The 53Rd Annual Meeting Highlights Webcast

The 53Rd Annual Meeting Highlights Webcast

<p> The 53rd Annual Meeting Highlights Webcast Learning Objectives</p><p>Overall Activity Objectives</p><p>1. Examine and evaluate future directions in nuclear medicine from a research and clinical perspective 2. Describe the latest indications and applications of fusion imaging and their impact on patient management 3. Review standard, new and relevant advances in cardiac imaging 4. Discuss new therapeutic and diagnostic agents that are impacting the practice of nuclear medicine and molecular imaging</p><p>Individual Session Learning Objectives</p><p>Annual FDA: Division of Medical Imaging Update</p><p>1. Describe and discuss the FDA’s Critical Path initiative and the medical imaging- related activities 2. Describe and discuss the Exploratory IND Guidance as related to medical imaging phase I studies 3. Describe and discuss the RDRC activities and the revised reporting forms</p><p>Annual Meeting Highlights</p><p>1. Explain what is meant by “knowledge-based healthcare system” 2. Describe what is new in the areas of neuroscience, oncology and cardiology, based on highlighted research presented at the SNM Annual Meeting 3. Explain why single photon imaging is still “alive and well” 4. Describe what is new in imaging</p><p>Chernobyl at 20</p><p>1. Describe a sample of the media coverage of the 20th anniversary of Chernobyl 2. Describe any change in incidence of malignancies in people exposed to the Chernobyl fallout 3. Describe the indicator malignancies being followed 4. Describe plans for future studies of the Chernobyl survivors</p><p>Computer and Instrumentation Council Basic Science Summary Session</p><p>1. Describe the latest innovations in SPECT/CT imaging 2. Identify advances in attenuation correction in PET imaging 3. Recognize how analysis techniques improve image quantitation 4. Identify the latest innovations in brain analysis 5. Explain the impact computer analysis and processing has on imaging procedures for malignancies</p><p>Controversies in Pediatric Diuresis Renography</p><p>1. Recognize different scintigraphic diuresis renography protocols employed in clinical practice 2. List the requirements for standardization of the technique 3. Select and implement an appropriate diuresis renography technique in clinical practice 4. Restate advantages and disadvantages of dynamic contrast-enhanced MR urography as compared with scintigraphic diuresis renography</p><p>Current Applications of SPECT/CT</p><p>1. Describe how and when SPECT/CT hybrid imaging may be utilized 2. Discuss acquisition protocols, techniques for reconstruction with attenuation correction and image displays associated with performing these procedures 3. Recognize the benefits of image fusion and radionuclide localization 4. Recognize potential pitfalls associated with SPECT/CT hybrid imaging</p><p>How Do We Optimize and Standardize the Gastric Emptying Study?</p><p>1. Describe the clinical indications for and results desired by referring gastroenterologists 2. Examine whether the GE study should be shortened or lengthened 3. Describe which quantitative measures of GE are currently used and how to measure them 4. List the new parameters which can be used to assess gastric function 5. Examine how the GE study can be standardized so results can be applied to all patient populations regardless of the imaging site where performed</p><p>Interpretation of Gated SPECT MPI Studies: Common and Challenging Cases, “Read With the Experts” Session</p><p>1. Identify common artifacts in gated myocardial perfusion SPECT imaging 2. Demonstrate improved skills in semi-quantitative image interpretation, so as to better integrate (and more effectively report) the myocardial perfusion and clinical information available for a given patient or patient population 3. Appreciate the multiple quantitative parameters available to measure myocardial perfusion, cardiac function and miscellaneous other determinants of cardiac health. Understand the range of quantitative algorithms available to measure the above parameters as well as their limitations MIRD CME: Bystander and Low-Dose Rate Effects – Are These Relevant to Radionuclide Therapy: Part I</p><p>1. Explain what the bystander and low-dose rate effects are and how they were first detected 2. Describe how these effects have changed our understanding of the relationship between absorbed dose and response 3. Discuss under what circumstances these effects are relevant 4. Evaluate whether they are relevant to therapeutic nuclear medicine</p><p>MIRD CME: Bystander and Low-Dose Rate Effects – Are These Relevant to Radionuclide Therapy: Part II</p><p>1. Explain what the bystander and low-dose rate effects are and how they were first detected 2. Describe how these effects have changed our understanding of the relationship between