Viscosity of Heptane-Toluene Mixtures. Comparison of Molecular Dynamics and Group Contribution

Viscosity of Heptane-Toluene Mixtures. Comparison of Molecular Dynamics and Group Contribution

<p>Supporting information for:</p><p>Viscosity of heptane-toluene mixtures. Comparison of molecular dynamics and group contribution methods</p><p>Ana Milena Velásquez1, 2 and Bibian A. Hoyos1</p><p>1Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de </p><p>Procesos y Energía, Carrera 80 No. 65-223, 050041 Medellín, Colombia</p><p>[email protected],(+574) 425-5285</p><p>UNIFAC–VISCO method</p><p>2Author to whom any correspondence should be addressed. 1 Table S1. Volume and surface area parameters used in the UNIFAC–VISCO method for toluene and n- heptane groups [1].</p><p>Group k Rk Qk</p><p>CH2, CH2cy 0.6744 0.540</p><p>CH3 0.9011 0.848</p><p>CHar 0.5313 0.400</p><p>* The interaction parameter, ψ nm, is calculated using:</p><p>(S1)</p><p>For toluene and n-heptane groups, values of αnm are given in Table S2.</p><p>Table S2. Interaction parameters (αnm) used in the UNIFAC–VISCO method for toluene and n-heptane groups</p><p>[1].</p><p> n/m CH2 CH3 CH2cy CHar</p><p>CH2 0 66.53 224,9 406.7</p><p>CH3 -709.5 0 -130.7 -119.5</p><p>CH2cy -538.1 187.3 0 8.958</p><p>CHar -623.7 237.2 50.89 0</p><p>Grunberg–Nissan (G–N) method</p><p>Table S3. Group contribution parameters used in the G–N method for toluene and n-heptane (at 298 K) [2].</p><p>Group</p><p>- CH3 -0.100</p><p>> CH2 0.096 >CH- 0.204 >C< 0.433 Benzene ring 0.766 Consistent Valence Force Field (CVFF) potential</p><p>2 To represent the toluene and n-heptane molecules, this study used the Consistent Valence Force Field (CVFF) potential, which is a function of the Van der Waals and electrostatic interactions, as well as the intramolecular bond, angle, and dihedral interactions, as shown in Eq. (S2): </p><p>(S2)</p><p> where ε and σ are the Lennard–Jones potential parameters; rij is the separation distance between atoms i and j; qi and qj are the atomic charges; kθ, θ and θeq are the angle constant, the angle among the three atoms and the equilibrium angle, respectively; kl, l and leq are the binding constant, the bond length between each pair of atoms and the equilibrium bond length, respectively.</p><p>The energy contribution due to dihedral angle interactions, or sites separated by three bonds, was calculated using harmonic potential:</p><p>(S3)</p><p> where k , d and n are constants. 𝜙</p><p>The full list of the interaction parameters for the different molecules can be found in [3] </p><p>3 References</p><p>1. Chevalier JL, Petrino P, Gaston-Bonhomme Y (1988) Estimation method for the kinematic viscosity of a liquid-phase mixture. Chem Eng Sci 43:1303–1309. doi: 10.1016/0009-2509(88)85104-2</p><p>2. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, Fifth Edit. McGraw-Hill, United States of America</p><p>3. Levitt M, Hirshberg M (1995) Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput Phys Commun 91:215–231. doi: 10.1016/0010-4655(95)00049-L </p><p>4</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us