><p> p-value .01, reject H0. Conclude that 4 year old automobiles have a larger variance in annual repair costs compared to 2 year old automobiles. This is expected due to the fact that older automobiles are more likely to have some more expensive repairs which lead to greater variance in the annual repair costs.</p><p>2 2 18. H0 : 1 2</p><p>2 2 Ha :1 2</p><p>2 2 s1 4.27 F 2 2 3.54 s2 2.27</p><p>Degrees of freedom 9 and 6</p><p>Using F table, area in tail is between .05 and .10</p><p>Two-tail p-value is between .10 and .20 </p><p>Actual p-value = .1379</p><p> p-value > .05, do not reject H0. Cannot conclude any difference between variances of the two industries.</p><p>2 2 19. H0 : 1 2</p><p>2 2 Ha :1 2</p><p>2 s1 .0489</p><p>2 s2 .0059</p><p>11 - 7 Chapter 11</p><p>2 s1 .0489 F 2 8.28 s2 .0059</p><p>Degrees of freedom 24 and 21</p><p>Using F table, area in tail is less than .01</p><p>Two-tail p-value is less than .02 </p><p>Actual p-value 0</p><p> p-value .05, reject H0. The process variances are significantly different. Machine 1 offers the best opportunity for process quality improvements.</p><p>Note that the sample means are similar with the mean bag weights of approximately 3.3 grams. However, the process variances are significantly different.</p><p>2 2 20. H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>2 s1 11.1 F 2 5.29 s2 2.1</p><p>Degrees of freedom 25 and 24</p><p>Using F table, area in tail is less than .01</p><p>Two-tail p-value is less than .02 </p><p>Actual p-value 0</p><p> p-value .05, reject H0. The population variances are not equal for seniors and managers.</p><p>(x x )2 21. a. s2 i n 1</p><p>2 sNov = 9664</p><p>2 2 sDec = 19,238 (Population 1 since s is larger)</p><p>2 2 b. H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>2 s1 19,238 F 2 1.99 s2 9664</p><p>Degrees of freedom 9 and 9</p><p>Using F table, area in tail is greater than .10</p><p>11 - 8 Inferences About Population Variances</p><p>Two-tail p-value is greater than .20 </p><p>Actual p-value = .3197</p><p> p-value > .05, do not reject H0. There is no evidence that the population variances differ.</p><p>22. a. Population 1 - Wet pavement.</p><p>2 2 H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>2 2 s1 32 F 2 2 4.00 s2 16</p><p>Degrees of freedom 15 and 15</p><p>Using F table, p-value is less than .01</p><p>Actual p-value = .0054</p><p> p-value .05, reject H0. Conclude that there is greater variability in stopping distances on wet pavement.</p><p> b. Drive carefully on wet pavement because of the uncertainty in stopping distances.</p><p>23. a. s2 = (30) 2 = 900</p><p>2 2 b. .05 = 30.144 and .95 = 10.117 (19 degrees of freedom)</p><p>(19)(900) (19)(900) 2 30.144 10.117</p><p>567 2 1690</p><p> c. 23.8 41.1</p><p>24. With 12 degrees of freedom,</p><p>2 2 .025 = 23.337 .975 = 4.404</p><p>(12)(14.95)2 (12)(14.95) 2 2 23.337 4.404</p><p>114.9 2 609</p><p>10.72 24.68</p><p>x 25. a. x i 260.16 n</p><p>11 - 9 Chapter 11</p><p>(x x )2 b. s2 i 4996.8 n 1</p><p> s 4996.79 70.69</p><p>2 2 c. .025 = 32.852 .975 = 8.907 (19 degrees of freedom)</p><p>(20 1)(4996.8) (20 1)(4996.8) 2 32.852 8.907</p><p>2890 2 10,659</p><p>53.76 103.24</p><p>2 26. a. H0: .0001</p><p>2 Ha: .0001</p><p>(n 1) s2 (15 1)(.014) 2 2 27.44 2 .0001</p><p>Degrees of freedom = n - 1 = 14</p><p>Using 2 table, p- value is between .01 and .025</p><p>Actual p-value = .0169</p><p> p-value .10, reject H0. Variance exceeds maximum variance requirement.