absorbed dose and response 3. Discuss under what circumstances these effects are relevant 4. Evaluate whether they are relevant to therapeutic nuclear medicine</p><p>Management of Differentiated Thyroid Cancer “Read With the Experts”</p><p>1. Discuss different types of thyroid cancer, their epidemiology and their natural history 2. Recognize the importance of staging on prognosis of thyroid cancer 3. Review the importance of surgical thyroidectomy and radio-iodine 4. Evaluate the role of imaging and measurement of serum thyroglobulin for follow- up of treated patients 5. Discuss the use of recombinant human thyrotropin in management of patients 6. Evaluate various controversial issues</p><p>Neuroendocrine Tumors</p><p>1. Define the indications for parathyroid imaging and describe the various protocols used 2. Discuss the advantages and limitations of the various approaches to the detection of parathyroid pathology 3. Learn the current status of diagnostic and management approaches to medullary thyroid carcinoma</p><p>New Agents for Imaging Infection and Inflammation</p><p>1. Describe uptake mechanisms of FDG, 99mTc-fanolesomab, and 99mTc- ciprofloxacin in infection 2. Name at least two infection/inflammation indications for which FDG appears particularly useful 3. Identify at least two advantages and two disadvantages of 99mTc-fanolesomab compared with in-vitro labeled leukocytes 4. Name at least three potential advantages of radiolabeled antibiotics over other infection imaging agents</p><p>PET and PET/CT Part I: Oncology</p><p>1. Describe techniques for conducting PET and PET/CT examinations within a radiation treatment setting 2. Explain proper PET and PET/CT protocols for cardiac viability and perfusion imaging 3. Examine potential non-FDG radiopharmaceuticals and their uses in PET and PET/CT imaging</p><p>PET and PET/CT Part II: Cardiology</p><p>1. Describe techniques for conducting PET and PET/CT examinations within a radiation treatment setting 2. Explain proper PET and PET/CT protocols for cardiac viability and perfusion imaging 3. Examine potential non-FDG radiopharmaceuticals and their uses in PET and PET/CT imaging</p><p>PET/CT in Endometrial and Ovarian Cancer</p><p>1. Discuss the value of FDG PET as a predictor for post therapy surveillance 2. Describe the use of PET/CT in the management of ovarian cancer 3. Explain the role of CT, MRI and Ultrasound in the management of endometrial and ovarian cancer 4. Recognize the contribution of whole body FDG PET in the management of ovarian and endometrial cancer</p><p>PET: Beyond Counting Metastases</p><p>1. Describe the basic principles of quantitative PET imaging and how it can be used for patient management 2. Discuss the potential of heterogeneity in tumor uptake as a quantitative parameter for risk assessment and patient outcome 3. Review the possibilities of PET imaging for dosimetric purposes by labeling radiopharmaceuticals for radionuclide therapies with positron emitters 4. Recognize various novel PET tracers besides FDG for individualizing tumor treatment Plenary Session and Formal Opening Annual Henry Wagner Lectureship – Of Mice and Men and Positrons: Advances in PET Imaging</p><p>1. Describe why time-of-flight PET can lead to better imagine signal-to-noise ratio than conventional PET 2. Describe the two physical factors related to positron emission and annihilation that limit the resolution that can be obtained with PET imaging 3. List two challenges in simultaneous PET and MRI imaging 4. Relate 3 examples of how these advances will benefit the practice of nuclear molecular imaging</p><p>Radiopharmaceutical Sciences Council Basic Science Summary Session</p><p>1. Identify biological applications of investigational radiopharmaceuticals 2. Recognize some of the uses of investigational radiopharmaceuticals for patients with cancer 3. Evaluate the efficacy and toxicity of some of the agents currently under investigation 4. Identify patients that may benefit from the latest agents under investigation</p><p>SPECT/CT: Instrumentation and Clinical Applications</p><p>1. Describe the instrumentation and software associated with combined SPECT/CT systems 2. Discuss the practical issues associated with the installation and use of SPECT/CT systems 3. Discuss the clinical applications and advantages offered by SPECT/CT systems 4. Discuss the projected impact of SPECT/CT on the future of nuclear medicine</p><p>Update on SPECT Brain Imaging: Indications, Tracers, and Techniques</p><p>1. Describe the clinical indications for SPECT brain imaging and how the requesting physician applies the information gained 2. Discuss the currently used tracers for SPECT brain imaging and potential application of future tracers 3. Review appropriate techniques for acquisition and processing of SPECT brain scans</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us