Calculus I Worksheet #8 Review for Test 2 Limits and Continuity

Calculus I Worksheet #8 Review for Test 2 Limits and Continuity

<p> Calculus I Worksheet #8 Review for Test 2 – Limits and Continuity</p><p>1 s in 5 x  2 s in 2 3 x  lim lim  2  x 0 c o s 4 x  x 0 x c o s x  3   4  x  s i n 5 x  l i m l i m x  0  1  x  0 t a n x  s i n x   3  5 1  s i n x 6 c o s 2 x l i m lim  2 x  1  c o s x x  x 2 3 7 6 x  5 x 8 4 a 2  x 2  lim 2 3 x  x  4 x lim   x b  2 a  x  9 8 x 3  5 x 10 x 2  x 4 lim 2 lim 2 6 x  x  3 x x  x  x 11 4 x 3  3 2 12 5 l im lim 2  x 2 5 x  20 x  4 x  4 13 4 骣x 14 Find the domain and range of the function lim sin 琪 x 0 x 桫5 f( x )= x2 - 9 + 1 15 4x3 - 5 16 Determine if the following function is even, odd or lim 3 x 1 5x2 - 6 neither: f( x )= 3 x - 5 x 17 2x - 2 18 Write the equation of the line perpendicular to lim x 2+ x - 4 3x - 4y = 12 that passes through the point (-3, 1)</p><p>19 8x2- 2 x 3 20 x2 - 4; x -3 lim 2  x� 2x+ 4 x Graph f( x )= x+3; -3 < x < 2  -x+2; x 2 Use the following graph of f(x) to answer the next five questions</p><p> limf ( x ) limf ( x ) limf ( x ) limf ( x ) limf ( x ) 21 + 22 - 23 24 25  x 1 x 1 x 1 x� 1 x 2 </p><p>  </p><p> y</p><p></p><p>    x         </p><p></p><p></p><p></p><p>Use the graph of f(x) below to answer 26 a-c y</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p> x</p><p>             </p><p></p><p></p><p></p><p></p><p> 26a) Use the 3-part definition of continuity to show if f(x) is continuous at x = 3 26b) What kind(s) of discontinuity are shown in the graph of f(x)? 26c) If there is a removable discontinuity? If so, assign a value to remove it. 27 2x - 1; x 1 If f( x ) = use the definition of continuity to show if f(x) is continuous at x = 1 -3x+1; x>1 28 x2 +6 x + 8 ; x -2 If f( x ) = x + 2 use the definition of continuity to show if f(x) is continuous at x = -2 2; x=-2 29 x3 + 8 If f( x ) = use the definition of continuity to show if f(x) is continuous at x = -2 x + 2 30 x3 - 64 When f( x ) = , then f(x) has point discontinuity. Assign a value to f(x) that removes the x - 4 discontinuity.</p><p>Answers: 3 1. 0 2. 9 3. 15 4. 1 5. 2 6. 0 7. 2 - 12 - 4 8. 2a-b 9. 10. 0 11. 12. 13. 14. 5 5 d= { x� 3 or x 3} r = [1, ) 15. 1 16. odd 17. –1 -4 19. 20. graph 21. 1 18. y-1 =( x + 3) 3 below 22. –2 23. DNE 24. 2 25. 1 26a. 26b. point, 26c. yes let f(x) =2 below & infinite 27. 28. 29. 30. let f(4) = 48 below below below see below</p><p> y  1. f (3) exists f(3) = 3  [ ]</p><p>  轾  2.limf ( x ) exists lim f ( x )= lim f ( x ) = 2 26a. + -  x 3 臌犏x 3 x 3   3.f (3)筡 lim f ( x ) f ( x ) is not continuous at x=3  x 3 </p><p></p><p></p><p> x</p><p>        </p><p></p><p></p><p>20.  1. f (- 2) exists [ f(-2) = 2] 27. 2. limf ( x ) exists 轾 lim f ( x )= lim f ( x ) = 2 28. + - 1. f (1) exists [ f(1) = 1] x� 2 臌犏x��2 x 2 3.f (- 2) = lim f ( x ) = 2 \ f ( x ) is continuous at x=-2 2.limf ( x ) DNE 轾 lim f ( x )= 1� lim f ( x ) - 2 x� 2 x 1 臌犏x1+ x 1 - \ f( x ) is not continuous at x = 1 2 1. f (- 2) DNE [ f(-2) = 12] x3 - 64 ( x-4)( x + 4 x + 16) 29. 30.  ( x2 +4 x + 16) if x 4 \ f( x ) is not continuous at x=-2 x-4( x - 4)</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us