</p><p>2 b. .05 = 23.685 </p><p>2 .95 = 6.571 (14 degrees of freedom)</p><p>(14)(.014)2 (14)(.014) 2 2 23.685 6.571</p><p>.00012 2 .00042</p><p>2 27. H0: .02</p><p>2 Ha: .02</p><p>2 2 2 (n 1) s (41 1)(.16) 2 51.20 0 .02</p><p>Degrees of freedom = n - 1 = 40</p><p>Using 2 table, p- value is greater than .10</p><p>Actual p-value = .1104</p><p>11 - 10 Inferences About Population Variances</p><p> p-value > .05, do not reject H0. The population variance does not appear to be exceeding the standard.</p><p>2 28. H0: </p><p>2 Ha: </p><p>2 2 (n 1) s (22 1)(1.5) 2 31.50 0 1</p><p>Degrees of freedom = n - 1 = 21</p><p>Using 2 table, p-value is between .05 and .10</p><p>Actual p-value = .0657</p><p>2 p-value .10, reject H0. Conclude that > 1.</p><p>(x x )2 101.56 29. s2 i 12.69 n 1 9 1</p><p>2 H0: = 10</p><p>2 Ha: 10</p><p>(n 1) s2 (9 1)(12.69) 2 10.16 2 10</p><p>Degrees of freedom = n - 1 = 8</p><p>Using 2 table, area in tail is greater than .10</p><p>Two-tail p- value is greater than .20</p><p>Actual p-value = .5086</p><p> p-value > .10, do not reject H0</p><p>30. a. Try n = 15</p><p>2 .025 = 26.119 </p><p>2 .975 = 5.629 (14 degrees of freedom)</p><p>(14)(64) (14)(64) 2 26.119 5.629 34.3 2 159.2</p><p>5.86 12.62</p><p>11 - 11 Chapter 11</p><p>A sample size of 15 was used.</p><p> b. n = 25; expect the width of the interval to be smaller.</p><p>2 .05 = 39.364</p><p>2 .975 = 12.401 (24 degrees of freedom)</p><p>(24)(8)2 (24)(8) 2 2 39.364 12.401</p><p>39.02 2 126.86</p><p>6.25 11.13</p><p>2 2 31. H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>Population 1 is NASDAQ</p><p>2 2 s1 15.8 F 2 2 4.00 s2 7.9</p><p>Degrees of freedom 9 and 9</p><p>Using F table, area in tail is between .025 and .05</p><p>Two-tail p-value is between .05 and .10</p><p>Actual p-value = .0510</p><p> p-value > .05, do not reject H0. Cannot conclude population variances differ. But with such a low p- value, a larger sample is recommended. </p><p>2 2 32. H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>Use critical value approach since F tables do not have 351 and 72 degrees of freedom.</p><p>F.025 = 1.47</p><p>Reject H0 if F 1.47</p><p>2 2 s1 .940 F 2 2 1.39 s2 .797</p><p>F < 1.47, do not reject H0. We are not able to conclude students who complete the course and students who drop out have different variances of grade point averages.</p><p>11 - 12 Inferences About Population Variances</p><p>2 2 33. H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>Population 1 has the larger sample variance.</p><p>2 s1 5.4 F 2 2.35 s2 2.3</p><p>Degrees of freedom 15 and 15</p><p>Using F table, area in tail is between .05 and .10</p><p>Two-tail p-value is between .10 and .20</p><p>Actual p-value = .1091</p><p> p-value > .10, do not reject H0. Cannot conclude that there is a difference between the population variances.</p><p>2 2 34. H0 : 1 2</p><p>2 2 Ha : 1 2</p><p>2 s1 25 F 2 2.08 s2 12</p><p>Degrees of freedom 30 and 24</p><p>Using F table, area in tail is between .025 and .05</p><p>Two-tail p-value is between .05 and .10</p><p>Actual p-value = .0689</p><p> p-value .10, reject H0. Conclude that the population variances are not equal.</p><p>11 - 13</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-