*Estimating the Australian Immigration Trade Relationship;

*Estimating the Australian Immigration Trade Relationship;

<p>------log: K:\Roger-Australia\Robustness-1\South Africa-Sweden_Exports.log log type: text opened on: 18 Aug 2006, 19:09:45</p><p>. clear</p><p>. *Estimating the Australian Immigration Trade relationship; . insheet using k:\book2.txt (54 vars, 11640 obs)</p><p>. drop if ccode ==. (10630 observations deleted)</p><p>. . **Dropping South Africa . drop if ccode==167060 (10 observations deleted)</p><p>. . ** Estimation Results . **Regression of Exports without Distinction between "white" and "non-white Aus > tralia" . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Exports . xtgls lrexp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7149.99 Log likelihood = -1023.826 Prob > chi2 = 0.0000</p><p>------lrexp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .54303 .0373098 14.55 0.000 .4699041 .6161559 lgdp | 1.055833 .0385101 27.42 0.000 .9803545 1.131311 lgdpau | -3.123804 .8818864 -3.54 0.000 -4.85227 -1.395338 lgdpdfrati~w | -1.814222 .3387715 -5.36 0.000 -2.478202 -1.150242 lpopau | 3.763105 3.077719 1.22 0.221 -2.269113 9.795324 lpop | -.0039828 .0412464 -0.10 0.923 -.0848244 .0768587 lxrate1 | .0008586 .0148314 0.06 0.954 -.0282104 .0299277 lremote | .157128 .0950801 1.65 0.098 -.0292256 .3434817 ldist | -1.365147 .1479018 -9.23 0.000 -1.655029 -1.075264 lopen | .8932523 .0806707 11.07 0.000 .7351407 1.051364 english | .1922103 .0979698 1.96 0.050 .0001929 .3842276 white | 3.267963 .5826911 5.61 0.000 2.125909 4.410016 lwhitemg | -.3982225 .05225 -7.62 0.000 -.5006305 -.2958144 _cons | 13.74723 28.59455 0.48 0.631 -42.29706 69.79153 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001392 lgdp | -.000767 .001483 lgdpau | -.003141 .002628 .777724 lgdpdfrati~w | .000817 -.001238 -.025389 .114766 lpopau | .012082 -.011033 -2.67077 .139828 9.47235 lpop | .000076 -.000771 .000764 -.000033 -.006137 .001701 lxrate1 | 2.6e-06 .00018 -.000021 1.5e-06 -.000262 -.000042 .00022 lremote | -.000356 .001607 .0042 -.003004 -.023679 -.000102 .000026 ldist | .003406 -.001457 -.005114 .003587 .010076 .001761 .000557 lopen | -.000595 .00037 .011072 -.001285 -.060141 .000888 -.000056 english | -.000608 .001792 -.002387 .000292 .015043 -.001126 .000531 white | .007208 -.000351 -.008608 -.010243 .010085 .008849 .00177 lwhitemg | -.000798 .000077 .000942 .0006 -.001501 -.000787 -.000151 _cons | -.143184 .097228 23.9042 -1.76145 -86.9341 .057209 -.005213</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .00904 ldist | .003373 .021875 lopen | .002222 .00083 .006508 english | .001264 .002912 -.00281 .009598 white | .020498 .036276 -.001038 .006528 .339529 lwhitemg | -.001493 -.003636 .000088 -.000376 -.030003 .00273 _cons | .141045 -.29762 .670399 -.254165 -.67184 .066486 817.648</p><p>. **II. Conservative Estimates . *2.1. Aggregate reference priced Exports (conservative) . xtgls lrrefp_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 5925.88 Log likelihood = -1430.609 Prob > chi2 = 0.0000</p><p>------lrrefp_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3371876 .0459661 7.34 0.000 .2470957 .4272795 lgdp | 1.091004 .0682321 15.99 0.000 .9572714 1.224736 lgdpau | -.3466232 .5120142 -0.68 0.498 -1.350153 .6569063 lgdpdfrati~w | -.2361685 .2980343 -0.79 0.428 -.820305 .347968 lpopau | 3.038812 1.845144 1.65 0.100 -.5776044 6.655227 lpop | .0365628 .0950704 0.38 0.701 -.1497717 .2228973 lxrate1 | -.0382733 .0301916 -1.27 0.205 -.0974478 .0209013 lremote | -.234556 .1708941 -1.37 0.170 -.5695022 .1003903 ldist | -3.149092 .39233 -8.03 0.000 -3.918044 -2.380139 lopen | -.0761672 .0548452 -1.39 0.165 -.1836618 .0313273 english | .6434384 .1843573 3.49 0.000 .2821048 1.004772 white | 7.761789 1.077722 7.20 0.000 5.649493 9.874086 lwhitemg | -.8374793 .1149682 -7.28 0.000 -1.062813 -.6121459 _cons | -31.78962 18.58909 -1.71 0.087 -68.22356 4.644316 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002113 lgdp | -.00161 .004656 lgdpau | .001122 -.001378 .262159 lgdpdfrati~w | -.001831 .003122 -.024573 .088824 lpopau | -.005097 .003687 -.909251 .10881 3.40456 lpop | -.000125 -.004848 .003607 -.001373 -.019748 .009038 lxrate1 | .000148 .000374 .000621 .002642 -.006435 -.000556 .000912 lremote | .000187 .000257 -.022954 .002793 .097274 -.003679 .000628 ldist | .008972 -.010415 .004392 .002464 -.034193 .00552 .002214 lopen | .000038 -.000241 .002572 .00111 -.01199 .001148 -.000366 english | -.001231 -.001273 .005778 .004246 -.044898 .0032 .001589 white | .01056 -.025867 .021875 -.003418 -.153462 .032712 .001864 lwhitemg | -.001524 .001985 -.004643 .000537 .023479 -.002099 -.000152 _cons | -.003367 .047163 8.35996 -1.34958 -32.9982 .183922 .05738</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .029205 ldist | .002942 .153923 lopen | -.002075 .000878 .003008 english | -.00473 .001765 -.000685 .033988 white | -.011668 .056627 .002673 .038983 1.16148 lwhitemg | .004253 -.007151 -.000597 -.001783 -.118454 .013218 _cons | -1.25209 -.952056 .130575 .579786 1.52672 -.240459 345.554</p><p>. *2.2. Aggregate Differentiated Exports (conservative) . xtgls lrdiff_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3367.22 Log likelihood = -1540.469 Prob > chi2 = 0.0000</p><p>------lrdiff_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4814274 .0530426 9.08 0.000 .3774658 .585389 lgdp | 1.090984 .061772 17.66 0.000 .9699136 1.212055 lgdpau | 2.482932 2.045506 1.21 0.225 -1.526186 6.492051 lgdpdfrati~w | -2.182785 .819762 -2.66 0.008 -3.789489 -.5760811 lpopau | -9.376886 7.041076 -1.33 0.183 -23.17714 4.42337 lpop | -.1870014 .078283 -2.39 0.017 -.3404333 -.0335694 lxrate1 | -.0632974 .0277489 -2.28 0.023 -.1176841 -.0089106 lremote | .2173643 .2037696 1.07 0.286 -.1820167 .6167453 ldist | -2.160107 .2347042 -9.20 0.000 -2.620119 -1.700095 lopen | .1294742 .0935696 1.38 0.166 -.0539189 .3128674 english | .6806297 .1784298 3.81 0.000 .3309137 1.030346 white | 2.907102 1.15414 2.52 0.012 .6450282 5.169175 lwhitemg | -.2833805 .1039047 -2.73 0.006 -.4870299 -.0797311 _cons | 91.73485 64.80949 1.42 0.157 -35.28941 218.7591 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002814 lgdp | -.001896 .003816 lgdpau | -.00268 .005346 4.1841 lgdpdfrati~w | -.003216 .001043 -.204929 .67201 lpopau | .008945 -.026619 -14.1849 .951073 49.5768 lpop | .000163 -.003237 -.000648 .001255 .005 .006128 lxrate1 | .000231 .000456 .00072 -.000527 -.006481 -.000865 .00077 lremote | .004201 -.002094 .002544 -.006546 -.031345 -.000179 .001118 ldist | .006485 -.005268 -.007186 .011452 .016254 .00224 .00274 lopen | -.000424 .00076 .014961 .002646 -.078435 .001315 -.000158 english | -.003111 .002475 -.000511 .009272 .01262 -.003038 .00104 white | .018533 -.016978 .042036 -.116371 -.18309 .008459 .002087 lwhitemg | -.001667 .001082 -.003553 .010105 .015161 -.000049 -.000125 _cons | -.151932 .343382 125.723 -11.186 -450.909 -.107592 .052263</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .041522 ldist | .024606 .055086 lopen | .004483 .000596 .008755 english | -.013895 .001601 -.003752 .031837 white | .075801 .021194 -.002956 -.016481 1.33204 lwhitemg | -.004502 .000356 .000421 .001529 -.116718 .010796 _cons | -.110062 -.798088 .834762 -.104607 1.29868 -.144045 4200.27</p><p>. *2.3. Aggregate Homogenous Exports (conservative) . xtgls lrhomo_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1994.96 Log likelihood = -1595.213 Prob > chi2 = 0.0000</p><p>------lrhomo_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4687246 .0548149 8.55 0.000 .3612894 .5761599 lgdp | .8842444 .0988432 8.95 0.000 .6905153 1.077974 lgdpau | .1788104 1.172192 0.15 0.879 -2.118645 2.476265 lgdpdfrati~w | -.4144929 .4844397 -0.86 0.392 -1.363977 .5349915 lpopau | -7.357522 4.008256 -1.84 0.066 -15.21356 .4985161 lpop | .2066428 .1082124 1.91 0.056 -.0054496 .4187351 lxrate1 | .0706104 .0377533 1.87 0.061 -.0033846 .1446055 lremote | -1.440253 .2385934 -6.04 0.000 -1.907887 -.9726181 ldist | -1.569266 .5113156 -3.07 0.002 -2.571427 -.5671061 lopen | .0689261 .0975915 0.71 0.480 -.1223498 .2602021 english | .9638281 .3021378 3.19 0.001 .3716488 1.556007 white | 13.74928 2.631433 5.23 0.000 8.591765 18.90679 lwhitemg | -1.617039 .2817156 -5.74 0.000 -2.169191 -1.064886 _cons | 124.1534 37.70413 3.29 0.001 50.25465 198.0521 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003005 lgdp | -.003233 .00977 lgdpau | .005997 -.011919 1.37404 lgdpdfrati~w | -.003787 .007955 -.064983 .234682 lpopau | -.022883 .026722 -4.5663 .315992 16.0661 lpop | .000387 -.00586 .000628 -.002734 -.000537 .01171 lxrate1 | -.000117 .00118 .002759 .002687 -.018731 -.001474 .001425 lremote | .000243 .011338 -.040045 .01477 .100849 -.007765 .000803 ldist | .015871 -.011036 .019327 -.005924 -.136169 .013236 .001969 lopen | -.000047 -.001078 -.019896 .007285 .047863 .002192 -.000235 english | -.00274 .004398 .015382 .00521 -.074622 .004911 .002825 white | .011447 -.024764 .105245 -.012764 -.455912 .034138 .003327 lwhitemg | -.001347 .001856 -.011596 .001664 .049532 -.002955 -.000147 _cons | .123391 -.245517 40.1241 -3.9808 -147.052 -.113982 .202101</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .056927 ldist | .032503 .261444 lopen | .002209 -.001866 .009524 english | -.011992 .014689 -.003809 .091287 white | -.022747 .06067 -.000335 .129832 6.92444 lwhitemg | .003134 -.008083 .000476 -.013421 -.737061 .079364 _cons | -1.56741 -1.06986 -.282005 .601871 4.34622 -.453723 1421.6</p><p>. **III. Liberal Estimates . *3.1. Aggregate reference priced Exports (liberal) . xtgls lrrefp_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2328.91 Log likelihood = -1440.679 Prob > chi2 = 0.0000</p><p>------lrrefp_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3099867 .0456214 6.79 0.000 .2205705 .3994029 lgdp | 1.028198 .0812599 12.65 0.000 .8689311 1.187464 lgdpau | .0755175 .5429164 0.14 0.889 -.9885792 1.139614 lgdpdfrati~w | -.0040179 .2750896 -0.01 0.988 -.5431837 .5351479 lpopau | -3.872385 1.917706 -2.02 0.043 -7.63102 -.1137511 lpop | .0837422 .1035566 0.81 0.419 -.119225 .2867095 lxrate1 | .0142988 .0298944 0.48 0.632 -.0442931 .0728907 lremote | -.2589018 .1654106 -1.57 0.118 -.5831006 .0652969 ldist | -2.374994 .4675011 -5.08 0.000 -3.29128 -1.458709 lopen | .0039206 .0561039 0.07 0.944 -.106041 .1138821 english | 1.042218 .2449441 4.25 0.000 .5621364 1.5223 white | 10.87638 2.048336 5.31 0.000 6.861717 14.89104 lwhitemg | -1.091664 .2003221 -5.45 0.000 -1.484288 -.6990399 _cons | 64.87235 19.02292 3.41 0.001 27.58811 102.1566 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002081 lgdp | -.002256 .006603 lgdpau | .001345 -.002608 .294758 lgdpdfrati~w | -.001748 .003741 -.027364 .075674 lpopau | -.007947 .010996 -1.01147 .122976 3.6776 lpop | .000796 -.006249 .003977 -.003084 -.022416 .010724 lxrate1 | .000087 .000231 .001617 .00179 -.008416 -.0004 .000894 lremote | .000554 .000563 -.021714 .003625 .082468 -.003503 .000051 ldist | .006776 -.011915 .003772 .000705 -.030683 .009501 .002864 lopen | -2.1e-06 -.000098 .00185 .00135 -.009271 .000963 -.000246 english | -.001625 -.000806 .010108 .004341 -.032391 .000907 .002504 white | .008762 -.025423 .015894 -.000392 -.123308 .033391 .01117 lwhitemg | -.001049 .001578 -.003177 .000199 .018095 -.002024 -.001003 _cons | .056377 -.049418 9.21139 -1.47549 -34.8618 .179951 .06395</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .027361 ldist | .007925 .218557 lopen | -.001112 -.000354 .003148 english | -.007727 .027315 -.000765 .059998 white | .03796 -.161409 -.005137 .023263 4.19568 lwhitemg | -.001447 .017699 .000277 -.000185 -.405966 .040129 _cons | -1.07785 -1.68807 .107163 .058507 2.78046 -.367762 361.872</p><p>. *3.2. Aggregate Differentiated Exports (liberal) . xtgls lrdiff_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3368.02 Log likelihood = -1557.56 Prob > chi2 = 0.0000</p><p>------lrdiff_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4434003 .0555128 7.99 0.000 .3345971 .5522034 lgdp | 1.178864 .068477 17.22 0.000 1.044651 1.313076 lgdpau | 2.161729 2.128605 1.02 0.310 -2.010259 6.333718 lgdpdfrati~w | -2.372315 .8226297 -2.88 0.004 -3.98464 -.7599906 lpopau | -8.507315 7.325608 -1.16 0.246 -22.86524 5.850613 lpop | -.2830922 .0795269 -3.56 0.000 -.4389621 -.1272223 lxrate1 | -.0281447 .0277342 -1.01 0.310 -.0825028 .0262134 lremote | .3304789 .1951034 1.69 0.090 -.0519168 .7128747 ldist | -2.136054 .2318427 -9.21 0.000 -2.590457 -1.681651 lopen | .1564733 .1023403 1.53 0.126 -.0441099 .3570566 english | .8006001 .1928014 4.15 0.000 .4227163 1.178484 white | 3.174803 1.156595 2.74 0.006 .9079187 5.441686 lwhitemg | -.2967086 .1045118 -2.84 0.005 -.5015479 -.0918693 _cons | 84.23781 67.3881 1.25 0.211 -47.84045 216.3161 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003082 lgdp | -.002486 .004689 lgdpau | -.003381 .006152 4.53096 lgdpdfrati~w | -.003469 .002338 -.21369 .67672 lpopau | .012521 -.031147 -15.3614 .968349 53.6645 lpop | .000985 -.004022 -.000869 -.000924 .006093 .006325 lxrate1 | .00004 .000655 .00071 .000345 -.006823 -.001 .000769 lremote | .003829 -.002238 .000281 -.003676 -.023248 .001332 .000803 ldist | .00664 -.005743 -.008818 .012623 .022549 .003133 .002129 lopen | -.000521 .000818 .015584 .003179 -.086137 .001727 -.000223 english | -.004597 .004401 .001421 .011997 .003723 -.004618 .00134 white | .017441 -.018448 .036726 -.10981 -.143962 .011856 -.000169 lwhitemg | -.001557 .001213 -.003153 .009722 .011833 -.000362 .000083 _cons | -.19105 .396883 136.175 -11.2795 -487.958 -.128266 .064616</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .038065 ldist | .023277 .053751 lopen | .00502 .000662 .010474 english | -.015575 -.00031 -.004303 .037172 white | .067437 .00011 -.00423 -.025073 1.33771 lwhitemg | -.003962 .002357 .000571 .002362 -.117802 .010923 _cons | -.161684 -.837887 .935014 .009442 1.05021 -.122143 4541.16 . *3.3. Aggregate Homogenous Exports (liberal) . xtgls lrhomo_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2852.54 Log likelihood = -1514.268 Prob > chi2 = 0.0000</p><p>------lrhomo_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5579087 .0449155 12.42 0.000 .4698759 .6459415 lgdp | 1.096089 .071017 15.43 0.000 .9568984 1.23528 lgdpau | -.503168 .6578349 -0.76 0.444 -1.792501 .7861648 lgdpdfrati~w | -.5355091 .4796883 -1.12 0.264 -1.475681 .4046626 lpopau | 1.921257 2.360785 0.81 0.416 -2.705797 6.548312 lpop | -.16348 .0851865 -1.92 0.055 -.3304424 .0034824 lxrate1 | -.04333 .0306191 -1.42 0.157 -.1033424 .0166824 lremote | -.7131806 .2005785 -3.56 0.000 -1.106307 -.3200541 ldist | -2.025019 .3163476 -6.40 0.000 -2.645049 -1.404989 lopen | .0336908 .0714142 0.47 0.637 -.1062785 .17366 english | .7163412 .2366032 3.03 0.002 .2526076 1.180075 white | 5.939094 2.05901 2.88 0.004 1.903509 9.974679 lwhitemg | -.8247732 .2113489 -3.90 0.000 -1.239009 -.4105369 _cons | -12.94788 23.75858 -0.54 0.586 -59.51384 33.61808 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002017 lgdp | -.002064 .005043 lgdpau | .000018 -.003795 .432747 lgdpdfrati~w | -.003601 .004221 -.056844 .230101 lpopau | .000569 .007642 -1.49801 .295358 5.57331 lpop | .000192 -.003464 .004475 .000687 -.0228 .007257 lxrate1 | -.000377 .000725 .001321 .002882 -.009723 -.000319 .000938 lremote | .001771 .001794 -.030344 .001783 .126743 -.004723 .000205 ldist | .00651 -.009996 -.004958 -.000424 -.000485 .012107 .0005 lopen | .000082 -.000915 .000358 .005188 -.006131 .001806 -.00034 english | -.001146 .001393 .015067 .007946 -.093863 .003296 .002945 white | .009956 -.013993 .036263 -.010068 -.235398 .020993 .00635 lwhitemg | -.000869 .000989 -.004624 .001524 .02743 -.001779 -.00041 _cons | -.051716 -.003058 13.8782 -3.76171 -54.3577 .150997 .103993</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .040232 ldist | .017172 .100076 lopen | -.002628 .000812 .0051 english | -.013018 .017622 -.001233 .055981 white | .009715 .077356 -.002102 .071761 4.23952 lwhitemg | .001433 -.005585 .00006 -.007088 -.429621 .044668 _cons | -1.79964 -.974653 .098335 1.00032 2.01983 -.279917 564.47</p><p>. *IV. Aggregate NON-Manufacturing Exports (Sum of Sitc0,1,2,3,4) . xtgls lrxnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1480.53 Log likelihood = -1099.162 Prob > chi2 = 0.0000</p><p>------lrxnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .480353 .0563726 8.52 0.000 .3698648 .5908413 lgdp | .4872888 .0992525 4.91 0.000 .2927576 .68182 lgdpau | -5.205336 1.276245 -4.08 0.000 -7.70673 -2.703943 lgdpdfrati~w | -2.622431 .548226 -4.78 0.000 -3.696934 -1.547928 lpopau | 14.88814 4.409333 3.38 0.001 6.246009 23.53028 lpop | .0948535 .0844998 1.12 0.262 -.0707631 .26047 lxrate1 | -.0720675 .0359228 -2.01 0.045 -.1424749 -.0016601 lremote | .6005073 .2622352 2.29 0.022 .0865358 1.114479 ldist | -1.152594 .2429733 -4.74 0.000 -1.628813 -.6763747 lopen | .0963956 .1101244 0.88 0.381 -.1194442 .3122354 english | 1.32973 .2266807 5.87 0.000 .8854436 1.774016</p><p> white | 15.02659 1.020276 14.73 0.000 13.02688 17.02629 lwhitemg | -1.584868 .0921326 -17.20 0.000 -1.765445 -1.404292 _cons | -110.2445 41.12043 -2.68 0.007 -190.8391 -29.64997 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003178 lgdp | -.003643 .009851 lgdpau | -.001717 .003546 1.6288 lgdpdfrati~w | -.002784 .004885 -.109698 .300552 lpopau | .01184 -.032573 -5.50595 .453896 19.4422 lpop | .001093 -.006327 .000567 -.002823 .005767 .00714 lxrate1 | -.000624 .001904 .001005 .001776 -.009444 -.001627 .00129 lremote | .000119 .000184 .001235 -.023835 -.01804 .001021 -.00097 ldist | .00933 -.014347 -.004616 -.009447 .0276 .010123 -.003249 lopen | -.000161 -.000599 .009288 .003017 -.058118 .002878 -.00033 english | -.00516 .004723 .003889 .011729 -.020498 .001228 .002941 white | .015857 -.043107 .017926 -.051938 .014521 .041279 -.008167 lwhitemg | -.001796 .003207 -.001887 .002199 .000818 -.003084 .000712 _cons | -.190148 .468168 48.6768 -4.72417 -178.173 -.18068 .14905</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .068767 ldist | .014338 .059036 lopen | .003503 .004329 .012127 english | -.014103 -.007943 -.003103 .051384 white | .026684 .097686 -.002181 .079168 1.04096 lwhitemg | .003968 -.008973 .000287 -.006716 -.087424 .008488 _cons | -.462431 -.889244 .626608 .296832 -1.62299 .07306 1690.89</p><p>. *V. Aggregate Manufacturing Exports (Sum of Sitc5,6,7,8,9) . xtgls lrxmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1152.00 Log likelihood = -968.8814 Prob > chi2 = 0.0000</p><p>------lrxmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2404777 .0497646 4.83 0.000 .1429409 .3380146 lgdp | .4127711 .0996971 4.14 0.000 .2173684 .6081739 lgdpau | -2.627736 1.141729 -2.30 0.021 -4.865483 -.3899885 lgdpdfrati~w | -4.535703 .4774986 -9.50 0.000 -5.471583 -3.599823 lpopau | 10.66951 3.939911 2.71 0.007 2.947428 18.3916 lpop | .0985644 .0912755 1.08 0.280 -.0803323 .277461 lxrate1 | -.0812966 .0269118 -3.02 0.003 -.1340428 -.0285504 lremote | .6656785 .2082351 3.20 0.001 .2575452 1.073812 ldist | -2.434051 .2539923 -9.58 0.000 -2.931866 -1.936235 lopen | -.0825433 .0507806 -1.63 0.104 -.1820714 .0169847 english | .3586313 .1958335 1.83 0.067 -.0251954 .7424579 white | 9.481918 .8211615 11.55 0.000 7.872471 11.09137 lwhitemg | -.8678913 .0692495 -12.53 0.000 -1.003618 -.7321647 _cons | -90.92761 36.75729 -2.47 0.013 -162.9706 -18.88465 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002477 lgdp | -.003119 .00994 lgdpau | -.003617 .007765 1.30354 lgdpdfrati~w | -.003409 .005067 -.046656 .228005 lpopau | .01522 -.037667 -4.40805 .234184 15.5229 lpop | .001461 -.007504 -.003691 -.002461 .017521 .008331 lxrate1 | -.000106 .00099 .000799 .000633 -.006038 -.000888 .000724 lremote | .004336 -.004485 -.007883 -.019861 .005065 .000369 .000028 ldist | .007715 -.011154 -.015342 -.012842 .064033 .005834 -.00023 lopen | -.000067 .000065 .004809 .002065 -.023188 .000509 -.000061 english | -.002106 .002919 .002672 .003246 -.002109 -.001053 .0007 white | .01753 -.039996 -.031557 -.040212 .101769 .043675 -.005479 lwhitemg | -.001249 .001741 .00135 .001475 -.004378 -.002599 .000409 _cons | -.233188 .470097 39.0958 -2.66144 -142.344 -.218341 .070488</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .043362 ldist | .02925 .064512 lopen | .000814 .000508 .002579 english | -.000344 .016359 -.000373 .038351 white | .064444 .076054 .001433 .003246 .674306 lwhitemg | -.002672 -.004358 -.000155 .00044 -.052745 .004795 _cons | -.443354 -1.40741 .237682 -.243508 -2.00433 .110397 1351.1</p><p>. . **VI. SITC-1 Digit Level Disaggregate Exports . xtgls lrxsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 887.00 Log likelihood = -1421.267 Prob > chi2 = 0.0000</p><p>------lrxsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3544488 .08408 4.22 0.000 .1896551 .5192425 lgdp | .3779936 .1397592 2.70 0.007 .1040706 .6519167 lgdpau | -1.71765 1.718305 -1.00 0.317 -5.085466 1.650167 lgdpdfrati~w | -1.868919 .774894 -2.41 0.016 -3.387683 -.3501546 lpopau | 12.01064 5.861653 2.05 0.040 .5220097 23.49927 lpop | .0189555 .1342147 0.14 0.888 -.2441004 .2820114 lxrate1 | -.1874872 .0468076 -4.01 0.000 -.2792283 -.095746 lremote | .984438 .2874446 3.42 0.001 .421057 1.547819 ldist | -1.842973 .4324007 -4.26 0.000 -2.690463 -.9954829 lopen | -.3808094 .1744686 -2.18 0.029 -.7227616 -.0388571 english | 1.436953 .3097783 4.64 0.000 .8297989 2.044107 white | 20.23822 1.814516 11.15 0.000 16.68184 23.79461 lwhitemg | -1.946955 .1705828 -11.41 0.000 -2.281291 -1.612619 _cons | -149.8183 54.26518 -2.76 0.006 -256.1761 -43.46052 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .007069 lgdp | -.009121 .019533 lgdpau | -.008899 .011012 2.95257 lgdpdfrati~w | -.003081 -.000337 .105263 .600461 lpopau | .027031 -.0307 -9.81083 -.109348 34.359 lpop | .003556 -.012589 -.000389 .000818 -.020946 .018014 lxrate1 | .000311 .00119 .000417 .001498 -.000255 -.001839 .002191 lremote | .003497 -.000764 -.035026 -.055494 -.02467 .000957 -.002123 ldist | .019692 -.024183 -.038044 -.024401 .051989 .021089 .000777 lopen | -.000655 -.000461 .016721 -.000168 -.121943 .007135 -.001093 english | -.009227 .006568 .013818 .011307 -.054469 .004645 .003488 white | .0349 -.081173 -.005142 -.062903 -.04189 .084361 .001158 lwhitemg | -.003069 .005587 -.002607 .001701 .001181 -.006122 -.000268 _cons | -.319576 .260144 85.652 -.85895 -312.093 .136881 -.00688</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .082624 ldist | .046217 .18697 lopen | .012315 .006583 .030439 english | -.010979 .01101 -.005447 .095963 white | .050454 .158495 .001818 .118645 3.29247 lwhitemg | .000729 -.012046 .000588 -.008985 -.300246 .029098 _cons | .232613 -1.92713 1.34151 .307479 -.810989 .149312 2944.71</p><p>. xtgls lrxsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 931.92 Log likelihood = -278.8354 Prob > chi2 = 0.0000</p><p>------lrxsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0156039 .0168831 0.92 0.355 -.0174864 .0486942 lgdp | .0514808 .0412113 1.25 0.212 -.0292918 .1322535 lgdpau | -.057266 .3057844 -0.19 0.851 -.6565924 .5420603 lgdpdfrati~w | -.1048626 .1599552 -0.66 0.512 -.4183691 .2086438 lpopau | 3.292454 1.089435 3.02 0.003 1.1572 5.427708 lpop | .2004089 .0513098 3.91 0.000 .0998435 .3009743 lxrate1 | -.0426789 .0146412 -2.91 0.004 -.0713751 -.0139826 lremote | .0892196 .1003407 0.89 0.374 -.1074446 .2858838 ldist | -3.430377 .3369389 -10.18 0.000 -4.090765 -2.769989 lopen | -.0298864 .0281227 -1.06 0.288 -.0850059 .0252331 english | 1.32982 .1619715 8.21 0.000 1.012361 1.647278 white | 19.56623 1.367629 14.31 0.000 16.88573 22.24674 lwhitemg | -1.578605 .1252942 -12.60 0.000 -1.824177 -1.333033 _cons | -24.60161 11.84464 -2.08 0.038 -47.81667 -1.386556 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000285 lgdp | -.000201 .001698 lgdpau | .000281 -.001386 .093504 lgdpdfrati~w | -.00027 .000403 -.006564 .025586 lpopau | -.001773 .006714 -.317496 .034264 1.18687 lpop | -.000044 -.00144 .000433 -.000013 -.004361 .002633 lxrate1 | .000023 -8.9e-06 .000441 .000335 -.003396 .000016 .000214 lremote | .000284 .001268 -.006476 -.001302 .017014 -.000571 .000054 ldist | .001352 .002967 -.007907 -.001971 .033816 -.001516 -.000398 lopen | .000039 -.000103 -.000034 -.000152 -.001784 .000152 -.000022 english | -.000532 .000495 -.000533 -.000417 .008999 .001548 .000082 white | .000923 -.006536 .005905 -.005327 -.042746 .010938 .000297 lwhitemg | -.000127 .000244 -.000542 .000377 .002488 -.000796 .000014 _cons | .010709 -.129539 2.974 -.401068 -11.9312 .072108 .046833</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .010068 ldist | .012632 .113528 lopen | .000056 -.000106 .000791 english | .000614 .025134 -.000467 .026235 white | .005024 .035762 -8.4e-06 .040062 1.87041 lwhitemg | -.000319 -.005494 .000046 -.004388 -.166788 .015699 _cons | -.34081 -1.6025 .031468 -.418833 .134796 .03612 140.295</p><p>. xtgls lrxsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1079.38 Log likelihood = -1318.218 Prob > chi2 = 0.0000</p><p>------lrxsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3022904 .0594172 5.09 0.000 .1858348 .4187459 lgdp | .7529058 .1174641 6.41 0.000 .5226804 .9831311 lgdpau | -5.482432 1.916773 -2.86 0.004 -9.239238 -1.725626 lgdpdfrati~w | -.3445875 .8313767 -0.41 0.679 -1.974056 1.284881 lpopau | 16.72621 6.634317 2.52 0.012 3.723185 29.72923 lpop | -.0227202 .1223966 -0.19 0.853 -.2626131 .2171727 lxrate1 | -.055559 .0367458 -1.51 0.131 -.1275794 .0164614 lremote | -.2077371 .3412296 -0.61 0.543 -.8765348 .4610605 ldist | -2.683376 .4061992 -6.61 0.000 -3.479512 -1.88724 lopen | -.1457665 .1755956 -0.83 0.406 -.4899276 .1983945 english | .0923799 .2658729 0.35 0.728 -.4287214 .6134812 white | 10.4849 1.55216 6.76 0.000 7.442724 13.52708 lwhitemg | -1.208217 .1587799 -7.61 0.000 -1.51942 -.8970143 _cons | -119.7441 61.73904 -1.94 0.052 -240.7504 1.26215 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00353 lgdp | -.00442 .013798 lgdpau | -.003512 .010616 3.67402 lgdpdfrati~w | -.005694 .008128 -.083483 .691187 lpopau | .010714 -.070533 -12.4263 .589883 44.0142 lpop | .001988 -.010331 -.00064 -.005551 .010932 .014981 lxrate1 | -.000353 .002467 .000749 .003151 -.009196 -.001971 .00135 lremote | .00716 -.008501 -.005061 -.053103 -.058775 -.0007 -.003264 ldist | .016073 -.019182 -.010535 -.042413 -.025914 .010384 -.002724 lopen | .000778 .001881 .022455 -.009633 -.173036 .003797 -.001183 english | -.002438 .004485 -.004892 .013358 .049848 -.000881 .002065 white | .029406 -.066665 -.045737 -.044963 .333159 .060455 -.007727 lwhitemg | -.002402 .003903 .001636 -.000721 -.018228 -.004476 .000078 _cons | -.246079 1.01127 109.791 -7.53469 -402.954 -.257133 .157157</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .116438 ldist | .056165 .164998 lopen | .025372 .011726 .030834 english | -.018043 .011926 -.015076 .070688 white | .067473 .170872 -.023851 .105178 2.4092 lwhitemg | .003599 -.014764 .002839 -.01259 -.236058 .025211 _cons | -.210439 -1.11908 1.88208 -.772229 -6.16028 .370695 3811.71</p><p>. xtgls lrxsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 313.48 Log likelihood = -729.3527 Prob > chi2 = 0.0000</p><p>------lrxsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0623045 .0471886 1.32 0.187 -.0301835 .1547925 lgdp | .2653581 .1029164 2.58 0.010 .0636456 .4670706 lgdpau | -.1524024 .8547578 -0.18 0.858 -1.827697 1.522892 lgdpdfrati~w | .2085438 .2893004 0.72 0.471 -.3584745 .7755621 lpopau | -1.6344 2.936325 -0.56 0.578 -7.389491 4.12069 lpop | .5604125 .1148447 4.88 0.000 .335321 .7855041 lxrate1 | .0340186 .0307648 1.11 0.269 -.0262793 .0943164 lremote | .158784 .2839244 0.56 0.576 -.3976976 .7152656 ldist | -1.658349 .548349 -3.02 0.002 -2.733093 -.5836045 lopen | .0214049 .0593605 0.36 0.718 -.0949395 .1377493 english | 1.591309 .3601525 4.42 0.000 .885423 2.297195 white | 14.1344 2.7122 5.21 0.000 8.818582 19.45021 lwhitemg | -1.145175 .2452109 -4.67 0.000 -1.625779 -.6645703 _cons | 31.42677 28.1644 1.12 0.264 -23.77444 86.62797 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002227 lgdp | -.001627 .010592 lgdpau | .002334 -.001158 .730611 lgdpdfrati~w | -.001311 .002628 -.019275 .083695 lpopau | -.014651 -.001622 -2.4439 .070096 8.622 lpop | -.00008 -.00767 -.001627 -.000436 .00433 .013189 lxrate1 | .000166 .000364 .001511 .001729 -.010046 -.000448 .000946 lremote | .001481 .00436 -.041402 -.013749 .133023 -.00375 -.000936 ldist | .007601 -.000257 -.001395 -.00223 -.054617 .007684 .001908 lopen | .00018 -.000536 -.002108 .003869 .003172 .00115 -.000077 english | -.004997 -.005337 .003369 .006496 -.004577 .009745 .001806 white | .004946 -.052606 .061698 -.007275 -.235705 .063947 .001204 lwhitemg | -.000845 .002484 -.009408 -.000556 .039232 -.004464 -.000218 _cons | .125855 -.086868 21.8046 -.650525 -79.6101 -.10454 .109929</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .080613 ldist | .025307 .300687 lopen | -7.1e-06 .000555 .003524 english | -.018128 .050597 -.000533 .12971 white | -.013044 .113086 .004298 .181359 7.35603 lwhitemg | .005192 -.015277 -.000344 -.016831 -.641865 .060128 _cons | -2.09439 -2.31492 -.011233 -.386849 1.4299 -.282146 793.233</p><p>. xtgls lrxsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 262.89 Log likelihood = -834.3199 Prob > chi2 = 0.0000</p><p>------lrxsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0245301 .0429261 0.57 0.568 -.0596036 .1086638 lgdp | .1147569 .0820467 1.40 0.162 -.0460517 .2755654 lgdpau | .0122753 .7696406 0.02 0.987 -1.496193 1.520743 lgdpdfrati~w | -.0184722 .2680807 -0.07 0.945 -.5439008 .5069564 lpopau | .0909823 2.65071 0.03 0.973 -5.104314 5.286279 lpop | .4997694 .10042 4.98 0.000 .3029499 .6965889 lxrate1 | -.0046401 .023067 -0.20 0.841 -.0498506 .0405704 lremote | .7551387 .2198947 3.43 0.001 .324153 1.186124 ldist | -2.484231 .4093117 -6.07 0.000 -3.286468 -1.681995 lopen | .035161 .0544371 0.65 0.518 -.0715336 .1418557 english | .7996364 .3310625 2.42 0.016 .1507658 1.448507 white | -.1738732 1.796653 -0.10 0.923 -3.695249 3.347503 lwhitemg | .1064392 .1830797 0.58 0.561 -.2523904 .4652688 _cons | 5.932634 25.54532 0.23 0.816 -44.13527 56.00054 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001843 lgdp | -.001584 .006732 lgdpau | -.001003 .001566 .592347 lgdpdfrati~w | -.000569 .001053 -.038326 .071867 lpopau | -.00263 -.005104 -1.98058 .125181 7.02626 lpop | .000052 -.004626 -.000124 -.000905 -.009966 .010084 lxrate1 | .000163 .000036 .00008 .00154 -.004687 -.000235 .000532 lremote | .002897 .002544 -.021502 -.008524 .074359 -.003455 -.001009 ldist | .005687 -.004893 -.014144 -.001899 .035178 .002197 .000227 lopen | -.000139 .000268 .002729 .000531 -.011796 .000766 -.000022 english | -.003577 -.003151 .003363 .004497 .00766 .001193 .000723 white | .007368 -.034194 .015912 -.009555 -.130852 .041097 .001593 lwhitemg | -.000736 .001994 -.003544 .000263 .020715 -.002836 -.000203 _cons | .017064 -.002565 17.6457 -1.06259 -65.4366 .123643 .081142</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .048354 ldist | .02512 .167536 lopen | .000623 -.000806 .002963 english | -.018136 .042982 -.001571 .109602 white | -.00055 .063586 -.00069 .124855 3.22796 lwhitemg | .001708 -.006497 .000115 -.012132 -.319781 .033518 _cons | -1.33051 -1.9894 .109984 -.425305 1.21044 -.197678 652.563</p><p>. xtgls lrxsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 820.05 Log likelihood = -1051.134 Prob > chi2 = 0.0000</p><p>------lrxsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2032269 .0679654 2.99 0.003 .0700171 .3364366 lgdp | .6017123 .1207253 4.98 0.000 .3650951 .8383295 lgdpau | -.8101206 .7876398 -1.03 0.304 -2.353866 .7336251 lgdpdfrati~w | -.9887524 .3587895 -2.76 0.006 -1.691967 -.2855379 lpopau | 7.952775 2.665562 2.98 0.003 2.728369 13.17718 lpop | .1000975 .1024533 0.98 0.329 -.1007073 .3009022 lxrate1 | -.1085842 .03275 -3.32 0.001 -.172773 -.0443953 lremote | .7555037 .2001417 3.77 0.000 .3632331 1.147774 ldist | -2.94672 .3143065 -9.38 0.000 -3.562749 -2.33069 lopen | .1617985 .0986544 1.64 0.101 -.0315605 .3551576 english | .9348958 .2640495 3.54 0.000 .4173682 1.452423 white | 12.90671 1.928953 6.69 0.000 9.126027 16.68738 lwhitemg | -1.203031 .1767256 -6.81 0.000 -1.549407 -.8566556 _cons | -100.9164 25.17091 -4.01 0.000 -150.2504 -51.58228 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004619 lgdp | -.005597 .014575 lgdpau | -.004978 .006744 .620377 lgdpdfrati~w | -.000587 -.000375 .036289 .12873 lpopau | .015998 -.022979 -2.01846 -.051996 7.10522 lpop | .002407 -.009086 -.002934 .000339 .001705 .010497 lxrate1 | .000052 .000897 .000583 .000107 -.003708 -.000795 .001073 lremote | .000381 .003097 -.02594 -.022687 .012166 -.001496 .001063 ldist | .010533 -.010631 -.020976 -.006155 .061896 .002785 -.001205 lopen | -.000235 .000308 .002056 .001076 -.032728 .002044 -.000541 english | -.007858 .014983 .007618 .000651 -.024497 -.007074 .000248 white | .022457 -.03916 -.042309 -.025518 .042312 .040845 -.000949 lwhitemg | -.001921 .001841 .001405 .000454 -.002721 -.002415 .000138 _cons | -.176894 .116522 17.5181 .041173 -65.1934 .066794 .036117</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .040057 ldist | .013677 .098789 lopen | .003369 .000996 .009733 english | -.000385 .011213 -.004681 .069722 white | .029894 .050287 -.006663 .04038 3.72086 lwhitemg | -.000095 -.004749 .000555 -.005128 -.331277 .031232 _cons | -.02889 -1.39462 .422169 -.105205 -.244042 .066518 633.575</p><p>. xtgls lrxsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 858.05 Log likelihood = -1132.084 Prob > chi2 = 0.0000</p><p>------lrxsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2958965 .0719711 4.11 0.000 .1548357 .4369574 lgdp | .5898611 .1108013 5.32 0.000 .3726946 .8070276 lgdpau | -.0710792 1.301331 -0.05 0.956 -2.621641 2.479483 lgdpdfrati~w | -1.542605 .6041507 -2.55 0.011 -2.726718 -.358491 lpopau | 3.216231 4.440445 0.72 0.469 -5.486882 11.91934 lpop | .0075974 .1219964 0.06 0.950 -.2315111 .2467059 lxrate1 | -.0711298 .0339438 -2.10 0.036 -.1376584 -.0046012 lremote | 1.15668 .2745008 4.21 0.000 .6186684 1.694692 ldist | -2.035378 .4257915 -4.78 0.000 -2.869914 -1.200842 lopen | -.0916374 .0798516 -1.15 0.251 -.2481438 .0648689 english | 1.39691 .3001377 4.65 0.000 .8086507 1.985169 white | 12.68056 1.518123 8.35 0.000 9.705088 15.65602 lwhitemg | -1.222859 .139619 -8.76 0.000 -1.496507 -.9492108 _cons | -51.48661 41.47314 -1.24 0.214 -132.7725 29.79924 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00518 lgdp | -.005176 .012277 lgdpau | -.006224 .009044 1.69346 lgdpdfrati~w | -.004371 .005062 .037434 .364998 lpopau | .017508 -.028576 -5.61313 .087692 19.7176 lpop | .001539 -.010061 -.003653 -.001637 .004362 .014883 lxrate1 | 5.7e-06 .000682 .001809 .001179 -.010331 -.000628 .001152 lremote | .004109 -.002811 -.030205 -.048884 -.006223 -.000826 .000209 ldist | .01481 -.014228 -.029206 -.023728 .062206 .007906 -.000727 lopen | -.000468 .000517 .003459 .001363 -.027515 .00108 -.000175 english | -.007857 .008602 .01036 .00821 -.032048 -.000126 .000759 white | .025085 -.055608 -.047166 -.042871 .035753 .065301 -.001158 lwhitemg | -.002301 .003487 .001844 -.000132 -.004674 -.004357 .000246 _cons | -.237526 .299547 49.0714 -2.24045 -180.053 -.05697 .117837 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .075351 ldist | .038303 .181298 lopen | .002625 .001021 .006376 english | -.00378 .033416 -.001396 .090083 white | .072391 .121049 -.003788 .047025 2.3047 lwhitemg | -.001083 -.01085 .000301 -.00446 -.203977 .019493 _cons | -.023555 -2.2005 .31216 -.202877 -1.05122 .14776 1720.02</p><p>. xtgls lrxsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 452.24 Log likelihood = -1195.732 Prob > chi2 = 0.0000</p><p>------lrxsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2441514 .0514854 4.74 0.000 .1432419 .3450609 lgdp | .3296667 .0939244 3.51 0.000 .1455782 .5137552 lgdpau | -2.542793 1.514078 -1.68 0.093 -5.510331 .4247451 lgdpdfrati~w | -2.644245 .6714795 -3.94 0.000 -3.960321 -1.32817 lpopau | 7.917048 5.179871 1.53 0.126 -2.235312 18.06941 lpop | .1428397 .0758686 1.88 0.060 -.0058601 .2915395 lxrate1 | -.1072327 .0371768 -2.88 0.004 -.1800979 -.0343676 lremote | 1.562587 .2362191 6.61 0.000 1.099606 2.025568 ldist | -.6834555 .2906372 -2.35 0.019 -1.253094 -.1138171 lopen | .0821467 .1193843 0.69 0.491 -.1518422 .3161356 english | .6000499 .1870372 3.21 0.001 .2334637 .9666362 white | 7.089776 1.148162 6.17 0.000 4.83942 9.340132 lwhitemg | -.5565431 .1147117 -4.85 0.000 -.7813739 -.3317124 _cons | -73.92699 47.82328 -1.55 0.122 -167.6589 19.80492 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002651 lgdp | -.002427 .008822 lgdpau | -.004124 .00723 2.29243 lgdpdfrati~w | -.001729 .00123 .061581 .450885 lpopau | .014891 -.038155 -7.67038 -.024028 26.8311 lpop | -.000068 -.00425 .000575 .000183 .000073 .005756 lxrate1 | .000204 .001355 .000988 .000578 -.006887 -.001562 .001382 lremote | .000659 -.000451 -.017611 -.03586 .017068 -.000975 -.000844 ldist | .005884 -.003169 -.004954 -.000281 .015632 .004679 -.000474 lopen | -.000409 .000945 .011156 .002357 -.071346 .002617 -.000397 english | -.003919 .007168 .009509 .008984 -.030931 -.000378 .001093 white | .00997 -.021261 -.016302 -.033326 .052037 .020571 -.004643 lwhitemg | -.001083 .000406 -.000922 -.000623 .002906 -.001284 .000161 _cons | -.159126 .3518 67.0899 -1.39788 -243.503 -.039141 .087713</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .055799 ldist | -.005727 .08447 lopen | .004589 .002158 .014253 english | -.011804 -.001911 -.001996 .034983 white | .022389 .035265 .001509 .025365 1.31828 lwhitemg | .003058 -.006775 -.000291 -.003621 -.12352 .013159 _cons | -.187915 -.917355 .780387 .222687 -.845146 .03355 2287.07</p><p>. xtgls lrxsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 650.80 Log likelihood = -975.6998 Prob > chi2 = 0.0000</p><p>------lrxsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2195433 .0548988 4.00 0.000 .1119436 .3271429 lgdp | .5436705 .0934338 5.82 0.000 .3605437 .7267972 lgdpau | -1.111581 1.307677 -0.85 0.395 -3.674581 1.451419 lgdpdfrati~w | -1.399282 .5453073 -2.57 0.010 -2.468064 -.3304988 lpopau | 3.528831 4.48859 0.79 0.432 -5.268645 12.32631 lpop | .0064285 .1019866 0.06 0.950 -.1934616 .2063187 lxrate1 | -.0620488 .0355615 -1.74 0.081 -.1317482 .0076505 lremote | .2148491 .2732615 0.79 0.432 -.3207337 .7504319 ldist | -2.266736 .4818035 -4.70 0.000 -3.211054 -1.322419 lopen | .0099982 .1004493 0.10 0.921 -.1868789 .2068752 english | .5094262 .1962514 2.60 0.009 .1247806 .8940718 white | 11.60113 1.701913 6.82 0.000 8.265442 14.93682 lwhitemg | -1.142506 .1522805 -7.50 0.000 -1.440971 -.8440417 _cons | -17.52056 42.11804 -0.42 0.677 -100.0704 65.02928 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003014 lgdp | -.003009 .00873 lgdpau | -.003758 .007087 1.71002 lgdpdfrati~w | -.001776 .002092 -.024617 .29736 lpopau | .013545 -.030954 -5.73384 .17375 20.1474 lpop | -.000114 -.00567 -.001764 -.000187 .004157 .010401 lxrate1 | .000023 .001328 .001752 .000851 -.009367 -.001501 .001265 lremote | .0053 -.006141 -.018409 -.029056 .039653 .00082 -.000898 ldist | .013037 -.011999 -.025342 -.019242 .073037 .007753 -.001286 lopen | -.000225 .00022 .004812 .00343 -.042249 .002199 -.000286 english | -.001594 .004388 .004022 .000679 -.010063 -.002348 .00194 white | .016465 -.037385 .005821 -.027646 .011225 .041249 -.005001 lwhitemg | -.001332 .001778 -.002214 -.000093 .00488 -.00281 .000299 _cons | -.242674 .398207 50.5685 -2.14172 -184.558 -.133585 .117907</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .074672 ldist | .053179 .232135 lopen | .00551 .000997 .01009 english | -.004928 .017686 -.002993 .038515 white | .061089 .159392 .000058 .038254 2.89651 lwhitemg | -.000264 -.014711 .00005 -.004009 -.250914 .023189 _cons | -1.20457 -3.1381 .485236 -.138779 -2.28568 .13353 1773.93</p><p>. xtgls lrxsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 918.08 Log likelihood = -1566.352 Prob > chi2 = 0.0000</p><p>------lrxsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4712881 .067569 6.97 0.000 .3388552 .603721 lgdp | .1973692 .1245384 1.58 0.113 -.0467215 .4414599 lgdpau | -2.945893 1.792394 -1.64 0.100 -6.458921 .5671351 lgdpdfrati~w | -1.326158 .6104553 -2.17 0.030 -2.522629 -.129688 lpopau | 20.71871 6.122 3.38 0.001 8.719812 32.71761 lpop | .4930216 .1225043 4.02 0.000 .2529175 .7331257 lxrate1 | -.1446367 .0443715 -3.26 0.001 -.2316033 -.0576701 lremote | .8182386 .3102645 2.64 0.008 .2101314 1.426346 ldist | -1.66294 .4355229 -3.82 0.000 -2.516549 -.8093311 lopen | -.1050184 .1367173 -0.77 0.442 -.3729795 .1629426 english | .2316968 .2724813 0.85 0.395 -.3023568 .7657504 white | 17.77087 2.663555 6.67 0.000 12.5504 22.99134 lwhitemg | -1.676958 .2591213 -6.47 0.000 -2.184826 -1.169089 _cons | -267.3569 56.67847 -4.72 0.000 -378.4447 -156.2692 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004566 lgdp | -.005135 .01551 lgdpau | -.006184 .007594 3.21268 lgdpdfrati~w | -.001857 .002555 -.035447 .372656 lpopau | .017964 -.031869 -10.7297 .151636 37.4789 lpop | .001518 -.010606 -.002089 -.001277 -.000331 .015007 lxrate1 | .000051 .001662 -.000921 .003335 -.005576 -.001519 .001969 lremote | .004994 .000421 -.042742 -.017827 .026932 -.000767 .001712 ldist | .015049 -.010219 -.032899 -.002248 .083388 .008609 -.000873 lopen | -.000413 -.000583 .007432 .008526 -.048827 .00385 -.000232 english | -.005592 .010395 .012096 -.000077 -.055101 -.004869 .000803 white | .015612 -.041709 -.054114 -.044179 -.174649 .053477 .009376 lwhitemg | -.001244 .001525 .000681 .001302 .019282 -.002722 -.000899 _cons | -.255598 .259231 94.3299 -1.81831 -340.944 -.012896 .085088</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .096264 ldist | .04585 .18968 lopen | .00585 .005009 .018692 english | -.014637 .016666 -.003793 .074246 white | .128979 -.059717 -.003118 -.025313 7.09453 lwhitemg | -.004968 .006347 .000568 .002118 -.680411 .067144 _cons | -.604787 -2.71848 .476579 .411955 3.76471 -.336228 3212.45</p><p>. clear</p><p>. *Estimating the Australian Immigration Trade relationship; . insheet using k:\book2.txt (54 vars, 11640 obs)</p><p>. drop if ccode ==. (10630 observations deleted)</p><p>. </p><p>. **Dropping Spain . drop if ccode==117100 (10 observations deleted)</p><p>. ** Estimation Results . **Regression of Exports without Distinction between "white" and "non-white Aus > tralia" . tsset ccode year panel variable: ccode, 130120 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Exports . xtgls lrexp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 6784.09 Log likelihood = -1026.242 Prob > chi2 = 0.0000</p><p>------lrexp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5440067 .0380616 14.29 0.000 .4694074 .618606 lgdp | 1.049129 .0378771 27.70 0.000 .9748914 1.123367 lgdpau | -3.395767 .8967897 -3.79 0.000 -5.153443 -1.638092 lgdpdfrati~w | -1.886306 .3450712 -5.47 0.000 -2.562633 -1.209979 lpopau | 4.670997 3.125022 1.49 0.135 -1.453933 10.79593 lpop | .0002082 .0412672 0.01 0.996 -.0806741 .0810905 lxrate1 | -.0008828 .0146479 -0.06 0.952 -.0295922 .0278266 lremote | .1292543 .0850121 1.52 0.128 -.0373662 .2958749 ldist | -1.369566 .1434194 -9.55 0.000 -1.650663 -1.088469 lopen | .8870095 .0800376 11.08 0.000 .7301387 1.04388 english | .1880924 .0953372 1.97 0.049 .001235 .3749499 white | 3.212747 .6023321 5.33 0.000 2.032198 4.393296 lwhitemg | -.393954 .0538731 -7.31 0.000 -.4995433 -.2883648 _cons | 6.264952 28.97925 0.22 0.829 -50.53334 63.06325 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001449 lgdp | -.000819 .001435 lgdpau | -.003191 .002775 .804232 lgdpdfrati~w | .000685 -.000994 -.026576 .119074 lpopau | .01223 -.011542 -2.75834 .145961 9.76576 lpop | .000049 -.000721 .000735 -.000228 -.006026 .001703 lxrate1 | 8.4e-06 .000178 -5.2e-07 .000031 -.000361 -.000042 .000215 lremote | -.000404 .0013 .004742 -.002476 -.025399 .000031 .000076 ldist | .00347 -.001885 -.005245 .003505 .011561 .001816 .000571 lopen | -.000605 .000397 .010984 -.001256 -.059031 .000863 -.000057 english | -.000725 .001542 -.002526 .000639 .016397 -.000998 .000485 white | .006939 -.00108 -.007218 -.012342 .006999 .008461 .002062 lwhitemg | -.000779 .000141 .000847 .000806 -.001297 -.000745 -.00018 _cons | -.143037 .10922 24.6563 -1.84231 -89.4994 .053578 -.004642</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .007227 ldist | .002222 .020569 lopen | .002334 .000677 .006406 english | .000298 .001734 -.002988 .009089 white | .014466 .031038 -.001892 .004298 .362804 lwhitemg | -.001012 -.003168 .000161 -.000161 -.032019 .002902 _cons | .187842 -.286792 .654578 -.248609 -.525847 .054308 839.797</p><p>. **II. Conservative Estimates . *2.1. Aggregate reference priced Exports (conservative) . xtgls lrrefp_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 6879.56 Log likelihood = -1462.905 Prob > chi2 = 0.0000</p><p>------lrrefp_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3516599 .0461572 7.62 0.000 .2611935 .4421263 lgdp | 1.084302 .06756 16.05 0.000 .9518869 1.216717 lgdpau | -.4171246 .4981709 -0.84 0.402 -1.393522 .5592724 lgdpdfrati~w | -.26198 .3002394 -0.87 0.383 -.8504383 .3264784 lpopau | 3.41142 1.799027 1.90 0.058 -.1146086 6.937449 lpop | .0232747 .094473 0.25 0.805 -.161889 .2084383 lxrate1 | -.0448421 .0299872 -1.50 0.135 -.103616 .0139318 lremote | -.2567403 .1655337 -1.55 0.121 -.5811804 .0676998 ldist | -3.162508 .3843054 -8.23 0.000 -3.915732 -2.409283 lopen | -.0729427 .0544189 -1.34 0.180 -.1796017 .0337163 english | .5889125 .1803005 3.27 0.001 .23553 .942295 white | 7.614282 1.439839 5.29 0.000 4.79225 10.43631 lwhitemg | -.8368683 .1468353 -5.70 0.000 -1.12466 -.5490763 _cons | -35.46279 18.18627 -1.95 0.051 -71.10723 .1816469 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00213 lgdp | -.001642 .004564 lgdpau | .001159 -.001489 .248174 lgdpdfrati~w | -.001979 .003287 -.024519 .090144 lpopau | -.00514 .004285 -.86231 .109955 3.2365 lpop | -.000071 -.004804 .003686 -.001494 -.019734 .008925 lxrate1 | .000134 .000377 .000579 .002688 -.006187 -.000551 .000899 lremote | .000122 .000273 -.021768 .002882 .092601 -.00351 .000642 ldist | .009122 -.010568 .00389 .00178 -.029084 .005195 .002031 lopen | .000045 -.000254 .002533 .001121 -.011588 .001154 -.000384 english | -.001185 -.001323 .00601 .004146 -.045341 .003037 .001577 white | .010406 -.026587 .022081 -.008318 -.153583 .03343 .001479 lwhitemg | -.001517 .002094 -.004506 .001007 .022745 -.002176 -.000108 _cons | -.004568 .042884 7.94363 -1.36666 -31.4643 .183875 .055899</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .027401 ldist | .003451 .147691 lopen | -.002122 .000868 .002961 english | -.00472 .000198 -.000677 .032508 white | -.009335 .052829 .002196 .044347 2.07314 lwhitemg | .003858 -.006716 -.000561 -.002318 -.206008 .021561 _cons | -1.19759 -.959691 .125607 .60015 1.548 -.234117 330.74</p><p>. *2.2. Aggregate Differentiated Exports (conservative) . xtgls lrdiff_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3559.96 Log likelihood = -1570.867 Prob > chi2 = 0.0000</p><p>------lrdiff_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4543023 .0543294 8.36 0.000 .3478186 .560786 lgdp | 1.100545 .0630238 17.46 0.000 .9770201 1.224069 lgdpau | 2.092585 2.134759 0.98 0.327 -2.091466 6.276636 lgdpdfrati~w | -2.680077 .8526034 -3.14 0.002 -4.351149 -1.009005 lpopau | -8.180239 7.353562 -1.11 0.266 -22.59296 6.232479 lpop | -.1839565 .0799315 -2.30 0.021 -.3406194 -.0272936 lxrate1 | -.0710878 .0281759 -2.52 0.012 -.1263115 -.0158642 lremote | -.0306959 .1998851 -0.15 0.878 -.4224634 .3610716 ldist | -2.337047 .2348963 -9.95 0.000 -2.797435 -1.876659 lopen | .0868625 .0896679 0.97 0.333 -.0888834 .2626083 english | .694919 .1810427 3.84 0.000 .3400818 1.049756 white | 1.948514 1.079101 1.81 0.071 -.1664853 4.063512 lwhitemg | -.2097123 .0983609 -2.13 0.033 -.4024961 -.0169285 _cons | 86.42827 67.64437 1.28 0.201 -46.15226 219.0088 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002952 lgdp | -.002038 .003972 lgdpau | -.002592 .005951 4.5572 lgdpdfrati~w | -.003609 .001506 -.232868 .726933 lpopau | .008392 -.028244 -15.4735 1.09539 54.0749 lpop | .000208 -.003387 -.001027 .001336 .006726 .006389 lxrate1 | .000202 .000475 .001061 -.000562 -.00789 -.000818 .000794 lremote | .004116 -.002548 .005602 -.004301 -.036142 -.000217 .000917 ldist | .006586 -.005941 -.005194 .01357 .011364 .002816 .002887 lopen | -.000398 .000734 .017154 .003673 -.082129 .001149 -.000125 english | -.003146 .00249 -.001296 .009734 .013178 -.003214 .001256 white | .019052 -.019472 .021944 -.101684 -.10574 .0124 .001851 lwhitemg | -.001744 .001297 -.001583 .008863 .0078 -.000387 -.000098 _cons | -.143035 .363933 137.289 -12.9581 -491.785 -.132784 .06589 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .039954 ldist | .021378 .055176 lopen | .004006 .000612 .00804 english | -.014354 .001935 -.003242 .032776 white | .065246 .028963 -.003124 -.012959 1.16446 lwhitemg | -.003492 -.000506 .000413 .001157 -.102751 .009675 _cons | -.057131 -.739498 .843425 -.090551 .53578 -.072013 4575.76</p><p>. *2.3. Aggregate Homogenous Exports (conservative) . xtgls lrhomo_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1859.13 Log likelihood = -1618.966 Prob > chi2 = 0.0000</p><p>------lrhomo_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4533009 .0523657 8.66 0.000 .3506661 .5559357 lgdp | .9544054 .0960758 9.93 0.000 .7661002 1.142711 lgdpau | -.0516536 1.079143 -0.05 0.962 -2.166734 2.063427 lgdpdfrati~w | -.2706382 .4595492 -0.59 0.556 -1.171338 .6300616 lpopau | -5.975261 3.694478 -1.62 0.106 -13.21631 1.265783 lpop | .1547662 .1080043 1.43 0.152 -.0569184 .3664508 lxrate1 | .0518746 .0371946 1.39 0.163 -.0210254 .1247746 lremote | -1.075712 .2306394 -4.66 0.000 -1.527757 -.6236668 ldist | -1.772528 .4894612 -3.62 0.000 -2.731855 -.8132018 lopen | .0467989 .0950196 0.49 0.622 -.1394361 .233034 english | .9700463 .296094 3.28 0.001 .3897128 1.55038 white | 12.8321 2.552164 5.03 0.000 7.829951 17.83425 lwhitemg | -1.510331 .2723173 -5.55 0.000 -2.044063 -.9765991 _cons | 105.2357 34.81346 3.02 0.003 37.00263 173.4689 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002742 lgdp | -.002951 .009231 lgdpau | .005866 -.010875 1.16455 lgdpdfrati~w | -.003599 .007565 -.054577 .211185 lpopau | -.022902 .024325 -3.86803 .277312 13.6492 lpop | .000337 -.005835 .000531 -.002933 -.001764 .011665 lxrate1 | -.000122 .001173 .003016 .002741 -.019323 -.001356 .001383 lremote | .000315 .008378 -.036587 .012082 .101018 -.006642 .000567 ldist | .014159 -.010524 .023696 -.005132 -.15144 .013514 .002343 lopen | .000015 -.001115 -.01988 .006478 .048843 .002158 -.000299 english | -.00238 .00358 .01802 .004442 -.088708 .005153 .003025 white | .010857 -.025909 .096071 -.012324 -.417103 .03127 .00387 lwhitemg | -.001251 .001726 -.010535 .001408 .045782 -.002413 -.000241 _cons | .138577 -.20167 33.9328 -3.56139 -125.005 -.103247 .201986</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .053195 ldist | .024642 .239572 lopen | .001488 -.001478 .009029 english | -.01461 .017408 -.003656 .087672 white | -.014587 .048091 -.000216 .112684 6.51354 lwhitemg | .003201 -.006483 .000337 -.011526 -.689663 .074157 _cons | -1.50439 -.662569 -.294496 .77638 4.06237 -.44098 1211.98</p><p>. **III. Liberal Estimates . *3.1. Aggregate reference priced Exports (liberal) . xtgls lrrefp_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1770.98 Log likelihood = -1461.692 Prob > chi2 = 0.0000</p><p>------lrrefp_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3809152 .0479895 7.94 0.000 .2868575 .4749728 lgdp | .8909148 .0822246 10.84 0.000 .7297576 1.052072 lgdpau | -.3569238 .466389 -0.77 0.444 -1.271029 .557182 lgdpdfrati~w | .1603397 .2419484 0.66 0.508 -.3138705 .6345499 lpopau | -1.993673 1.656688 -1.20 0.229 -5.240722 1.253375 lpop | .1675935 .0998013 1.68 0.093 -.0280134 .3632004 lxrate1 | -.0175293 .0273206 -0.64 0.521 -.0710767 .036018 lremote | -.2246127 .1559531 -1.44 0.150 -.5302751 .0810497 ldist | -2.303494 .471905 -4.88 0.000 -3.228411 -1.378577 lopen | .0308987 .0487068 0.63 0.526 -.0645649 .1263623 english | .9670643 .2446549 3.95 0.000 .4875494 1.446579 white | 10.34878 2.145873 4.82 0.000 6.142943 14.55461 lwhitemg | -1.048854 .2103642 -4.99 0.000 -1.46116 -.636548 _cons | 45.46898 16.74026 2.72 0.007 12.65868 78.27928 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002303 lgdp | -.002451 .006761 lgdpau | .001327 -.003917 .217519 lgdpdfrati~w | -.001904 .004459 -.022614 .058539 lpopau | -.006275 .013584 -.749971 .096852 2.74461 lpop | .000658 -.00572 .005024 -.003464 -.025321 .00996 lxrate1 | .000125 .00005 .001482 .001539 -.007958 -.0002 .000746 lremote | .000802 .000176 -.019943 .001789 .07645 -.00301 .000099 ldist | .007215 -.010475 .001605 -.00159 -.023601 .00891 .00233 lopen | -.000041 -.000024 .002001 .000963 -.008914 .000709 -.000152 english | -.002036 .000541 .008533 .004157 -.033153 .001368 .001855 white | .010164 -.030569 .024777 -.00599 -.135878 .035332 .010011 lwhitemg | -.001152 .002003 -.003486 .000458 .017594 -.002242 -.000874 _cons | .027955 -.079396 6.9147 -1.11904 -26.2533 .202347 .066415</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .024321 ldist | .010458 .222694 lopen | -.00161 -.000702 .002372 english | -.006579 .026884 -.000352 .059856 white | .031498 -.156925 -.00416 .018541 4.60477 lwhitemg | -.001036 .017238 .000184 .000027 -.446001 .044253 _cons | -1.0213 -1.83192 .106935 .073945 2.85963 -.357002 280.236 . *3.2. Aggregate Differentiated Exports (liberal) . xtgls lrdiff_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3311.03 Log likelihood = -1587.921 Prob > chi2 = 0.0000</p><p>------lrdiff_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4143933 .0573828 7.22 0.000 .3019251 .5268615 lgdp | 1.199314 .0696658 17.22 0.000 1.062772 1.335857 lgdpau | 1.708753 2.225432 0.77 0.443 -2.653013 6.07052 lgdpdfrati~w | -2.82231 .855549 -3.30 0.001 -4.499155 -1.145464 lpopau | -7.1469 7.663954 -0.93 0.351 -22.16797 7.874175 lpop | -.2917183 .0816648 -3.57 0.000 -.4517784 -.1316581 lxrate1 | -.0342717 .0283782 -1.21 0.227 -.089892 .0213486 lremote | .0935894 .195622 0.48 0.632 -.2898228 .4770015 ldist | -2.299945 .2342985 -9.82 0.000 -2.759161 -1.840728 lopen | .1159482 .0989866 1.17 0.241 -.078062 .3099584 english | .8304276 .1969713 4.22 0.000 .4443708 1.216484 white | 1.894978 1.061692 1.78 0.074 -.1859003 3.975857 lwhitemg | -.1980939 .0972524 -2.04 0.042 -.3887052 -.0074827 _cons | 77.52723 70.48387 1.10 0.271 -60.61862 215.6731 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003293 lgdp | -.002629 .004853 lgdpau | -.003451 .006951 4.95255 lgdpdfrati~w | -.00398 .002725 -.243004 .731964 lpopau | .012196 -.033378 -16.8102 1.11305 58.7362 lpop | .000918 -.004124 -.001149 -.000802 .00771 .006669 lxrate1 | .000033 .000664 .001014 .000295 -.008334 -.000989 .000805 lremote | .003762 -.002508 .003041 -.00258 -.027812 .001182 .000643 ldist | .006799 -.006111 -.006678 .013713 .014882 .003328 .002305 lopen | -.000518 .000805 .018309 .004142 -.091198 .001541 -.000175 english | -.00479 .004661 .001098 .012949 .001385 -.004832 .001602 white | .018592 -.021172 .008766 -.090974 -.039565 .015382 -.000337 lwhitemg | -.001725 .001458 -.000543 .008154 .002275 -.000619 .000103 _cons | -.180977 .41696 149.124 -13.0002 -534.11 -.151473 .080932</p><p>| lremote ldist lopen english white lwhitemg _cons</p><p>------+------lremote | .038268 ldist | .021669 .054896 lopen | .004523 .000677 .009798 english | -.015359 .000607 -.00361 .038798 white | .05996 .011345 -.004233 -.022286 1.12719 lwhitemg | -.003222 .001238 .00055 .002159 -.099895 .009458 _cons | -.137487 -.761597 .952729 .043032 -.01085 -.0268 4967.98</p><p>. *3.3. Aggregate Homogenous Exports (liberal) . xtgls lrhomo_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2987.44 Log likelihood = -1555.152 Prob > chi2 = 0.0000</p><p>------lrhomo_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5614843 .0439744 12.77 0.000 .4752962 .6476725 lgdp | 1.090749 .0683784 15.95 0.000 .9567298 1.224768 lgdpau | -.3999709 .6630786 -0.60 0.546 -1.699581 .8996393 lgdpdfrati~w | -.5237668 .4949771 -1.06 0.290 -1.493904 .4463705 lpopau | 1.92806 2.39012 0.81 0.420 -2.75649 6.61261 lpop | -.1704265 .0833386 -2.04 0.041 -.3337672 -.0070858 lxrate1 | -.0448918 .0302735 -1.48 0.138 -.1042267 .0144432 lremote | -.7045044 .1931615 -3.65 0.000 -1.083094 -.3259149 ldist | -2.051287 .3106605 -6.60 0.000 -2.66017 -1.442404 lopen | .0246605 .0711225 0.35 0.729 -.114737 .164058 english | .7340104 .2331157 3.15 0.002 .2771121 1.190909 white | 5.70156 2.066753 2.76 0.006 1.650797 9.752322 lwhitemg | -.8000026 .2115898 -3.78 0.000 -1.214711 -.3852944 _cons | -15.45662 24.09741 -0.64 0.521 -62.68668 31.77344 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001934 lgdp | -.001885 .004676 lgdpau | .000168 -.003404 .439673 lgdpdfrati~w | -.003575 .004166 -.062621 .245002 lpopau | -.000344 .006426 -1.52701 .328063 5.71268 lpop | .000088 -.003244 .004085 .00063 -.021445 .006945 lxrate1 | -.000344 .000703 .001341 .002851 -.010003 -.000312 .000916 lremote | .001574 .00148 -.028716 .004517 .123721 -.004369 .000169 ldist | .006426 -.009058 -.003432 .001111 -.006632 .010714 .000726 lopen | .000077 -.000838 -.000044 .005644 -.004054 .001737 -.000326 english | -.001228 .001277 .015829 .006852 -.099069 .003357 .002973 white | .008389 -.012688 .029555 -.008317 -.207335 .019632 .005788 lwhitemg | -.000769 .000867 -.003858 .001394 .024367 -.001605 -.000393 _cons | -.039857 .00458 14.1514 -4.20491 -55.8466 .14942 .106582</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .037311 ldist | .015123 .09651 lopen | -.002178 .001014 .005058 english | -.013518 .015875 -.001264 .054343 white | .00348 .062586 -.001866 .068657 4.27147 lwhitemg | .001827 -.004678 .000049 -.006741 -.431806 .04477 _cons | -1.74737 -.860283 .067396 1.09161 1.92746 -.26194 580.685</p><p>. *IV. Aggregate NON-Manufacturing Exports (Sum of Sitc0,1,2,3,4) . xtgls lrxnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1190.84 Log likelihood = -1127.405 Prob > chi2 = 0.0000</p><p>------lrxnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4053538 .0581863 6.97 0.000 .2913108 .5193968 lgdp | .6229132 .0986724 6.31 0.000 .4295188 .8163075 lgdpau | -5.0378 1.300958 -3.87 0.000 -7.587631 -2.487969 lgdpdfrati~w | -2.272772 .5555174 -4.09 0.000 -3.361566 -1.183977 lpopau | 14.35527 4.496228 3.19 0.001 5.542822 23.16771 lpop | -.0397074 .0903535 -0.44 0.660 -.216797 .1373821 lxrate1 | -.046974 .0350992 -1.34 0.181 -.1157671 .0218192 lremote | -.1105986 .2908993 -0.38 0.704 -.6807507 .4595536 ldist | -1.738066 .2502982 -6.94 0.000 -2.228641 -1.24749 lopen | .0458922 .1126628 0.41 0.684 -.1749228 .2667072 english | 1.25365 .2244616 5.59 0.000 .8137139 1.693587 white | 12.63631 1.033962 12.22 0.000 10.60979 14.66284 lwhitemg | -1.428486 .092803 -15.39 0.000 -1.610377 -1.246596 _cons | -95.00072 41.96567 -2.26 0.024 -177.2519 -12.74951 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003386 lgdp | -.003612 .009736 lgdpau | -.002077 .004823 1.69249 lgdpdfrati~w | -.002728 .005133 -.110646 .3086 lpopau | .012164 -.037316 -5.71751 .46011 20.2161 lpop | .000647 -.006033 -.000285 -.002514 .007394 .008164 lxrate1 | -.000544 .001924 .000931 .001103 -.009052 -.001695 .001232 lremote | .001133 -.001164 .001865 -.027731 -.027196 .001091 .000366 ldist | .009679 -.012671 -.005609 -.009386 .026647 .00702 -.002717 lopen | .000139 -.000424 .009185 .002736 -.060805 .002905 -.000433 english | -.005276 .007625 .003362 .008894 -.016877 -.001466 .002532 white | .015532 -.036751 .014048 -.062786 .015919 .038376 -.007723 lwhitemg | -.001702 .002436 -.00168 .002335 .001169 -.002649 .000738 _cons | -.193578 .506371 50.5072 -4.78328 -185.309 -.176783 .128854</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .084622 ldist | .018556 .062649 lopen | .006257 .004733 .012693 english | -.010935 -.005504 -.005776 .050383 white | .055117 .094278 -.00342 .065785 1.06908 lwhitemg | .003574 -.008707 .000467 -.006385 -.087615 .008612 _cons | -.486765 -.912498 .64155 .182643 -1.84868 .07245 1761.12</p><p>. *V. Aggregate Manufacturing Exports (Sum of Sitc5,6,7,8,9)</p><p>. xtgls lrxmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1129.27 Log likelihood = -975.1693 Prob > chi2 = 0.0000</p><p>------lrxmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2383561 .043321 5.50 0.000 .1534485 .3232638 lgdp | .3553888 .0919308 3.87 0.000 .1752078 .5355698 lgdpau | -2.514708 1.125919 -2.23 0.026 -4.72147 -.307947 lgdpdfrati~w | -4.611649 .4692608 -9.83 0.000 -5.531383 -3.691914 lpopau | 9.215033 3.889169 2.37 0.018 1.592401 16.83767 lpop | .1285924 .0765284 1.68 0.093 -.0214004 .2785853 lxrate1 | -.07681 .0280597 -2.74 0.006 -.1318059 -.0218141 lremote | .5464808 .1745202 3.13 0.002 .2044276 .888534 ldist | -2.424396 .2227633 -10.88 0.000 -2.861004 -1.987788 lopen | -.0845064 .0519694 -1.63 0.104 -.1863646 .0173518 english | .4348486 .1683291 2.58 0.010 .1049296 .7647676 white | 9.132958 1.007786 9.06 0.000 7.157734 11.10818 lwhitemg | -.8212941 .090769 -9.05 0.000 -.999198 -.6433901 _cons | -67.76106 36.21924 -1.87 0.061 -138.7495 3.227336 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001877 lgdp | -.00272 .008451 lgdpau | -.002756 .006301 1.26769 lgdpdfrati~w | -.002292 .005573 -.049639 .220206 lpopau | .012602 -.034072 -4.29228 .245197 15.1256 lpop | .001862 -.00613 -.00285 -.004535 .015521 .005857 lxrate1 | -.000164 .001202 .000865 .000859 -.007167 -.000979 .000787 lremote | .001673 -.003983 -.003188 -.0144 -.011167 .004685 -.00043 ldist | .005283 -.009211 -.011386 -.009359 .051446 .008097 -.001003 lopen | -.000122 .000277 .005064 .002139 -.023883 .000511 -.000082 english | -.002569 .003768 .001782 .002536 -.001191 -.000375 .000098 white | .016236 -.034852 -.021496 -.040845 .083411 .037734 -.006118 lwhitemg | -.001257 .001621 .000953 .001176 -.00452 -.002217 .000363 _cons | -.179023 .434807 38.056 -2.8232 -138.573 -.258372 .095722</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .030457 ldist | .018291 .049623 lopen | .00081 .000199 .002701 english | -.002651 .00796 -.000887 .028335 white | .066193 .076724 .001133 .010531 1.01563 lwhitemg | -.003002 -.005214 -.000205 -.000833 -.087275 .008239 _cons | -.150069 -1.13164 .241278 -.158156 -2.00143 .131666 1311.83</p><p>. . **VI. SITC-1 Digit Level Disaggregate Exports . xtgls lrxsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 754.23 Log likelihood = -1438.98 Prob > chi2 = 0.0000 ------lrxsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3181441 .0870506 3.65 0.000 .1475281 .48876 lgdp | .3903041 .1427682 2.73 0.006 .1104835 .6701247 lgdpau | -.9206505 1.278501 -0.72 0.471 -3.426467 1.585166 lgdpdfrati~w | -.9107606 .6176078 -1.47 0.140 -2.12125 .2997284 lpopau | 10.30774 4.334067 2.38 0.017 1.813123 18.80235 lpop | -.0870173 .1375084 -0.63 0.527 -.3565289 .1824942 lxrate1 | -.1030819 .0471413 -2.19 0.029 -.1954772 -.0106866 lremote | .3690192 .2613591 1.41 0.158 -.1432352 .8812736 ldist | -2.220281 .4536562 -4.89 0.000 -3.109431 -1.331131 lopen | -.3195844 .1722869 -1.85 0.064 -.6572605 .0180918 english | 1.494248 .31349 4.77 0.000 .879819 2.108677 white | 18.73434 1.829578 10.24 0.000 15.14843 22.32024 lwhitemg | -1.833821 .1734161 -10.57 0.000 -2.173711 -1.493932 _cons | -133.3087 40.42503 -3.30 0.001 -212.5403 -54.07708 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .007578 lgdp | -.009744 .020383 lgdpau | -.009874 .010918 1.63457 lgdpdfrati~w | -.002722 -.0022 .130309 .381439 lpopau | .030725 -.029632 -5.35661 -.234667 18.7841 lpop | .003399 -.012324 -.001645 .001664 -.016639 .018909 lxrate1 | .000501 .00105 .000083 .000375 .002257 -.002073 .002222 lremote | .002779 .001883 -.041251 -.056212 -.00288 -.000562 -.000865 ldist | .019412 -.022351 -.047415 -.034937 .074604 .022144 .001991 lopen | -.000662 -.000367 .008948 -.00514 -.094815 .006939 -.001072 english | -.010802 .009478 .010468 .003446 -.057114 .003398 .003234 white | .0355 -.076456 -.039301 -.047478 .047834 .082156 .001963 lwhitemg | -.00311 .005322 .000492 .000882 -.006816 -.006261 -.000247 _cons | -.333741 .185764 46.4815 .926733 -170.894 .083183 -.055701</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .068309 ldist | .046656 .205804 lopen | .01159 .005141 .029683 english | -.003566 .013678 -.006611 .098276 white | .036106 .16457 .000773 .10468 3.34736 lwhitemg | .000432 -.012909 .000585 -.00728 -.308615 .030073 _cons | .118245 -2.29277 1.12147 .320269 -1.42335 .220163 1634.18</p><p>. xtgls lrxsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 798.18 Log likelihood = -216.597 Prob > chi2 = 0.0000</p><p>------lrxsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0039771 .0157929 0.25 0.801 -.0269765 .0349306 lgdp | .0411233 .0400878 1.03 0.305 -.0374473 .119694 lgdpau | .050804 .2721273 0.19 0.852 -.4825556 .5841637 lgdpdfrati~w | -.0957384 .1492469 -0.64 0.521 -.388257 .1967801 lpopau | 2.515586 .9715461 2.59 0.010 .6113909 4.419782 lpop | .2307163 .0508842 4.53 0.000 .1309851 .3304475 lxrate1 | -.0273061 .0134328 -2.03 0.042 -.0536338 -.0009784 lremote | -.0440164 .0946962 -0.46 0.642 -.2296176 .1415848 ldist | -3.253715 .345817 -9.41 0.000 -3.931504 -2.575926 lopen | -.0408537 .0269288 -1.52 0.129 -.0936332 .0119259 english | 1.398975 .1620265 8.63 0.000 1.081409 1.716541 white | 20.0574 1.324948 15.14 0.000 17.46055 22.65425 lwhitemg | -1.611068 .1223321 -13.17 0.000 -1.850834 -1.371301 _cons | -15.34682 10.69988 -1.43 0.151 -36.3182 5.624565 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000249 lgdp | -.000137 .001607 lgdpau | .000227 -.000887 .074053 lgdpdfrati~w | -.000279 .000501 -.005143 .022275 lpopau | -.001019 .004644 -.251231 .028465 .943902 lpop | -.000104 -.001356 .000101 -.000087 -.003397 .002589 lxrate1 | .000018 -.000013 .000378 .000305 -.002871 .000038 .00018 lremote | .000216 .000768 -.005747 -.000813 .015449 -.000166 .000094 ldist | .001122 .002576 -.007201 -.000094 .024623 -.000302 -.000357 lopen | .000024 -.000058 -.000091 -.000014 -.00138 .000093 -.000014 english | -.000307 .000517 -.000986 .000131 .009709 .00115 -4.4e-07 white | .000651 -.006756 .002412 -.003395 -.033912 .012248 .000673 lwhitemg | -.000112 .000187 -.000326 .000233 .001866 -.000808 -.00001 _cons | .002058 -.099637 2.36536 -.36204 -9.5047 .048561 .039009</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .008967 ldist | .010184 .119589 lopen | .000028 -.000084 .000725 english | .001167 .022876 -.000278 .026253 white | .007158 .035828 -.0001 .038067 1.75549 lwhitemg | -.000361 -.005443 .000043 -.004272 -.156791 .014965 _cons | -.296821 -1.51555 .026 -.39648 .043722 .042128 114.487</p><p>. xtgls lrxsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 681.78 Log likelihood = -1323.332 Prob > chi2 = 0.0000</p><p>------lrxsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2247421 .057995 3.88 0.000 .111074 .3384101 lgdp | .6897918 .1158512 5.95 0.000 .4627277 .9168559 lgdpau | -5.090628 1.88995 -2.69 0.007 -8.794862 -1.386395 lgdpdfrati~w | -.102542 .8495871 -0.12 0.904 -1.767702 1.562618 lpopau | 14.91537 6.543282 2.28 0.023 2.09077 27.73996 lpop | .1299275 .1284207 1.01 0.312 -.1217724 .3816275 lxrate1 | -.0704952 .0372846 -1.89 0.059 -.1435717 .0025813 lremote | -.6913502 .3442129 -2.01 0.045 -1.365995 -.0167053 ldist | -2.876393 .4331283 -6.64 0.000 -3.725308 -2.027477 lopen | -.2293025 .1830047 -1.25 0.210 -.587985 .1293801 english | .2742756 .2681092 1.02 0.306 -.2512089 .79976 white | 11.12705 1.874103 5.94 0.000 7.45387 14.80022 lwhitemg | -1.269268 .1788468 -7.10 0.000 -1.619801 -.9187351 _cons | -94.68374 61.18489 -1.55 0.122 -214.6039 25.23645 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003363 lgdp | -.004785 .013421 lgdpau | -.00418 .00859 3.57191 lgdpdfrati~w | -.005469 .006564 -.075752 .721798 lpopau | .018164 -.05377 -12.0674 .569993 42.8145 lpop | .002074 -.009626 .00257 -.0036 -.017415 .016492 lxrate1 | -.000519 .001818 .001595 .004296 -.010124 -.001379 .00139 lremote | .004801 -.0095 -.017609 -.062775 .023873 .001884 -.006182 ldist | .015887 -.020108 -.012209 -.040734 -.021469 .013774 -.002872 lopen | -.000267 -.000161 .022236 -.004174 -.171572 .007735 -.001247 english | -.001732 .006066 .003386 .016538 -.014087 -.000429 .003668 white | .031645 -.066342 -.006062 -.078248 .081014 .071644 -.005823 lwhitemg | -.002622 .003905 -.001881 .001614 .003507 -.005608 -.000089 _cons | -.32294 .804474 106.626 -7.36855 -393.168 .03351 .181694</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .118483 ldist | .050633 .1876 lopen | .018038 .011754 .033491 english | -.016558 .017359 -.008067 .071883 white | .097588 .210832 .001332 .111759 3.51226 lwhitemg | .002156 -.019015 .000932 -.013745 -.322037 .031986 _cons | -1.21255 -1.35138 1.91078 -.042654 -3.81445 .171533 3743.59</p><p>. xtgls lrxsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 242.33 Log likelihood = -697.7804 Prob > chi2 = 0.0000</p><p>------lrxsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .059524 .0434964 1.37 0.171 -.0257274 .1447754 lgdp | .1075453 .1060581 1.01 0.311 -.1003247 .3154154 lgdpau | -.037841 .8689165 -0.04 0.965 -1.740886 1.665204 lgdpdfrati~w | .2245118 .3007408 0.75 0.455 -.3649294 .813953 lpopau | -1.844084 2.985795 -0.62 0.537 -7.696135 4.007967 lpop | .6085048 .1167665 5.21 0.000 .3796467 .8373628 lxrate1 | .0405179 .0323475 1.25 0.210 -.0228821 .103918 lremote | -.2179319 .2846337 -0.77 0.444 -.7758037 .33994 ldist | -1.94905 .5584774 -3.49 0.000 -3.043646 -.8544546 lopen | .0132978 .059426 0.22 0.823 -.1031751 .1297707 english | 1.569829 .3622066 4.33 0.000 .8599172 2.279741 white | 8.97634 3.045758 2.95 0.003 3.006764 14.94592 lwhitemg | -.7372435 .2651131 -2.78 0.005 -1.256856 -.2176313 _cons | 40.6748 28.66948 1.42 0.156 -15.51634 96.86594 ------</p><p>. vce | limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001892 lgdp | -.001544 .011248 lgdpau | .002251 -.002035 .755016 lgdpdfrati~w | -.001597 .002571 -.025609 .090445 lpopau | -.013941 -.000402 -2.52573 .090535 8.91497 lpop | .000123 -.008586 -.00062 -.000081 .003551 .013634 lxrate1 | .000144 .000409 .001436 .001963 -.010575 -.000523 .001046 lremote | .000928 .006422 -.04229 -.013491 .137164 -.006055 -.000863 ldist | .007003 -.00155 -.001605 -.00372 -.053974 .009894 .002015 lopen | .000128 -.000563 -.002806 .004393 .006722 .001129 -.000088 english | -.003805 -.008048 .00532 .00791 -.018746 .013749 .002255 white | .006024 -.06038 .104262 .001591 -.35362 .074094 .000741 lwhitemg | -.000865 .003189 -.012278 -.001037 .047101 -.005509 -.000167 _cons | .123469 -.090213 22.5416 -.822045 -82.3994 -.107198 .118713</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .081016 ldist | .024485 .311897 lopen | -.000282 -.000049 .003531 english | -.020532 .062225 -.000439 .131194 white | -.08131 .122706 .005223 .179298 9.27664 lwhitemg | .01029 -.016397 -.000383 -.017126 -.785485 .070285 _cons | -2.14276 -2.42645 -.043186 -.305944 2.77545 -.369951 821.939</p><p>. xtgls lrxsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 229.52 Log likelihood = -779.9108 Prob > chi2 = 0.0000</p><p>------lrxsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0013765 .0404107 -0.03 0.973 -.0805801 .0778271 lgdp | .0953348 .0798853 1.19 0.233 -.0612374 .251907 lgdpau | .0802995 .701925 0.11 0.909 -1.295448 1.456047 lgdpdfrati~w | .0224218 .244397 0.09 0.927 -.4565875 .5014311 lpopau | .0923345 2.419794 0.04 0.970 -4.650375 4.835044 lpop | .4707403 .1003731 4.69 0.000 .2740128 .6674679 lxrate1 | -.0070955 .0222141 -0.32 0.749 -.0506344 .0364434 lremote | .4138038 .2367166 1.75 0.080 -.0501522 .8777598 ldist | -2.647617 .3974967 -6.66 0.000 -3.426696 -1.868538 lopen | .0314161 .0511233 0.61 0.539 -.0687836 .1316159 english | .8005888 .3328286 2.41 0.016 .1482567 1.452921 white | -.808981 1.426998 -0.57 0.571 -3.605845 1.987883 lwhitemg | .1352244 .1526783 0.89 0.376 -.1640196 .4344685 _cons | 9.665245 23.57293 0.41 0.682 -36.53685 55.86734 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001633 lgdp | -.001271 .006382 lgdpau | -.000499 .000929 .492699 lgdpdfrati~w | -.000325 .000536 -.033912 .05973 lpopau | -.004293 -.003471 -1.6452 .111156 5.8554 lpop | -.000046 -.004547 -.000241 -.000896 -.010348 .010075 lxrate1 | .000154 .00002 -.000294 .001366 -.003001 -.00022 .000493 lremote | .0024 .003163 -.02659 -.007888 .083731 -.003201 -.000287 ldist | .004717 -.00328 -.015197 -.001076 .04055 .001187 .000443 lopen | -.000112 .000322 .002424 .000475 -.010737 .000609 -.000018 english | -.003174 -.003054 .000917 .003641 .012677 .001778 .000751 white | .005872 -.030369 -.001985 -.006883 -.082426 .039353 .001849 lwhitemg | -.000645 .001691 -.002316 .000081 .016972 -.002683 -.000169 _cons | .040143 -.028401 14.7629 -.935302 -54.9545 .140057 .055011</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .056035 ldist | .027523 .158004 lopen | .000399 -.000817 .002614 english | -.013174 .047003 -.001404 .110775 white | .009683 .041258 -.000928 .115109 2.03632 lwhitemg | .001585 -.003708 .000095 -.011012 -.210232 .023311 _cons | -1.46455 -2.00042 .103441 -.539159 .947401 -.189701 555.683</p><p>. xtgls lrxsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 569.96 Log likelihood = -1061.218 Prob > chi2 = 0.0000</p><p>------lrxsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1249476 .0746962 1.67 0.094 -.0214542 .2713494 lgdp | .5760661 .1360289 4.23 0.000 .3094544 .8426779 lgdpau | -.7124054 .81671 -0.87 0.383 -2.313128 .8883167 lgdpdfrati~w | -.6606359 .3728485 -1.77 0.076 -1.391406 .0701338 lpopau | 7.458894 2.758708 2.70 0.007 2.051925 12.86586 lpop | .2452249 .1251488 1.96 0.050 -.0000621 .490512 lxrate1 | -.1579266 .0345994 -4.56 0.000 -.2257402 -.0901129 lremote | .2186277 .2306808 0.95 0.343 -.2334983 .6707537 ldist | -3.067496 .4359882 -7.04 0.000 -3.922017 -2.212975 lopen | .1105758 .0913625 1.21 0.226 -.0684914 .289643 english | .6968574 .2625241 2.65 0.008 .1823195 1.211395 white | 11.22773 2.103493 5.34 0.000 7.104965 15.3505 lwhitemg | -1.107177 .1925461 -5.75 0.000 -1.48456 -.7297932 _cons | -90.75504 26.17859 -3.47 0.001 -142.0641 -39.44595 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00558 lgdp | -.006226 .018504 lgdpau | -.004926 .005659 .667015 lgdpdfrati~w | -.000171 -.001444 .038112 .139016 lpopau | .015408 -.026705 -2.17265 -.051774 7.61047 lpop | .00141 -.011638 -.000923 .001979 .002359 .015662 lxrate1 | .000476 .000983 .000438 .000424 -.003233 -.001273 .001197 lremote | .000931 .006156 -.0319 -.027402 .025557 -.006051 .001781 ldist | .014426 -.009718 -.024812 -.004857 .076699 .002095 .000654 lopen | -.000118 .000111 .001959 .001944 -.027724 .001803 -.000518 english | -.005736 .016552 .000529 -.003976 -.006925 -.011291 -.000455 white | .030683 -.055487 -.053289 -.030624 .091542 .05188 -.00271 lwhitemg | -.002758 .002577 .001989 .00049 -.004329 -.002651 .000145 _cons | -.188407 .127963 18.9359 .005396 -69.7204 .02979 .011154</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .053214 ldist | .022168 .190086 lopen | .002296 -.000126 .008347 english | .00775 .026378 -.003906 .068919 white | .033329 .100974 -.003531 .03005 4.42468 lwhitemg | -.000018 -.011365 .000244 -.005725 -.391724 .037074 _cons | -.293156 -2.53328 .367057 -.39493 -1.12487 .13195 685.318</p><p>. xtgls lrxsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 727.87 Log likelihood = -1141.024 Prob > chi2 = 0.0000</p><p>------lrxsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .243846 .075006 3.25 0.001 .0968369 .3908551 lgdp | .6055607 .112544 5.38 0.000 .3849785 .8261428 lgdpau | .0527784 1.156244 0.05 0.964 -2.213418 2.318975 lgdpdfrati~w | -1.056324 .5628778 -1.88 0.061 -2.159544 .0468961 lpopau | 2.984712 3.933118 0.76 0.448 -4.724058 10.69348 lpop | -.0403469 .1205203 -0.33 0.738 -.2765624 .1958686 lxrate1 | -.0437941 .0378998 -1.16 0.248 -.1180764 .0304881 lremote | .4363809 .2772202 1.57 0.115 -.1069607 .9797225 ldist | -2.676976 .4274972 -6.26 0.000 -3.514855 -1.839097 lopen | -.0959768 .0929297 -1.03 0.302 -.2781157 .0861621 english | 1.211033 .287842 4.21 0.000 .646873 1.775193 white | 10.2197 2.13242 4.79 0.000 6.040236 14.39917 lwhitemg | -1.038285 .1905271 -5.45 0.000 -1.411711 -.6648589 _cons | -38.41518 36.80935 -1.04 0.297 -110.5602 33.72982 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .005626 lgdp | -.005558 .012666 lgdpau | -.005503 .008669 1.3369 lgdpdfrati~w | -.003528 .004335 .051755 .316831 lpopau | .013766 -.029915 -4.40558 .018781 15.4694 lpop | .001259 -.009286 -.004154 -.000784 .009343 .014525 lxrate1 | .000568 .000738 .001585 .000307 -.010186 -.001215 .001436 lremote | .004293 -.001698 -.031238 -.048895 -.007045 -.001594 .001791 ldist | .014516 -.009782 -.028321 -.024965 .054439 .004062 .000636 lopen | -.000396 .000902 .001145 .000863 -.025434 .00089 -.000353 english | -.006662 .011217 .005125 .00001 -.006525 -.006324 -.00082 white | .030204 -.055579 -.045564 -.053933 .069838 .053544 -.001048 lwhitemg | -.002624 .003382 .001456 .000606 -.005282 -.003417 .000094 _cons | -.186339 .262104 38.3937 -1.40527 -141.129 -.091386 .099948</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .076851 ldist | .043965 .182754 lopen | .003881 .001125 .008636 english | .001515 .031493 -.003246 .082853 white | .070477 .104496 -.009054 .043174 4.54721 lwhitemg | -.001262 -.010228 .000695 -.005842 -.396435 .036301 _cons | -.069298 -2.19871 .324175 -.46941 -1.32504 .153736 1354.93</p><p>. xtgls lrxsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 468.20 Log likelihood = -1201.15 Prob > chi2 = 0.0000</p><p>------lrxsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2172844 .0507655 4.28 0.000 .1177859 .3167829 lgdp | .2989395 .1018071 2.94 0.003 .0994013 .4984778 lgdpau | -2.151649 1.391003 -1.55 0.122 -4.877965 .5746659 lgdpdfrati~w | -2.212943 .6313871 -3.50 0.000 -3.450439 -.9754475 lpopau | 6.76154 4.753666 1.42 0.155 -2.555475 16.07856 lpop | .1195573 .0768974 1.55 0.120 -.0311589 .2702735 lxrate1 | -.1106866 .0380527 -2.91 0.004 -.1852685 -.0361047 lremote | 1.098909 .2620436 4.19 0.000 .5853131 1.612505 ldist | -1.24417 .4045925 -3.08 0.002 -2.037156 -.451183 lopen | .0026455 .1164793 0.02 0.982 -.2256497 .2309408 english | .6027124 .1833153 3.29 0.001 .243421 .9620037 white | 6.0712 .9881982 6.14 0.000 4.134367 8.008033 lwhitemg | -.4996346 .1077479 -4.64 0.000 -.7108166 -.2884527 _cons | -54.82972 44.04015 -1.24 0.213 -141.1468 31.48739 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002577 lgdp | -.002503 .010365 lgdpau | -.003744 .006413 1.93489 lgdpdfrati~w | -.001432 .000704 .085383 .39865 lpopau | .013872 -.038634 -6.46601 -.135359 22.5973 lpop | .000563 -.005373 -.000773 -.001414 .004402 .005913 lxrate1 | .00021 .001573 .001047 .00074 -.007374 -.001545 .001448 lremote | .000401 .000458 -.027379 -.045999 .046034 .001917 -.000952 ldist | .012212 -.00569 -.025479 -.026262 .043173 .005138 .001892 lopen | -.00017 .000344 .009483 .001259 -.062546 .003038 -.000394 english | -.002879 .005247 .007107 .006456 -.025432 .000852 .000799 white | .014049 -.030326 -.035401 -.035865 .124456 .027449 -.004434 lwhitemg | -.001552 .000931 .000212 -.000617 -.000476 -.00152 -7.6e-06 _cons | -.218788 .381517 56.7868 .254426 -205.301 -.084879 .067321</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .068667 ldist | .041598 .163695 lopen | .004913 .007982 .013567 english | -.007541 -.000923 -.001519 .033604 white | .035188 .098248 .004019 .035019 .976536 lwhitemg | .002244 -.010434 -.000406 -.004271 -.098323 .01161 _cons | -1.03325 -1.97375 .625591 .170536 -2.18815 .09717 1939.53 . xtgls lrxsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 490.82 Log likelihood = -990.5819 Prob > chi2 = 0.0000</p><p>------lrxsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .135785 .0510829 2.66 0.008 .0356645 .2359056 lgdp | .5081705 .0982386 5.17 0.000 .3156264 .7007145 lgdpau | -1.108529 1.361158 -0.81 0.415 -3.77635 1.559292 lgdpdfrati~w | -1.101414 .5590909 -1.97 0.049 -2.197212 -.0056157 lpopau | 3.524647 4.6777 0.75 0.451 -5.643476 12.69277 lpop | .0542965 .098553 0.55 0.582 -.1388638 .2474568 lxrate1 | -.0459639 .0388525 -1.18 0.237 -.1221134 .0301857 lremote | -.755864 .3032222 -2.49 0.013 -1.350168 -.1615595 ldist | -2.902398 .4530037 -6.41 0.000 -3.790269 -2.014527 lopen | -.0283833 .105455 -0.27 0.788 -.2350713 .1783047 english | .6208592 .1966695 3.16 0.002 .235394 1.006324 white | 9.398209 1.585022 5.93 0.000 6.291624 12.50479 lwhitemg | -.970163 .1416272 -6.85 0.000 -1.247747 -.6925787 _cons | -2.844565 43.87246 -0.06 0.948 -88.833 83.14387 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002609 lgdp | -.002394 .009651 lgdpau | -.003139 .005997 1.85275 lgdpdfrati~w | -.001188 .000155 -.029664 .312583 lpopau | .010831 -.0294 -6.22139 .18939 21.8809 lpop | -.000449 -.005751 -.001279 .00084 .005333 .009713 lxrate1 | .000061 .001477 .002273 .001612 -.013347 -.001571 .00151 lremote | .004088 .000434 -.019174 -.034788 .046996 -.003382 -.001271 ldist | .011075 -.007744 -.02213 -.013721 .059872 .003667 -.000708 lopen | -.000259 -.000102 .006394 .005236 -.049432 .002143 -.000089 english | -.002551 .003342 .00671 .005766 -.023235 -.001336 .002133 white | .011114 -.034251 .004742 -.023189 .01443 .037799 -.005803 lwhitemg | -.000911 .001134 -.001975 -.000368 .004673 -.002437 .000318 _cons | -.191556 .283152 54.9059 -2.26561 -200.516 -.077656 .164313</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .091944 ldist | .047908 .205212 lopen | .003423 .000564 .011121 english | -.018342 .007686 -.002634 .038679 white | .032809 .111693 -.000494 .026849 2.51229 lwhitemg | .001616 -.010772 .000185 -.002866 -.215733 .020058 _cons | -1.47241 -2.72702 .59145 .228213 -1.59944 .083148 1924.79</p><p>. xtgls lrxsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 837.34 Log likelihood = -1581.911 Prob > chi2 = 0.0000</p><p>------lrxsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4348159 .0683537 6.36 0.000 .3008451 .5687867 lgdp | .2049382 .1265154 1.62 0.105 -.0430274 .4529037 lgdpau | -2.078786 1.746691 -1.19 0.234 -5.502238 1.344666 lgdpdfrati~w | -1.00007 .5908201 -1.69 0.091 -2.158056 .1579162 lpopau | 17.57969 5.965386 2.95 0.003 5.887753 29.27163 lpop | .4775787 .1209165 3.95 0.000 .2405867 .7145707 lxrate1 | -.1349214 .0427536 -3.16 0.002 -.2187168 -.0511259 lremote | .3449334 .3072613 1.12 0.262 -.2572877 .9471544 ldist | -1.896925 .4458906 -4.25 0.000 -2.770855 -1.022996 lopen | -.1174609 .137234 -0.86 0.392 -.3864345 .1515128 english | .240744 .2775798 0.87 0.386 -.3033023 .7847904 white | 15.12324 2.676332 5.65 0.000 9.877723 20.36875 lwhitemg | -1.448457 .2589285 -5.59 0.000 -1.955948 -.9409667 _cons | -231.7192 55.27728 -4.19 0.000 -340.0606 -123.3777 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004672 lgdp | -.005402 .016006 lgdpau | -.006175 .008858 3.05093 lgdpdfrati~w | -.002096 .002719 -.031693 .349068 lpopau | .019353 -.039765 -10.1865 .130433 35.5858 lpop | .001777 -.010755 -.003421 -.001359 .00626 .014621 lxrate1 | -.000081 .001595 -.000751 .003284 -.005587 -.001327 .001828 lremote | .00497 -.001653 -.04313 -.018233 .039528 .001339 .00133 ldist | .016246 -.011621 -.032565 -.001462 .087299 .009464 -.000571 lopen | -.000455 -.000294 .007281 .008607 -.047296 .003737 -.000306 english | -.004703 .011243 .009505 .000944 -.053644 -.005914 .0015 white | .015153 -.042287 -.084572 -.059995 -.054045 .057716 .006103 lwhitemg | -.001114 .001351 .003148 .002862 .010571 -.003042 -.000543 _cons | -.288957 .381342 89.5524 -1.54428 -323.841 -.106006 .080872</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .094409 ldist | .04583 .198818 lopen | .005878 .004815 .018833 english | -.01096 .026214 -.004393 .077051 white | .155425 -.033772 -.005442 -.021223 7.16275 lwhitemg | -.006811 .003989 .000715 .001463 -.682624 .067044 _cons | -.77654 -2.87417 .452195 .32147 2.05153 -.21172 3055.58 . clear</p><p>. *Estimating the Australian Immigration Trade relationship; . insheet using k:\book2.txt (54 vars, 11640 obs)</p><p>. drop if ccode ==. (10630 observations deleted)</p><p>. . **Dropping Sri Lanka . drop if ccode==537240 (10 observations deleted)</p><p>. . . ** Estimation Results . **Regression of Exports without Distinction between "white" and "non-white Aus > tralia" . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Exports . xtgls lrexp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 6759.84 Log likelihood = -1021.332 Prob > chi2 = 0.0000</p><p>------lrexp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5091474 .0409895 12.42 0.000 .4288094 .5894853 lgdp | 1.080645 .0400898 26.96 0.000 1.00207 1.15922 lgdpau | -3.225787 .8732505 -3.69 0.000 -4.937326 -1.514247 lgdpdfrati~w | -1.789545 .3321993 -5.39 0.000 -2.440644 -1.138447 lpopau | 3.948981 3.045712 1.30 0.195 -2.020505 9.918467 lpop | .0083733 .0418231 0.20 0.841 -.0735985 .090345 lxrate1 | .0037768 .0148191 0.25 0.799 -.0252681 .0328217 lremote | .1579675 .0812438 1.94 0.052 -.0012673 .3172024 ldist | -1.43944 .1492034 -9.65 0.000 -1.731873 -1.147007 lopen | .9203559 .0781918 11.77 0.000 .7671028 1.073609 english | .1832183 .0948812 1.93 0.053 -.0027455 .3691821 white | 3.232643 .5693552 5.68 0.000 2.116727 4.348559 lwhitemg | -.3924102 .0515492 -7.61 0.000 -.4934448 -.2913757 _cons | 13.49428 28.25078 0.48 0.633 -41.87623 68.8648 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00168 lgdp | -.001023 .001607 lgdpau | -.00367 .00314 .762566 lgdpdfrati~w | .000734 -.001073 -.024442 .110356 lpopau | .014031 -.01276 -2.61837 .132176 9.27636 lpop | 7.8e-06 -.000693 .00095 -.000019 -.007098 .001749 lxrate1 | 4.7e-06 .000184 .000011 -.000059 -.000355 -.000069 .00022 lremote | -.000434 .001289 .004636 -.002089 -.024643 .000113 .000069 ldist | .004157 -.002611 -.006518 .00386 .0163 .00185 .000477 lopen | -.000637 .000415 .010583 -.000898 -.057144 .000947 -.000054 english | -.000749 .001487 -.002443 .000422 .016336 -.000992 .000464 white | .007128 -.001423 -.006189 -.008221 -.000729 .009587 .001572 lwhitemg | -.000813 .000191 .000765 .000452 -.000601 -.000852 -.000132 _cons | -.162833 .123778 23.4291 -1.66818 -85.053 .063481 -.003659</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .006601 ldist | .001983 .022262 lopen | .002233 .000646 .006114 english | .000124 .001587 -.00293 .009002 white | .015233 .03378 .000098 .002601 .324165 lwhitemg | -.001139 -.003476 -.000027 -4.6e-06 -.028959 .002657 _cons | .184626 -.334259 .632678 -.245074 -.46966 .049831 798.107</p><p>. **II. Conservative Estimates . *2.1. Aggregate reference priced Exports (conservative) . xtgls lrrefp_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7182.55 Log likelihood = -1455.551 Prob > chi2 = 0.0000</p><p>------lrrefp_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3224132 .0451953 7.13 0.000 .233832 .4109943 lgdp | 1.104634 .0670646 16.47 0.000 .9731901 1.236079 lgdpau | -.3048993 .5199816 -0.59 0.558 -1.324045 .7142459 lgdpdfrati~w | -.198085 .2923124 -0.68 0.498 -.7710067 .3748368 lpopau | 3.153323 1.868843 1.69 0.092 -.509542 6.816187 lpop | .0315556 .0937109 0.34 0.736 -.1521145 .2152256 lxrate1 | -.0412151 .02984 -1.38 0.167 -.0997005 .0172703 lremote | -.2693608 .1661672 -1.62 0.105 -.5950424 .0563209 ldist | -3.156368 .3878728 -8.14 0.000 -3.916584 -2.396151 lopen | -.0739728 .0555351 -1.33 0.183 -.1828197 .034874 english | .6093738 .1807404 3.37 0.001 .2551291 .9636185 white | 7.579502 1.098569 6.90 0.000 5.426347 9.732656 lwhitemg | -.8202572 .1170146 -7.01 0.000 -1.049602 -.5909128 _cons | -34.61736 18.79134 -1.84 0.065 -71.44772 2.213 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002043 lgdp | -.001557 .004498 lgdpau | .001122 -.001289 .270381 lgdpdfrati~w | -.001845 .003059 -.024049 .085447 lpopau | -.005207 .003486 -.935341 .105486 3.49257 lpop | -.000104 -.004753 .003418 -.001328 -.018699 .008782 lxrate1 | .000136 .000381 .000569 .002587 -.006158 -.000558 .00089 lremote | .000092 .000367 -.021662 .002789 .091734 -.003615 .000615 ldist | .008715 -.010319 .0032 .002441 -.027062 .005021 .00206 lopen | .000036 -.000208 .002483 .00104 -.011896 .001116 -.000357 english | -.001119 -.001656 .006004 .004007 -.04491 .003448 .00155 white | .01024 -.025421 .021643 -.004118 -.152598 .03218 .001657 lwhitemg | -.001488 .001982 -.00449 .000629 .022758 -.002078 -.000131 _cons | .000678 .048166 8.57739 -1.30328 -33.8014 .17741 .055791</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .027612 ldist | .003541 .150445 lopen | -.001861 .000849 .003084 english | -.005022 .000265 -.000637 .032667 white | -.012391 .052881 .002624 .040138 1.20685 lwhitemg | .004138 -.006634 -.000577 -.001899 -.123269 .013692 _cons | -1.18845 -1.00348 .129606 .596039 1.56254 -.237028 353.115</p><p>. *2.2. Aggregate Differentiated Exports (conservative) . xtgls lrdiff_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100</p><p>Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3564.29 Log likelihood = -1561.677 Prob > chi2 = 0.0000</p><p>------lrdiff_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4412932 .0569132 7.75 0.000 .3297454 .5528409 lgdp | 1.109353 .0649038 17.09 0.000 .9821437 1.236562 lgdpau | 2.010263 2.047657 0.98 0.326 -2.00307 6.023596 lgdpdfrati~w | -2.157281 .8231956 -2.62 0.009 -3.770714 -.5438471 lpopau | -7.658347 7.049787 -1.09 0.277 -21.47568 6.158981 lpop | -.1676285 .0800777 -2.09 0.036 -.324578 -.0106791 lxrate1 | -.0657984 .0281478 -2.34 0.019 -.120967 -.0106297 lremote | -.0018336 .2018267 -0.01 0.993 -.3974066 .3937395 ldist | -2.293191 .2354416 -9.74 0.000 -2.754648 -1.831734 lopen | .099355 .0910152 1.09 0.275 -.0790316 .2777416 english | .6692971 .1815411 3.69 0.000 .3134831 1.025111 white | 2.428585 1.161045 2.09 0.036 .152979 4.70419 lwhitemg | -.2379867 .1059174 -2.25 0.025 -.4455811 -.0303924 _cons | 78.29808 64.88359 1.21 0.228 -48.87143 205.4676 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003239 lgdp | -.00231 .004212 lgdpau | -.003089 .005902 4.1929 lgdpdfrati~w | -.004187 .00206 -.207839 .677651 lpopau | .010524 -.028307 -14.2201 .969723 49.6995 lpop | .000202 -.003374 -.000874 .001404 .005758 .006412 lxrate1 | .000195 .000484 .000879 -.000535 -.007066 -.000834 .000792 lremote | .004514 -.002924 .002602 -.008799 -.02873 -.00029 .000918 ldist | .006928 -.006223 -.007115 .010733 .017388 .002704 .002865 lopen | -.000397 .00074 .015219 .002897 -.078253 .001198 -.000138 english | -.003125 .00255 .00008 .010488 .009509 -.003369 .001264 white | .022928 -.022024 .034512 -.128274 -.161012 .00988 .002444 lwhitemg | -.002101 .001553 -.002842 .010934 .012977 -.000203 -.000149 _cons | -.166876 .367529 126.07 -11.4198 -452.056 -.119578 .057236 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .040734 ldist | .021548 .055433 lopen | .004022 .000514 .008284 english | -.014415 .001882 -.00331 .032957 white | .082837 .033329 -.002513 -.014162 1.34802 lwhitemg | -.004961 -.000977 .000357 .001214 -.119592 .011218 _cons | -.097462 -.783625 .831121 -.064772 1.02967 -.116266 4209.88</p><p>. *2.3. Aggregate Homogenous Exports (conservative) . xtgls lrhomo_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1984.37 Log likelihood = -1625.251 Prob > chi2 = 0.0000</p><p>------lrhomo_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4495579 .0526567 8.54 0.000 .3463527 .5527631 lgdp | .9531016 .0963636 9.89 0.000 .7642323 1.141971 lgdpau | .2609162 1.106498 0.24 0.814 -1.907781 2.429613 lgdpdfrati~w | -.279302 .4598232 -0.61 0.544 -1.180539 .6219349 lpopau | -7.078351 3.786912 -1.87 0.062 -14.50056 .3438607 lpop | .1843638 .1076238 1.71 0.087 -.0265751 .3953027 lxrate1 | .0630007 .0369367 1.71 0.088 -.0093939 .1353953 lremote | -1.143311 .2309216 -4.95 0.000 -1.595909 -.6907126 ldist | -1.648242 .4916105 -3.35 0.001 -2.611781 -.6847029 lopen | .0342733 .0949788 0.36 0.718 -.1518818 .2204283 english | 1.020113 .2967989 3.44 0.001 .4383983 1.601829 white | 12.32592 2.586412 4.77 0.000 7.256648 17.3952 lwhitemg | -1.452571 .2762629 -5.26 0.000 -1.994036 -.9111055 _cons | 114.2747 35.64286 3.21 0.001 44.41596 184.1334 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002773 lgdp | -.003008 .009286 lgdpau | .005916 -.01106 1.22434 lgdpdfrati~w | -.003552 .007415 -.056587 .211437 lpopau | -.023291 .02539 -4.06905 .281394 14.3407 lpop | .000357 -.005824 .000624 -.002873 -.001687 .011583 lxrate1 | -.000111 .00116 .002857 .002677 -.018519 -.001425 .001364 lremote | .000298 .008765 -.037322 .012317 .101676 -.006926 .00062 ldist | .01441 -.010713 .022347 -.005492 -.14592 .013024 .00204 lopen | .000016 -.001112 -.019638 .006818 .048141 .002152 -.000271 english | -.002483 .003748 .017474 .004197 -.085426 .005077 .002869 white | .009923 -.02403 .099382 -.01421 -.445136 .034425 .004204 lwhitemg | -.001148 .001585 -.011098 .0017 .049336 -.002861 -.000274 _cons | .142253 -.217061 35.7234 -3.57233 -131.295 -.098685 .196741</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .053325 ldist | .025521 .241681 lopen | .001665 -.001381 .009021 english | -.014334 .015709 -.003697 .08809 white | -.011337 .053296 -.000677 .121907 6.68953 lwhitemg | .002802 -.007239 .000434 -.012613 -.709613 .076321 _cons | -1.5096 -.734376 -.292115 .748822 4.27732 -.464959 1270.41</p><p>. **III. Liberal Estimates . *3.1. Aggregate reference priced Exports (liberal) . xtgls lrrefp_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1999.71 Log likelihood = -1456.462 Prob > chi2 = 0.0000</p><p>------lrrefp_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3531986 .0469553 7.52 0.000 .2611679 .4452292 lgdp | .9212996 .0836013 11.02 0.000 .7574442 1.085155 lgdpau | -.2669597 .4793071 -0.56 0.578 -1.206384 .6724649 lgdpdfrati~w | .1560568 .2439116 0.64 0.522 -.3220012 .6341147 lpopau | -2.26837 1.698708 -1.34 0.182 -5.597775 1.061036 lpop | .1670026 .0999014 1.67 0.095 -.0288006 .3628057 lxrate1 | -.0113488 .0275387 -0.41 0.680 -.0653237 .0426262 lremote | -.2238222 .156229 -1.43 0.152 -.5300255 .082381 ldist | -2.27826 .4815149 -4.73 0.000 -3.222012 -1.334508 lopen | .02598 .049786 0.52 0.602 -.0715988 .1235588 english | .984553 .2509877 3.92 0.000 .4926262 1.47648 white | 10.96774 2.073983 5.29 0.000 6.902803 15.03267 lwhitemg | -1.093309 .2029694 -5.39 0.000 -1.491122 -.6954963 _cons | 46.85391 17.16049 2.73 0.006 13.21997 80.48785 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002205 lgdp | -.002413 .006989 lgdpau | .001423 -.004056 .229735 lgdpdfrati~w | -.001817 .004345 -.023327 .059493 lpopau | -.006732 .013599 -.790393 .099351 2.88561 lpop | .000677 -.005816 .00484 -.003372 -.024463 .00998 lxrate1 | .000123 .000059 .001489 .001554 -.007955 -.000235 .000758 lremote | .00065 .000493 -.020059 .002213 .076239 -.003103 .000094 ldist | .006582 -.009321 -.000214 -.000985 -.018249 .008348 .00216 lopen | -.000026 -.000061 .001979 .000948 -.009019 .000745 -.000156 english | -.002054 .000833 .007783 .004057 -.031064 .001601 .001819 white | .01023 -.031002 .025778 -.00503 -.143105 .034598 .010399 lwhitemg | -.001177 .002054 -.003616 .000372 .018248 -.002171 -.000921 _cons | .039711 -.093752 7.28956 -1.15167 -27.5959 .201007 .068208</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .024408 ldist | .01115 .231857 lopen | -.001501 -.000801 .002479 english | -.006207 .030627 -.00046 .062995 white | .029506 -.185403 -.004079 .013135 4.30141 lwhitemg | -.000915 .019485 .000175 .000535 -.416659 .041197 _cons | -1.02743 -1.98125 .109587 .009535 3.26447 -.389062 294.482 . *3.2. Aggregate Differentiated Exports (liberal) . xtgls lrdiff_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3320.28 Log likelihood = -1578.905 Prob > chi2 = 0.0000</p><p>------lrdiff_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3992161 .0594316 6.72 0.000 .2827323 .5156999 lgdp | 1.209689 .0709266 17.06 0.000 1.070676 1.348703 lgdpau | 1.676088 2.133949 0.79 0.432 -2.506375 5.85855 lgdpdfrati~w | -2.299319 .8283764 -2.78 0.006 -3.922907 -.6757314 lpopau | -6.712267 7.344135 -0.91 0.361 -21.10651 7.681974 lpop | -.2780442 .08224 -3.38 0.001 -.4392317 -.1168567 lxrate1 | -.0279326 .028364 -0.98 0.325 -.083525 .0276598 lremote | .1161227 .1969262 0.59 0.555 -.2698455 .502091 ldist | -2.260217 .2354207 -9.60 0.000 -2.721633 -1.798801 lopen | .1197312 .099404 1.20 0.228 -.075097 .3145593 english | .8141478 .19731 4.13 0.000 .4274274 1.200868 white | 2.629105 1.171069 2.25 0.025 .3338524 4.924357 lwhitemg | -.2450199 .1071913 -2.29 0.022 -.4551109 -.0349289 _cons | 69.63509 67.57644 1.03 0.303 -62.8123 202.0825 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003532 lgdp | -.002841 .005031 lgdpau | -.003902 .006889 4.55374 lgdpdfrati~w | -.00433 .00305 -.214456 .686207 lpopau | .014192 -.033375 -15.4365 .977842 53.9363 lpop | .000912 -.004138 -.001273 -.000727 .007689 .006763 lxrate1 | .000023 .000674 .000883 .000349 -.007652 -.001003 .000805 lremote | .004078 -.002791 .000307 -.006569 -.021136 .001019 .000633 ldist | .007089 -.006336 -.009005 .01153 .022789 .003175 .002276 lopen | -.000487 .00078 .015945 .003288 -.085889 .001572 -.000186 english | -.004862 .004805 .002742 .013944 -.003442 -.004967 .001626 white | .021401 -.022594 .029178 -.122211 -.126857 .012632 .000312 lwhitemg | -.001999 .001622 -.002467 .010623 .010197 -.000417 .000049 _cons | -.203809 .420185 136.816 -11.4068 -490.509 -.146084 .073388</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .03878 ldist | .021668 .055423 lopen | .00445 .000549 .009881 english | -.01553 .000391 -.003622 .038931 white | .078452 .01108 -.003275 -.024413 1.3714 lwhitemg | -.004768 .00116 .000454 .002307 -.122178 .01149 _cons | -.169287 -.828389 .92971 .081594 .833934 -.101296 4566.58</p><p>. *3.3. Aggregate Homogenous Exports (liberal) . xtgls lrhomo_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2990.65 Log likelihood = -1549.256 Prob > chi2 = 0.0000</p><p>------lrhomo_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5364716 .043986 12.20 0.000 .4502606 .6226825 lgdp | 1.108844 .0686518 16.15 0.000 .974289 1.243399 lgdpau | -.3336391 .6774529 -0.49 0.622 -1.661422 .9941443 lgdpdfrati~w | -.4603536 .4784846 -0.96 0.336 -1.398166 .477459 lpopau | 1.835831 2.428735 0.76 0.450 -2.924403 6.596065 lpop | -.1503886 .0841604 -1.79 0.074 -.31534 .0145627 lxrate1 | -.0352782 .0302469 -1.17 0.243 -.094561 .0240046 lremote | -.7698883 .1923749 -4.00 0.000 -1.146936 -.3928406 ldist | -2.073894 .3139321 -6.61 0.000 -2.68919 -1.458599 lopen | .0300761 .0722468 0.42 0.677 -.111525 .1716772 english | .7263208 .2355674 3.08 0.002 .2646171 1.188024 white | 5.636189 2.049665 2.75 0.006 1.618919 9.653458 lwhitemg | -.7797452 .2097247 -3.72 0.000 -1.190798 -.3686923 _cons | -15.57653 24.31888 -0.64 0.522 -63.24067 32.08761 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001935 lgdp | -.001892 .004713 lgdpau | .000184 -.003327 .458942 lgdpdfrati~w | -.003416 .003886 -.057322 .228948 lpopau | -.00053 .006153 -1.58628 .298 5.89876 lpop | .000097 -.003318 .003931 .000743 -.020863 .007083 lxrate1 | -.000345 .000711 .001331 .00273 -.010011 -.000335 .000915 lremote | .00152 .001528 -.027897 .002432 .118896 -.004298 .00017 ldist | .006472 -.009298 -.003187 .00049 -.00878 .011066 .000754 lopen | .000097 -.000835 -.000244 .005177 -.00453 .00176 -.000322 english | -.001023 .001146 .015841 .007173 -.098808 .003146 .00295 white | .008257 -.012003 .036376 -.009866 -.241212 .019074 .00649 lwhitemg | -.000747 .000788 -.004612 .001467 .028006 -.001558 -.000462 _cons | -.0373 .009636 14.6142 -3.7998 -57.2857 .139298 .10701</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .037008 ldist | .015245 .098553 lopen | -.002047 .001039 .00522 english | -.013567 .01487 -.001249 .055492 white | .008549 .061686 -.002355 .07038 4.20113 lwhitemg | .001398 -.004496 .000116 -.006984 -.424211 .043984 _cons | -1.68676 -.851208 .079237 1.10163 2.2687 -.299472 591.408</p><p>. *IV. Aggregate NON-Manufacturing Exports (Sum of Sitc0,1,2,3,4) . xtgls lrxnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1220.08 Log likelihood = -1130.568 Prob > chi2 = 0.0000</p><p>------lrxnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3093172 .0581791 5.32 0.000 .1952883 .4233461 lgdp | .8568764 .0884067 9.69 0.000 .6836024 1.03015 lgdpau | -4.476761 1.260324 -3.55 0.000 -6.94695 -2.006572 lgdpdfrati~w | -1.845635 .5221195 -3.53 0.000 -2.86897 -.8222991 lpopau | 12.50644 4.357434 2.87 0.004 3.966024 21.04685 lpop | -.1873426 .0871417 -2.15 0.032 -.3581372 -.016548 lxrate1 | -.0094593 .0345149 -0.27 0.784 -.0771073 .0581886 lremote | -.1679246 .2880761 -0.58 0.560 -.7325433 .3966942 ldist | -2.27878 .2449199 -9.30 0.000 -2.758814 -1.798746 lopen | .0146029 .1144977 0.13 0.899 -.2098085 .2390143 english | 1.049284 .2280143 4.60 0.000 .6023841 1.496184 white | 13.09733 .9194628 14.24 0.000 11.29522 14.89945 lwhitemg | -1.438397 .086192 -16.69 0.000 -1.60733 -1.269464 _cons | -76.39889 40.68553 -1.88 0.060 -156.1411 3.343273 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003385 lgdp | -.002987 .007816 lgdpau | -.00279 .00539 1.58842 lgdpdfrati~w | -.002067 .003059 -.09291 .272609 lpopau | .012988 -.034717 -5.36451 .389912 18.9872 lpop | -.000036 -.004603 .000029 -.001012 .002377 .007594 lxrate1 | -.000379 .001496 .000572 .000915 -.006449 -.001479 .001191 lremote | .00132 -.000037 .001054 -.032172 -.026385 -.000674 .000157 ldist | .009131 -.00858 -.007353 -.006928 .02398 .002879 -.001921 lopen | .000097 -.000032 .010269 .002014 -.069782 .002658 -.000373 english | -.005541 .008209 .003023 .010622 -.011301 -.002747 .002724 white | .013631 -.024642 .009474 -.038949 .014965 .024273 -.003872 lwhitemg | -.001589 .001543 -.001322 .000197 .001066 -.0016 .000445 _cons | -.18945 .420278 47.3753 -4.0111 -174.089 -.068559 .094862</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .082988 ldist | .016618 .059986 lopen | .005501 .003814 .01311 english | -.014285 -.007528 -.006415 .051991 white | .0345 .06502 -.006644 .053474 .845412 lwhitemg | .004788 -.006927 .000651 -.005683 -.071277 .007429 _cons | -.439092 -.809173 .773976 .151835 -1.3318 .043493 1655.31</p><p>. *V. Aggregate Manufacturing Exports (Sum of Sitc5,6,7,8,9) . xtgls lrxmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1158.04 Log likelihood = -972.9312 Prob > chi2 = 0.0000</p><p>------lrxmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2405063 .0432385 5.56 0.000 .1557605 .3252521 lgdp | .3372077 .0915607 3.68 0.000 .157752 .5166633 lgdpau | -3.051336 1.120451 -2.72 0.006 -5.247379 -.8552932 lgdpdfrati~w | -4.415471 .4635196 -9.53 0.000 -5.323953 -3.506989 lpopau | 11.42035 3.869151 2.95 0.003 3.836949 19.00374 lpop | .1497084 .0756836 1.98 0.048 .0013714 .2980455 lxrate1 | -.0743411 .0279066 -2.66 0.008 -.1290369 -.0196452 lremote | .5140195 .1727913 2.97 0.003 .1753548 .8526842 ldist | -2.410535 .234805 -10.27 0.000 -2.870744 -1.950325 lopen | -.0835662 .0528137 -1.58 0.114 -.1870791 .0199467 english | .4147795 .1643268 2.52 0.012 .0927049 .736854 white | 9.304176 .814602 11.42 0.000 7.707585 10.90077 lwhitemg | -.8384032 .0714879 -11.73 0.000 -.978517 -.6982894 _cons | -90.29218 36.0243 -2.51 0.012 -160.8985 -19.68586 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00187 lgdp | -.002648 .008383 lgdpau | -.002843 .006632 1.25541 lgdpdfrati~w | -.002376 .005256 -.045209 .21485 lpopau | .012408 -.033573 -4.25114 .224021 14.9703 lpop | .001699 -.005962 -.003204 -.003459 .015637 .005728 lxrate1 | -.000148 .001228 .000943 .000671 -.007083 -.000983 .000779 lremote | .002104 -.003753 -.004578 -.013188 -.006365 .003183 -4.8e-06 ldist | .00586 -.009104 -.012811 -.008975 .054388 .007193 -.000543 lopen | -.000099 .000221 .004806 .002066 -.02391 .000558 -.000069 english | -.002079 .003515 .001751 .002911 -.000261 -.000757 .000374 white | .015976 -.032872 -.02713 -.032347 .092823 .03522 -.00569 lwhitemg | -.001216 .001427 .001214 .000635 -.00458 -.002098 .000346 _cons | -.181708 .413409 37.7155 -2.6056 -137.136 -.230923 .083613</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .029857 ldist | .019461 .055133 lopen | .000732 .000234 .002789 english | -.002161 .009043 -.000848 .027003 white | .059167 .077351 .001666 .007022 .663576 lwhitemg | -.00256 -.005397 -.000262 -.000506 -.05442 .005111 _cons | -.185039 -1.199 .249463 -.17942 -1.96362 .126196 1297.75</p><p>. . **VI. SITC-1 Digit Level Disaggregate Exports . xtgls lrxsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 769.14 Log likelihood = -1439.407 Prob > chi2 = 0.0000 ------lrxsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2908004 .0880423 3.30 0.001 .1182408 .4633601 lgdp | .4401966 .1426486 3.09 0.002 .1606105 .7197826 lgdpau | -.6783911 1.119398 -0.61 0.544 -2.87237 1.515588 lgdpdfrati~w | -.7452741 .5539818 -1.35 0.179 -1.831059 .3405103 lpopau | 9.824362 3.785955 2.59 0.009 2.404026 17.2447 lpop | -.1197619 .1383992 -0.87 0.387 -.3910193 .1514955 lxrate1 | -.0883878 .0461722 -1.91 0.056 -.1788836 .002108 lremote | .2933509 .2480629 1.18 0.237 -.1928435 .7795453 ldist | -2.244327 .462363 -4.85 0.000 -3.150542 -1.338112 lopen | -.3460413 .1730126 -2.00 0.045 -.6851399 -.0069428 english | 1.494562 .3160181 4.73 0.000 .8751779 2.113946 white | 19.04976 1.831972 10.40 0.000 15.45916 22.64036 lwhitemg | -1.858773 .1756437 -10.58 0.000 -2.203028 -1.514518 _cons | -131.4906 35.52501 -3.70 0.000 -201.1184 -61.86287 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .007751 lgdp | -.009769 .020349 lgdpau | -.010156 .010648 1.25305 lgdpdfrati~w | -.002544 -.002962 .119296 .306896 lpopau | .03214 -.028036 -4.08096 -.218129 14.3335 lpop | .003336 -.012332 -.001401 .002549 -.017255 .019154 lxrate1 | .00055 .000989 -.000465 -.000276 .00371 -.002001 .002132 lremote | .002622 .002531 -.040644 -.053773 .003189 -.001536 -.000097 ldist | .019257 -.021101 -.046952 -.034053 .082022 .021856 .002601 lopen | -.000662 -.000418 .006846 -.006358 -.087719 .007096 -.001112 english | -.010998 .009611 .010917 .003557 -.058969 .003095 .00305 white | .036009 -.076929 -.044691 -.040245 .029144 .081906 .00263 lwhitemg | -.003306 .005517 .000955 .000286 -.005988 -.006254 -.000295 _cons | -.346706 .150539 35.336 .993331 -130.684 .093848 -.076936</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .061535 ldist | .04251 .21378 lopen | .011057 .004657 .029933 english | -.0038 .015201 -.006924 .099867 white | .031349 .162247 .000262 .109511 3.35612 lwhitemg | .000599 -.013363 .000582 -.007429 -.313991 .030851 _cons | .095787 -2.496 1.06861 .329744 -.90361 .194295 1262.03</p><p>. xtgls lrxsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 889.77 Log likelihood = -241.551 Prob > chi2 = 0.0000</p><p>------lrxsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0052184 .0175149 0.30 0.766 -.0291102 .0395469 lgdp | .0459426 .0432277 1.06 0.288 -.0387821 .1306673 lgdpau | .0510482 .3004185 0.17 0.865 -.5377612 .6398576 lgdpdfrati~w | -.1449691 .1626895 -0.89 0.373 -.4638346 .1738965 lpopau | 3.313587 1.083928 3.06 0.002 1.189127 5.438046 lpop | .2264899 .0523394 4.33 0.000 .1239066 .3290732 lxrate1 | -.0366003 .0145678 -2.51 0.012 -.0651527 -.0080478 lremote | -.0555736 .1051064 -0.53 0.597 -.2615783 .1504312 ldist | -3.481215 .3361983 -10.35 0.000 -4.140152 -2.822279 lopen | -.0418763 .0289241 -1.45 0.148 -.0985664 .0148138 english | 1.27983 .1521134 8.41 0.000 .9816932 1.577967 white | 19.6514 1.272229 15.45 0.000 17.15788 22.14493 lwhitemg | -1.5849 .1202631 -13.18 0.000 -1.820612 -1.349189 _cons | -26.32216 11.9218 -2.21 0.027 -49.68846 -2.955854 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000307 lgdp | -.000189 .001869 lgdpau | .00038 -.001107 .090251 lgdpdfrati~w | -.00031 .000625 -.007668 .026468 lpopau | -.001821 .005462 -.308477 .03626 1.1749 lpop | -.000102 -.001451 .000076 -.000015 -.003831 .002739 lxrate1 | .000027 -3.4e-06 .000445 .000383 -.003646 .000036 .000212 lremote | .000228 .000916 -.006925 -.000492 .020626 -.000188 .00007 ldist | .001285 .002386 -.007008 -.000384 .030515 -.000613 -.000379 lopen | .000038 -.000084 .000077 -.00014 -.002137 .000151 -.000015 english | -.000398 .000489 -.000663 -.000538 .01439 .001017 .000014 white | .000906 -.007111 .002917 -.004823 -.032926 .01144 .000503 lwhitemg | -.000143 .000188 -.000475 .000326 .002089 -.000748 -6.7e-06 _cons | .01062 -.111325 2.90569 -.433193 -11.9518 .059376 .050115</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .011047 ldist | .010981 .113029 lopen | .000061 -.000379 .000837 english | .000883 .018498 -.000565 .023138 white | .008033 .025021 -.000139 .03163 1.61857 lwhitemg | -.000317 -.004382 .000062 -.003498 -.148241 .014463 _cons | -.381142 -1.55355 .036494 -.434991 .131118 .030903 142.129</p><p>. xtgls lrxsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 744.09 Log likelihood = -1323.583 Prob > chi2 = 0.0000</p><p>------lrxsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2003436 .0597551 3.35 0.001 .0832257 .3174616 lgdp | .7534363 .1150676 6.55 0.000 .527908 .9789647 lgdpau | -5.22219 1.90406 -2.74 0.006 -8.954079 -1.490302 lgdpdfrati~w | -.0545144 .8506253 -0.06 0.949 -1.721709 1.612681 lpopau | 15.40276 6.590729 2.34 0.019 2.485171 28.32036 lpop | .0925543 .1313673 0.70 0.481 -.1649208 .3500294 lxrate1 | -.0549924 .0368589 -1.49 0.136 -.1272346 .0172497 lremote | -.8083149 .3409637 -2.37 0.018 -1.476591 -.1400384 ldist | -2.762544 .5481653 -5.04 0.000 -3.836928 -1.68816 lopen | -.2378789 .1837269 -1.29 0.195 -.597977 .1222193 english | .1732244 .2667838 0.65 0.516 -.3496623 .696111 white | 10.28688 1.531258 6.72 0.000 7.285671 13.28809 lwhitemg | -1.189152 .1596818 -7.45 0.000 -1.502122 -.8761813 _cons | -100.1961 61.5765 -1.63 0.104 -220.8838 20.49166 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003571 lgdp | -.004637 .013241 lgdpau | -.004588 .00904 3.62544 lgdpdfrati~w | -.005036 .005267 -.075268 .723563 lpopau | .01849 -.055874 -12.2528 .550891 43.4377 lpop | .002045 -.009817 .00263 -.001558 -.019442 .017257 lxrate1 | -.000341 .001647 .001723 .00425 -.010744 -.001121 .001359 lremote | .005015 -.008262 -.019643 -.060426 .023943 -.000497 -.005988 ldist | .020338 -.019848 -.017276 -.034904 -.035139 .015486 -.000593 lopen | -.00053 .000504 .02128 -.003882 -.175337 .007738 -.0011 english | -.001543 .004798 .004547 .018221 -.016216 .001529 .00332 white | .032447 -.064609 -.029068 -.025093 .174815 .069672 -.003123 lwhitemg | -.002828 .003824 -.000259 -.002978 -.002916 -.005616 -.000399 _cons | -.36738 .823272 108.355 -7.14577 -398.412 .059168 .164397</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .116256 ldist | .052698 .300485 lopen | .018489 .012125 .033756 english | -.019336 .019983 -.006951 .071174 white | .053461 .233246 -.006703 .112354 2.34475 lwhitemg | .005753 -.02384 .001592 -.013937 -.233904 .025498 _cons | -1.15313 -2.15976 1.97662 -.041206 -4.67129 .259128 3791.67</p><p>. xtgls lrxsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 269.18 Log likelihood = -705.4602 Prob > chi2 = 0.0000</p><p>------lrxsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0540964 .0426626 1.27 0.205 -.0295208 .1377135 lgdp | .1580006 .1055358 1.50 0.134 -.0488457 .364847 lgdpau | -.0867983 .8419276 -0.10 0.918 -1.736946 1.56335 lgdpdfrati~w | .2200323 .2944277 0.75 0.455 -.3570355 .7971001 lpopau | -1.476704 2.892364 -0.51 0.610 -7.145632 4.192225 lpop | .5927943 .1137193 5.21 0.000 .3699086 .81568 lxrate1 | .0386696 .032069 1.21 0.228 -.0241844 .1015237 lremote | -.1723493 .2847408 -0.61 0.545 -.7304309 .3857323 ldist | -1.843624 .5741587 -3.21 0.001 -2.968954 -.7182932 lopen | .0069852 .0605511 0.12 0.908 -.1116928 .1256633 english | 1.591084 .3753257 4.24 0.000 .8554591 2.326709 white | 14.55172 2.421437 6.01 0.000 9.805792 19.29765 lwhitemg | -1.141535 .2220397 -5.14 0.000 -1.576725 -.706345 _cons | 33.52394 27.90491 1.20 0.230 -21.16867 88.21656 ------</p><p>. vce | limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00182 lgdp | -.0015 .011138 lgdpau | .001702 -.001468 .708842 lgdpdfrati~w | -.001517 .002353 -.02379 .086688 lpopau | -.011812 -.003663 -2.36847 .084769 8.36577 lpop | .000273 -.008171 -.000966 -.000306 .004193 .012932 lxrate1 | .000134 .000356 .001315 .001946 -.009552 -.000458 .001028 lremote | .000838 .006052 -.041702 -.013169 .132477 -.004461 -.000767 ldist | .006845 -.001147 -.003474 -.002465 -.038076 .007426 .001981 lopen | .000144 -.000493 -.002432 .004219 .0047 .00106 -.000094 english | -.00405 -.007548 .007059 .008385 -.021407 .011709 .002267 white | .005079 -.056024 .046001 -.006425 -.174675 .068182 .001226 lwhitemg | -.000779 .002771 -.007792 -.000437 .033123 -.004995 -.000184 _cons | .10171 -.05547 21.1504 -.77653 -77.4635 -.097958 .104693</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .081077 ldist | .024977 .329658 lopen | 9.4e-06 .00015 .003666 english | -.021892 .064485 -.00079 .140869 white | -.023501 .127059 .003574 .211424 5.86336 lwhitemg | .0062 -.017172 -.000253 -.019859 -.516554 .049302 _cons | -2.10265 -2.78383 -.024066 -.298859 .781061 -.2112 778.684</p><p>. xtgls lrxsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 234.10 Log likelihood = -769.6612 Prob > chi2 = 0.0000</p><p>------lrxsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0175372 .0422221 0.42 0.678 -.0652165 .100291 lgdp | .0779503 .0817131 0.95 0.340 -.0822045 .2381051 lgdpau | .1481157 .7024295 0.21 0.833 -1.228621 1.524852 lgdpdfrati~w | .0224132 .2536527 0.09 0.930 -.474737 .5195634 lpopau | -.2461605 2.422132 -0.10 0.919 -4.993452 4.501131 lpop | .5194275 .0989398 5.25 0.000 .325509 .7133461 lxrate1 | -.0046211 .0215759 -0.21 0.830 -.0469091 .0376668 lremote | .2790427 .2425167 1.15 0.250 -.1962813 .7543667 ldist | -2.657897 .3974228 -6.69 0.000 -3.436832 -1.878963 lopen | .0265541 .0523308 0.51 0.612 -.0760124 .1291205 english | .6964992 .3387091 2.06 0.040 .0326415 1.360357 white | -.6038455 1.810748 -0.33 0.739 -4.152846 2.945155 lwhitemg | .1152444 .1792043 0.64 0.520 -.2359896 .4664783 _cons | 14.39321 23.67652 0.61 0.543 -32.01191 60.79834 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001783 lgdp | -.001316 .006677 lgdpau | -.00068 .001055 .493407 lgdpdfrati~w | -.000398 .000714 -.033968 .06434 lpopau | -.0038 -.004317 -1.64732 .113925 5.86672 lpop | -.000084 -.004622 -.000294 -.000844 -.009343 .009789 lxrate1 | .000151 .000029 -.000331 .001318 -.003219 -.000169 .000466 lremote | .002295 .003177 -.030037 -.008307 .093934 -.003102 -.000197 ldist | .004837 -.003445 -.01795 -.002023 .048164 .001055 .000513 lopen | -.000118 .000348 .002312 .00053 -.010776 .000652 -.000044 english | -.00371 -.003152 .000711 .002543 .013375 .001724 .000717 white | .005258 -.031948 -.007673 -.014306 -.061165 .037729 .002226 lwhitemg | -.000635 .001747 -.002081 .00073 .015659 -.002424 -.000185 _cons | .037693 -.021871 14.8356 -.976038 -55.2524 .131483 .057286</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .058814 ldist | .029957 .157945 lopen | .000373 -.001015 .002739 english | -.010691 .044799 -.001617 .114724 white | .033487 .031671 -.00126 .138707 3.27881 lwhitemg | -.000183 -.001793 .000122 -.012399 -.314262 .032114 _cons | -1.5937 -2.06935 .107961 -.541045 .690702 -.182544 560.578</p><p>. xtgls lrxsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 562.10 Log likelihood = -1047.562 Prob > chi2 = 0.0000</p><p>------lrxsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1072438 .0754199 1.42 0.155 -.0405765 .2550642 lgdp | .601214 .1369363 4.39 0.000 .3328238 .8696042 lgdpau | -.6103028 .8271108 -0.74 0.461 -2.23141 1.010805 lgdpdfrati~w | -.6872462 .3743247 -1.84 0.066 -1.420909 .0464167 lpopau | 6.926127 2.797327 2.48 0.013 1.443467 12.40879 lpop | .2575047 .1255429 2.05 0.040 .011445 .5035644 lxrate1 | -.1558771 .0347139 -4.49 0.000 -.2239151 -.087839 lremote | .1793591 .233467 0.77 0.442 -.2782278 .6369461 ldist | -3.020695 .4611856 -6.55 0.000 -3.924602 -2.116788 lopen | .1061424 .0913435 1.16 0.245 -.0728876 .2851725 english | .664464 .2623453 2.53 0.011 .1502766 1.178651 white | 12.70483 1.948146 6.52 0.000 8.886532 16.52312 lwhitemg | -1.217417 .1847231 -6.59 0.000 -1.579468 -.8553661 _cons | -85.31569 26.59217 -3.21 0.001 -137.4354 -33.19599 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .005688 lgdp | -.00628 .018752 lgdpau | -.004937 .005804 .684112 lgdpdfrati~w | -.000149 -.001295 .03614 .140119 lpopau | .015539 -.028832 -2.23314 -.047965 7.82504 lpop | .001397 -.011748 -.000992 .001995 .004106 .015761 lxrate1 | .000504 .000975 .000521 .000532 -.003612 -.001294 .001205 lremote | .00112 .005905 -.032007 -.027183 .027838 -.006114 .00175 ldist | .014777 -.009566 -.025302 -.004418 .079401 .00346 .000834 lopen | -.000101 .000094 .001833 .002105 -.02742 .001777 -.000508 english | -.005328 .016254 .000331 -.003867 -.007917 -.01126 -.000333 white | .031256 -.05405 -.058885 -.037448 .099547 .049908 -.002136 lwhitemg | -.002853 .002464 .002223 .000813 -.003997 -.002545 .000085 _cons | -.194722 .156664 19.4962 -.017121 -71.7225 -.008848 .014051</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054507 ldist | .023721 .212692 lopen | .002248 -.000587 .008344 english | .008017 .028315 -.003888 .068825 white | .047343 .109524 -.004148 .040557 3.79527 lwhitemg | -.000819 -.012433 .000269 -.006351 -.348822 .034123 _cons | -.349284 -2.82466 .370669 -.390718 -1.31888 .139059 707.144</p><p>. xtgls lrxsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 800.69 Log likelihood = -1134.066 Prob > chi2 = 0.0000</p><p>------lrxsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .232069 .0760681 3.05 0.002 .0829782 .3811598 lgdp | .6264859 .1132875 5.53 0.000 .4044465 .8485253 lgdpau | .1581944 1.156113 0.14 0.891 -2.107745 2.424134 lgdpdfrati~w | -1.075225 .5612491 -1.92 0.055 -2.175253 .0248033 lpopau | 2.597857 3.936566 0.66 0.509 -5.11767 10.31338 lpop | -.0442624 .1193397 -0.37 0.711 -.278164 .1896392 lxrate1 | -.0349215 .0379696 -0.92 0.358 -.1093406 .0394976 lremote | .3590699 .2795137 1.28 0.199 -.1887669 .9069066 ldist | -2.697316 .4411208 -6.11 0.000 -3.561897 -1.832735 lopen | -.109198 .0940351 -1.16 0.246 -.2935034 .0751074 english | 1.159093 .2885311 4.02 0.000 .5935827 1.724604 white | 11.46825 1.338226 8.57 0.000 8.845379 14.09113 lwhitemg | -1.130247 .1291182 -8.75 0.000 -1.383314 -.87718 _cons | -34.24157 36.86677 -0.93 0.353 -106.4991 38.01598 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .005786 lgdp | -.00575 .012834 lgdpau | -.005534 .008536 1.3366 lgdpdfrati~w | -.003567 .004274 .045765 .315001 lpopau | .013829 -.030988 -4.41293 .029805 15.4965 lpop | .001433 -.009314 -.003997 -.000562 .010776 .014242 lxrate1 | .00058 .000742 .001656 .000336 -.010561 -.001218 .001442 lremote | .004777 -.002062 -.031072 -.047777 -.002182 -.001747 .001865 ldist | .01533 -.010106 -.028699 -.024871 .056574 .004174 .000838 lopen | -.00029 .000802 .000461 .000836 -.024964 .00087 -.000358 english | -.005565 .010486 .004379 -.000247 -.004634 -.006528 -.000553 white | .03167 -.05553 -.057159 -.040681 .106682 .056604 -.001296 lwhitemg | -.002678 .003383 .002335 -.000754 -.00744 -.003949 .000155 _cons | -.198114 .287686 38.5327 -1.44105 -141.459 -.115126 .101513</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .078128 ldist | .046091 .194588 lopen | .004059 .001044 .008843 english | .002362 .033417 -.003358 .08325 white | .076679 .118335 -.007773 .027625 1.79085 lwhitemg | -.001415 -.011413 .000494 -.004009 -.165305 .016672 _cons | -.180127 -2.35665 .335933 -.493779 -1.88591 .188486 1359.16</p><p>. xtgls lrxsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 415.10 Log likelihood = -1193.443 Prob > chi2 = 0.0000</p><p>------lrxsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2131652 .0515112 4.14 0.000 .112205 .3141253 lgdp | .3172457 .1035501 3.06 0.002 .1142913 .5202002 lgdpau | -2.334992 1.391383 -1.68 0.093 -5.062052 .3920683 lgdpdfrati~w | -2.288022 .629347 -3.64 0.000 -3.52152 -1.054525 lpopau | 7.03519 4.754555 1.48 0.139 -2.283567 16.35395 lpop | .1045119 .0797669 1.31 0.190 -.0518284 .2608522 lxrate1 | -.1024023 .0385219 -2.66 0.008 -.1779038 -.0269007 lremote | 1.110083 .2650279 4.19 0.000 .5906377 1.629528 ldist | -1.225194 .4146246 -2.95 0.003 -2.037844 -.4125448 lopen | -.0073595 .117368 -0.06 0.950 -.2373965 .2226775 english | .5998388 .1868319 3.21 0.001 .233655 .9660225 white | 7.59367 1.346802 5.64 0.000 4.953986 10.23335 lwhitemg | -.6049949 .1303437 -4.64 0.000 -.8604638 -.3495259 _cons | -54.91236 44.1072 -1.24 0.213 -141.3609 31.53616 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002653 lgdp | -.002636 .010723 lgdpau | -.003881 .00648 1.93595 lgdpdfrati~w | -.001469 .00044 .082653 .396078 lpopau | .014114 -.038971 -6.46414 -.130793 22.6058 lpop | .000635 -.005694 -.000693 -.001199 .004125 .006363 lxrate1 | .000204 .00162 .000918 .000648 -.007049 -.001604 .001484 lremote | .000557 .000609 -.027974 -.046935 .048468 .001571 -.000763 ldist | .012235 -.005821 -.025591 -.026137 .0432 .005746 .001804 lopen | -.000079 .000173 .009269 .000981 -.063646 .003153 -.000444 english | -.002906 .005277 .007089 .006177 -.025031 .001011 .000918 white | .013867 -.0312 -.029306 -.059674 .087098 .031927 -.005422 lwhitemg | -.00153 .001002 -.000495 .001072 .003596 -.001909 .000098 _cons | -.219202 .382815 56.7348 .26379 -205.509 -.085221 .064267</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .07024 ldist | .04106 .171914 lopen | .004931 .007952 .013775 english | -.007024 .000575 -.001851 .034906 white | .051321 .112791 .005086 .046624 1.81388 lwhitemg | .001179 -.011749 -.000541 -.005061 -.166069 .016989 _cons | -1.0659 -2.05192 .652051 .141925 -2.03367 .072421 1945.44 . xtgls lrxsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 494.40 Log likelihood = -987.4104 Prob > chi2 = 0.0000</p><p>------lrxsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1261383 .0484066 2.61 0.009 .0312631 .2210136 lgdp | .5206402 .0962362 5.41 0.000 .3320207 .7092597 lgdpau | -1.234674 1.351728 -0.91 0.361 -3.884011 1.414664 lgdpdfrati~w | -1.123268 .5533535 -2.03 0.042 -2.207821 -.0387154 lpopau | 3.90189 4.645 0.84 0.401 -5.202144 13.00592 lpop | .0355666 .0887775 0.40 0.689 -.1384341 .2095673 lxrate1 | -.0414284 .0383462 -1.08 0.280 -.1165856 .0337288 lremote | -.7060725 .2924576 -2.41 0.016 -1.279279 -.1328662 ldist | -2.895546 .444906 -6.51 0.000 -3.767546 -2.023547 lopen | -.0324256 .1056596 -0.31 0.759 -.2395147 .1746634 english | .6133946 .1928456 3.18 0.001 .2354242 .9913651 white | 10.87994 1.694602 6.42 0.000 7.558584 14.2013 lwhitemg | -1.083428 .1510259 -7.17 0.000 -1.379433 -.7874225 _cons | -6.207056 43.5548 -0.14 0.887 -91.5729 79.15878 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002343 lgdp | -.002285 .009261 lgdpau | -.003003 .005765 1.82717 lgdpdfrati~w | -.000951 8.7e-06 -.028511 .3062 lpopau | .010562 -.028404 -6.13584 .182079 21.576 lpop | -.000098 -.005231 -.001479 .00049 .00521 .007881 lxrate1 | 6.3e-06 .001439 .002242 .00171 -.012939 -.001393 .00147 lremote | .002903 .00068 -.020375 -.035283 .050369 -.001259 -.001594 ldist | .011113 -.006875 -.022946 -.014402 .06097 .001298 -.000498 lopen | -.000326 -.000093 .00578 .005245 -.048543 .002252 -.000105 english | -.002496 .003423 .007481 .006396 -.024802 -.001686 .002125 white | .011262 -.031725 .018408 -.020855 -.015507 .030776 -.005429 lwhitemg | -.000974 .000961 -.003237 -.000593 .007717 -.001774 .000268 _cons | -.187534 .262527 54.1825 -2.14965 -197.754 -.05062 .157512</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .085531 ldist | .048244 .197941 lopen | .002999 .000722 .011164 english | -.019305 .006168 -.002765 .037189 white | .02842 .105742 -.002182 .029136 2.87167 lwhitemg | .001776 -.010126 .000315 -.003165 -.247188 .022809 _cons | -1.47563 -2.63901 .593652 .259936 -1.31987 .05259 1897.02</p><p>. xtgls lrxsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 828.13 Log likelihood = -1582.769 Prob > chi2 = 0.0000</p><p>------lrxsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4209204 .068571 6.14 0.000 .2865239 .555317 lgdp | .2232178 .1268896 1.76 0.079 -.0254812 .4719169 lgdpau | -2.710492 1.782687 -1.52 0.128 -6.204494 .7835104 lgdpdfrati~w | -1.142633 .5957429 -1.92 0.055 -2.310268 .0250014 lpopau | 19.63254 6.081428 3.23 0.001 7.713166 31.55192 lpop | .4787969 .1185701 4.04 0.000 .2464037 .7111901 lxrate1 | -.1284497 .0429727 -2.99 0.003 -.2126746 -.0442247 lremote | .3725748 .3112344 1.20 0.231 -.2374334 .9825831 ldist | -1.922553 .4443271 -4.33 0.000 -2.793418 -1.051687 lopen | -.1362005 .1363005 -1.00 0.318 -.4033446 .1309436 english | .2301661 .2776604 0.83 0.407 -.3140383 .7743705 white | 16.99448 2.545067 6.68 0.000 12.00624 21.98272 lwhitemg | -1.620527 .2466579 -6.57 0.000 -2.103967 -1.137086 _cons | -249.4382 56.35812 -4.43 0.000 -359.8981 -138.9783 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004702 lgdp | -.005401 .016101 lgdpau | -.00655 .009256 3.17797 lgdpdfrati~w | -.002304 .003038 -.037522 .35491 lpopau | .020469 -.042388 -10.5939 .143458 36.9838 lpop | .00181 -.010702 -.003732 -.001745 .008984 .014059 lxrate1 | -.000113 .001667 -.001028 .00333 -.00502 -.001409 .001847 lremote | .00513 -.002002 -.046937 -.019799 .05241 .001978 .00129 ldist | .016516 -.011748 -.034238 -.002326 .092478 .009752 -.000634 lopen | -.00042 -.000249 .007028 .008245 -.0465 .003617 -.000309 english | -.004617 .011211 .009261 .001899 -.054317 -.005747 .001695 white | .01873 -.047341 -.063231 -.049275 -.064062 .055835 .00518 lwhitemg | -.001439 .001779 .000755 .001615 .01306 -.002853 -.000459 _cons | -.302124 .415205 93.0305 -1.59077 -336.515 -.143149 .079418</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .096867 ldist | .046249 .197427 lopen | .006059 .004776 .018578 english | -.011444 .027366 -.004593 .077095 white | .138562 -.008967 -.00081 -.021816 6.47736 lwhitemg | -.00493 .001656 .000263 .00149 -.61653 .06084 _cons | -.917751 -2.90916 .44529 .327975 1.68343 -.194182 3176.24 . . clear</p><p>. *Estimating the Australian Immigration Trade relationship; . insheet using k:\book2.txt (54 vars, 11640 obs)</p><p>. drop if ccode ==. (10630 observations deleted)</p><p>. . **Dropping st Kittis . drop if ccode== 451440 (10 observations deleted)</p><p>. . ** Estimation Results . **Regression of Exports without Distinction between "white" and "non-white Aus > tralia" . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Exports . xtgls lrexp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 5815.49 Log likelihood = -998.6398 Prob > chi2 = 0.0000</p><p>------lrexp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5450866 .0371692 14.67 0.000 .4722363 .6179369 lgdp | 1.072972 .034714 30.91 0.000 1.004934 1.14101 lgdpau | -3.386017 .8883463 -3.81 0.000 -5.127143 -1.64489 lgdpdfrati~w | -1.914984 .3493125 -5.48 0.000 -2.599624 -1.230344 lpopau | 5.358801 3.095774 1.73 0.083 -.7088037 11.42641 lpop | .0252105 .0390603 0.65 0.519 -.0513462 .1017672 lxrate1 | .0195736 .0162942 1.20 0.230 -.0123624 .0515095 lremote | .0504308 .0864071 0.58 0.559 -.118924 .2197856 ldist | -1.698728 .17031 -9.97 0.000 -2.032529 -1.364926 lopen | .7901952 .0818627 9.65 0.000 .6297472 .9506431 english | .3111868 .085326 3.65 0.000 .1439509 .4784227 white | 3.702642 .6888007 5.38 0.000 2.352618 5.052667 lwhitemg | -.4315249 .0682377 -6.32 0.000 -.5652684 -.2977815 _cons | -2.873595 28.82638 -0.10 0.921 -59.37227 53.62508 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001382 lgdp | -.000799 .001205 lgdpau | -.00284 .002074 .789159 lgdpdfrati~w | .000869 -.001014 -.02879 .122019 lpopau | .010482 -.007861 -2.69909 .152028 9.58381 lpop | .000074 -.000583 .000853 .000263 -.006454 .001526 lxrate1 | -.000049 .000227 -.000106 -.000177 .000371 -.000085 .000265 lremote | -.000255 .000838 .004247 -.001735 -.025105 .000324 -.000056 ldist | .003603 -.002975 -.005196 .004998 .003529 .002362 .000156 lopen | -.000483 .000181 .010254 -.001282 -.057995 .000872 -.00019 english | -.000751 .000982 -.003991 .001721 .025468 -.000493 .000583 white | .007599 -.002147 -.014519 -.001023 .052278 .006626 .001707 lwhitemg | -.000845 .000281 .001687 -.000267 -.006345 -.000529 -.000144 _cons | -.126104 .083788 24.0864 -1.9175 -88.0432 .048601 -.009041</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .007466 ldist | .004808 .029006 lopen | .002783 .002493 .006702 english | -.0013 -.003359 -.003686 .007281 white | .007215 .024245 -.005928 .007883 .474446 lwhitemg | -.000212 -.002324 .000605 -.000485 -.046276 .004656 _cons | .175171 -.237614 .640585 -.294873 -.923327 .09623 830.96</p><p>. **II. Conservative Estimates . *2.1. Aggregate reference priced Exports (conservative) . xtgls lrrefp_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7460.43 Log likelihood = -1439.321 Prob > chi2 = 0.0000</p><p>------lrrefp_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3597329 .043278 8.31 0.000 .2749095 .4445563 lgdp | 1.061791 .0658046 16.14 0.000 .9328161 1.190765 lgdpau | -.4698944 .4795166 -0.98 0.327 -1.40973 .4699409 lgdpdfrati~w | -.2436122 .3002837 -0.81 0.417 -.8321575 .344933 lpopau | 3.317167 1.741025 1.91 0.057 -.0951798 6.729514 lpop | .1507333 .0800853 1.88 0.060 -.0062309 .3076976 lxrate1 | -.0431776 .0282941 -1.53 0.127 -.098633 .0122777 lremote | -.2263633 .1612456 -1.40 0.160 -.5423989 .0896723 ldist | -3.081047 .3877976 -7.94 0.000 -3.841116 -2.320978 lopen | -.0598596 .0544339 -1.10 0.271 -.1665481 .0468289 english | .3651913 .1774023 2.06 0.040 .0174891 .7128934 white | 8.153683 1.090071 7.48 0.000 6.017184 10.29018 lwhitemg | -.867727 .1169445 -7.42 0.000 -1.096934 -.63852 _cons | -35.1945 17.74629 -1.98 0.047 -69.97659 -.4123991 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001873 lgdp | -.001492 .00433 lgdpau | .000771 -.001047 .229936 lgdpdfrati~w | -.001966 .003198 -.023244 .09017 lpopau | -.002904 -.000987 -.801897 .103997 3.03117 lpop | -.000164 -.00384 .003282 -.001183 -.013609 .006414 lxrate1 | .000026 .00045 .000518 .002503 -.006116 -.000563 .000801 lremote | .000304 -.000247 -.020787 .00154 .091314 -.003158 .000493 ldist | .009973 -.013455 .006588 .001555 -.027328 .006835 .002166 lopen | .000111 -.000284 .002603 .001397 -.011437 .001061 -.000354 english | -.000594 -.002714 .006366 .004602 -.044897 .004567 .001755 white | .009152 -.021435 .019131 -.003314 -.118743 .022831 .001089 lwhitemg | -.001303 .001616 -.004043 .000442 .01971 -.001456 -.000051 _cons | -.041777 .140103 7.38226 -1.29007 -29.6295 .092256 .055733</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .026 ldist | .002748 .150387 lopen | -.002224 .001161 .002963 english | -.003788 .006687 -.000585 .031472 white | -.009404 .067284 .002723 .044578 1.18825 lwhitemg | .003727 -.008047 -.000653 -.002311 -.122669 .013676 _cons | -1.17557 -1.0417 .120884 .518049 .96673 -.183385 314.931</p><p>. *2.2. Aggregate Differentiated Exports (conservative) . xtgls lrdiff_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3789.58 Log likelihood = -1548.294 Prob > chi2 = 0.0000</p><p>------lrdiff_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4851612 .0517517 9.37 0.000 .3837297 .5865928 lgdp | 1.044456 .061335 17.03 0.000 .9242414 1.16467 lgdpau | 2.135056 2.045189 1.04 0.297 -1.87344 6.143552 lgdpdfrati~w | -2.253863 .8265485 -2.73 0.006 -3.873868 -.6338572 lpopau | -8.311631 7.041447 -1.18 0.238 -22.11261 5.489352 lpop | -.0269566 .0810048 -0.33 0.739 -.185723 .1318098 lxrate1 | -.0645498 .0282021 -2.29 0.022 -.119825 -.0092746 lremote | .1248451 .207982 0.60 0.548 -.2827921 .5324823 ldist | -2.210719 .2391094 -9.25 0.000 -2.679365 -1.742073 lopen | .1470198 .0983795 1.49 0.135 -.0458006 .3398401 english | .4100213 .1789204 2.29 0.022 .0593437 .7606988 white | 2.752046 1.152113 2.39 0.017 .4939468 5.010146 lwhitemg | -.2383717 .1083186 -2.20 0.028 -.4506723 -.0260712 _cons | 83.03155 64.81733 1.28 0.200 -44.00808 210.0712 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002678 lgdp | -.001831 .003762 lgdpau | -.002463 .005483 4.1828 lgdpdfrati~w | -.003519 .000968 -.204591 .683182 lpopau | .008529 -.027227 -14.1841 .967811 49.582 lpop | -.000023 -.00323 -.000658 .002798 .004352 .006562 lxrate1 | .000185 .000459 .000968 -.000476 -.007476 -.000737 .000795 lremote | .004135 -.002461 .001325 -.008334 -.026352 -.000918 .000814 ldist | .006113 -.005621 -.006313 .013096 .013411 .003156 .002848 lopen | -.000433 .000884 .015528 .002583 -.084766 .001347 -.000083 english | -.002595 .002312 .001085 .009643 .00664 -.002844 .001202 white | .018506 -.0191 .031409 -.093681 -.136031 .010005 .001629 lwhitemg | -.001675 .001296 -.002711 .007692 .011193 -.000283 -.000099 _cons | -.143697 .357391 125.739 -11.5084 -451.025 -.106799 .061892 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .043257 ldist | .019892 .057173 lopen | .004636 .001002 .009679 english | -.016304 .001609 -.003479 .032013 white | .065964 .02881 -.002534 -.007103 1.32736 lwhitemg | -.003157 -.000943 .000385 .000197 -.121258 .011733 _cons | -.106358 -.758657 .917047 -.030235 .812706 -.098333 4201.29</p><p>. *2.3. Aggregate Homogenous Exports (conservative) . xtgls lrhomo_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1981.62 Log likelihood = -1606.368 Prob > chi2 = 0.0000</p><p>------lrhomo_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4521384 .0529584 8.54 0.000 .3483418 .5559349 lgdp | .9474598 .0967832 9.79 0.000 .7577683 1.137151 lgdpau | -.0975392 1.102913 -0.09 0.930 -2.25921 2.064132 lgdpdfrati~w | -.3326295 .4658966 -0.71 0.475 -1.24577 .5805111 lpopau | -6.206418 3.774691 -1.64 0.100 -13.60468 1.19184 lpop | .2755954 .1071883 2.57 0.010 .0655103 .4856806 lxrate1 | .0651411 .036965 1.76 0.078 -.0073089 .1375911 lremote | -1.134495 .2327208 -4.87 0.000 -1.590619 -.6783702 ldist | -1.451425 .4804366 -3.02 0.003 -2.393063 -.5097867 lopen | .0481781 .0970163 0.50 0.619 -.1419704 .2383266 english | 1.077202 .2878046 3.74 0.000 .5131155 1.641289 white | 12.52898 2.577039 4.86 0.000 7.478075 17.57988 lwhitemg | -1.464724 .274554 -5.33 0.000 -2.00284 -.9266081 _cons | 105.9403 35.55548 2.98 0.003 36.25282 175.6278 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002805 lgdp | -.003019 .009367 lgdpau | .005948 -.010714 1.21642 lgdpdfrati~w | -.003574 .007476 -.057868 .21706 lpopau | -.023079 .023574 -4.04184 .289863 14.2483 lpop | .000267 -.005889 .00026 -.003051 .000945 .011489 lxrate1 | -.000107 .001196 .002925 .002683 -.01864 -.001534 .001366 lremote | .000323 .008324 -.036686 .011715 .101763 -.007139 .000578 ldist | .013771 -.010137 .022308 -.005171 -.13966 .011733 .001904 lopen | .000028 -.001186 -.020197 .006845 .04907 .002235 -.000286 english | -.002298 .00403 .016412 .004153 -.081989 .00457 .002738 white | .009848 -.023503 .091572 -.016183 -.417749 .031883 .004129 lwhitemg | -.00113 .001475 -.010388 .001782 .047261 -.002615 -.000303 _cons | .145262 -.19883 35.474 -3.68159 -130.548 -.11441 .199588</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054159 ldist | .023574 .230819 lopen | .001542 -.001623 .009412 english | -.013379 .017658 -.003762 .082831 white | -.003952 .040808 -.000171 .112608 6.64113 lwhitemg | .002325 -.006127 .00039 -.011813 -.702386 .07538 _cons | -1.50316 -.705556 -.288823 .694052 4.11512 -.457203 1264.19</p><p>. **III. Liberal Estimates . *3.1. Aggregate reference priced Exports (liberal) . xtgls lrrefp_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2461.78 Log likelihood = -1442.112 Prob > chi2 = 0.0000</p><p>------lrrefp_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4403214 .0493024 8.93 0.000 .3436905 .5369524 lgdp | .826214 .0791184 10.44 0.000 .6711448 .9812832 lgdpau | -.3633832 .4895078 -0.74 0.458 -1.322801 .5960346 lgdpdfrati~w | .2950421 .2161624 1.36 0.172 -.1286285 .7187127 lpopau | -2.257986 1.732674 -1.30 0.193 -5.653964 1.137993 lpop | .2863786 .0839119 3.41 0.001 .1219143 .450843 lxrate1 | -.0187097 .0257184 -0.73 0.467 -.0691169 .0316975 lremote | -.2687707 .1611535 -1.67 0.095 -.5846259 .0470844 ldist | -2.269754 .440807 -5.15 0.000 -3.13372 -1.405788 lopen | .0758982 .0482411 1.57 0.116 -.0186527 .1704491 english | .6827997 .2354134 2.90 0.004 .2213979 1.144201 white | 11.46532 1.958518 5.85 0.000 7.626698 15.30395 lwhitemg | -1.151814 .1921626 -5.99 0.000 -1.528446 -.7751822 _cons | 49.21408 17.27212 2.85 0.004 15.36134 83.06683 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002431 lgdp | -.002502 .00626 lgdpau | .001356 -.003959 .239618 lgdpdfrati~w | -.00186 .004444 -.022822 .046726 lpopau | -.00637 .01279 -.824041 .088204 3.00216 lpop | .000508 -.004493 .004927 -.002947 -.022412 .007041 lxrate1 | .000144 -.000012 .001593 .001244 -.008883 -.000102 .000661 lremote | .001064 -.00019 -.020792 .001011 .079041 -.00306 .000015 ldist | .007791 -.011988 .004937 -.003238 -.030893 .008313 .00247 lopen | -.000152 .000326 .001918 .000961 -.009098 .000363 -.000017 english | -.001568 -.000985 .009907 .002107 -.034578 .002923 .001604 white | .008958 -.0216 .017484 -.00622 -.120595 .020041 .008586 lwhitemg | -.001076 .00132 -.002824 .000347 .01636 -.001103 -.000764 _cons | .0236 -.054801 7.54073 -.941493 -28.5516 .181319 .078858</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .02597 ldist | .01014 .194311 lopen | -.001444 -.000695 .002327 english | -.006927 .031509 .000021 .055419 white | .034978 -.147746 -.004512 .005715 3.83579 lwhitemg | -.001349 .016016 .000196 .001486 -.372409 .036926 _cons | -1.0436 -1.47978 .108123 .031111 2.7361 -.343161 298.326 . *3.2. Aggregate Differentiated Exports (liberal) . xtgls lrdiff_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3461.06 Log likelihood = -1565.773 Prob > chi2 = 0.0000</p><p>------lrdiff_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4563838 .0560761 8.14 0.000 .3464767 .5662908 lgdp | 1.124628 .0692203 16.25 0.000 .9889584 1.260297 lgdpau | 1.840671 2.116364 0.87 0.384 -2.307327 5.988668 lgdpdfrati~w | -2.494503 .8270921 -3.02 0.003 -4.115574 -.8734323 lpopau | -7.357733 7.282089 -1.01 0.312 -21.63037 6.9149 lpop | -.1270657 .0854377 -1.49 0.137 -.2945206 .0403891 lxrate1 | -.0355302 .0287498 -1.24 0.217 -.0918788 .0208184 lremote | .2145838 .2026879 1.06 0.290 -.1826771 .6118448 ldist | -2.176069 .2401949 -9.06 0.000 -2.646843 -1.705296 lopen | .1387432 .0995797 1.39 0.164 -.0564295 .3339158 english | .5288159 .1950392 2.71 0.007 .146546 .9110858 white | 2.764168 1.164121 2.37 0.018 .4825341 5.045803 lwhitemg | -.2335251 .1092397 -2.14 0.033 -.447631 -.0194192 _cons | 73.76181 66.99146 1.10 0.271 -57.53904 205.0627 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003145 lgdp | -.002477 .004791 lgdpau | -.003066 .006334 4.479 lgdpdfrati~w | -.003882 .002257 -.210554 .684081 lpopau | .011017 -.031615 -15.1783 .961071 53.0288 lpop | .000604 -.004146 -.001202 .000509 .008058 .0073 lxrate1 | .000042 .000672 .000908 .000265 -.008173 -.001 .000827 lremote | .003904 -.002419 .000179 -.00619 -.020601 .000268 .000609 ldist | .006631 -.005723 -.006434 .01302 .009374 .003656 .00255 lopen | -.000439 .000798 .015877 .003578 -.085648 .001495 -.000124 english | -.004281 .004791 .002792 .011845 -.00564 -.00484 .001552 white | .018988 -.021528 .024242 -.09419 -.095956 .01246 -.0005 lwhitemg | -.001795 .001527 -.002093 .007981 .00775 -.000386 .000099 _cons | -.168526 .400652 134.471 -11.2497 -482.108 -.160098 .079014</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .041082 ldist | .020564 .057694 lopen | .004504 .001149 .009916 english | -.015913 .001108 -.003339 .03804 white | .06698 .01659 -.003242 -.017935 1.35518 lwhitemg | -.003573 .000211 .000455 .001432 -.123595 .011933 _cons | -.179359 -.705844 .921204 .109942 .466291 -.068958 4487.86</p><p>. *3.3. Aggregate Homogenous Exports (liberal) . xtgls lrhomo_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3284.06 Log likelihood = -1528.93 Prob > chi2 = 0.0000</p><p>------lrhomo_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5710499 .0439589 12.99 0.000 .4848921 .6572078 lgdp | 1.062736 .0666829 15.94 0.000 .93204 1.193432 lgdpau | -.4175937 .6793334 -0.61 0.539 -1.749063 .9138752 lgdpdfrati~w | -.4533446 .487715 -0.93 0.353 -1.409248 .5025593 lpopau | 1.649573 2.435586 0.68 0.498 -3.124087 6.423233 lpop | -.0778631 .0807683 -0.96 0.335 -.2361659 .0804398 lxrate1 | -.0263975 .0301231 -0.88 0.381 -.0854377 .0326426 lremote | -.7541357 .1937434 -3.89 0.000 -1.133866 -.3744056 ldist | -1.855269 .2978927 -6.23 0.000 -2.439128 -1.27141 lopen | .0446621 .072284 0.62 0.537 -.0970119 .1863361 english | .7175206 .2264254 3.17 0.002 .2737349 1.161306 white | 5.943262 2.058041 2.89 0.004 1.909576 9.976948 lwhitemg | -.7961752 .2097127 -3.80 0.000 -1.207205 -.3851458 _cons | -12.86482 24.40776 -0.53 0.598 -60.70314 34.9735 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001932 lgdp | -.001874 .004447 lgdpau | .000136 -.003217 .461494 lgdpdfrati~w | -.003177 .003173 -.059458 .237866 lpopau | -.000096 .005684 -1.5963 .30907 5.93208 lpop | .000042 -.002974 .004043 .001482 -.020804 .006524 lxrate1 | -.000234 .000475 .001553 .002535 -.01063 -.000144 .000907 lremote | .00187 .000936 -.027985 .00139 .119125 -.004117 .000115 ldist | .005386 -.006804 -.006362 .003809 .002752 .009192 .001123 lopen | .000015 -.00065 -.000053 .00548 -.005207 .001596 -.000309 english | -.001518 .002614 .013493 .00825 -.089779 .002161 .002855 white | .009192 -.012464 .036494 -.009295 -.234385 .017355 .007866 lwhitemg | -.000792 .00081 -.004619 .001403 .027402 -.001421 -.000575 _cons | -.035881 -.002432 14.7429 -3.95624 -57.6935 .151812 .110343</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .037537 ldist | .017194 .08874 lopen | -.002171 .000565 .005225 english | -.012604 .012878 -.001255 .051268 white | .013416 .053026 -.003459 .058304 4.23553 lwhitemg | .001031 -.003697 .000198 -.005954 -.425925 .043979 _cons | -1.70187 -.908119 .089502 1.00807 2.22196 -.295811 595.739</p><p>. *IV. Aggregate NON-Manufacturing Exports (Sum of Sitc0,1,2,3,4) . xtgls lrxnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1409.53 Log likelihood = -1124.778 Prob > chi2 = 0.0000</p><p>------lrxnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2201004 .0547604 4.02 0.000 .1127719 .3274288 lgdp | .9502257 .0767228 12.39 0.000 .7998519 1.1006 lgdpau | -4.263008 1.1562 -3.69 0.000 -6.529117 -1.996898 lgdpdfrati~w | -1.394312 .4751422 -2.93 0.003 -2.325574 -.4630508 lpopau | 11.27033 4.014976 2.81 0.005 3.401118 19.13954 lpop | -.0071212 .0902638 -0.08 0.937 -.184035 .1697925 lxrate1 | .0165818 .0334455 0.50 0.620 -.0489702 .0821338 lremote | -.0281053 .3010764 -0.09 0.926 -.6182041 .5619935 ldist | -2.712573 .2454368 -11.05 0.000 -3.19362 -2.231526 lopen | .0858307 .1182234 0.73 0.468 -.145883 .3175443 english | .97468 .2241874 4.35 0.000 .5352807 1.414079 white | 13.08017 .8920998 14.66 0.000 11.33169 14.82865 lwhitemg | -1.406987 .0854557 -16.46 0.000 -1.574477 -1.239497 _cons | -63.58038 37.66016 -1.69 0.091 -137.3929 10.23218 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002999 lgdp | -.002054 .005886 lgdpau | -.003712 .005516 1.3368 lgdpdfrati~w | -.00091 .00072 -.059692 .22576 lpopau | .015285 -.031099 -4.5283 .273512 16.12 lpop | -.000591 -.003916 .002066 .000023 -.008598 .008148 lxrate1 | -.000303 .001155 .000205 .000158 -.003833 -.001325 .001119 lremote | .001564 -.000179 .003614 -.040273 -.031105 -.000314 -.000024 ldist | .00838 -.005586 -.008375 -.004421 .023811 .000987 -.001457 lopen | -.000132 .000281 .015461 .001233 -.09216 .002983 -.000303 english | -.004211 .006492 .000171 .009335 .003525 -.003375 .002964 white | .011687 -.018504 -.00311 -.023666 .052352 .020987 -.002354 lwhitemg | -.001491 .001088 .000088 -.001788 -.003137 -.001209 .000342 _cons | -.210384 .360818 40.0349 -2.82377 -148.244 .052751 .063866</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .090647 ldist | .01734 .060239 lopen | .005397 .003077 .013977 english | -.016542 -.005358 -.006662 .05026 white | .029318 .054506 -.008782 .054853 .795842 lwhitemg | .005675 -.006516 .000806 -.005937 -.068157 .007303 _cons | -.496864 -.825865 1.00778 .021486 -1.57415 .070568 1418.29</p><p>. *V. Aggregate Manufacturing Exports (Sum of Sitc5,6,7,8,9) . xtgls lrxmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1284.60 Log likelihood = -961.8988 Prob > chi2 = 0.0000</p><p>------lrxmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2697305 .0428386 6.30 0.000 .1857685 .3536926 lgdp | .2788842 .0861478 3.24 0.001 .1100376 .4477307 lgdpau | -2.501479 1.115774 -2.24 0.025 -4.688356 -.3146025 lgdpdfrati~w | -4.451854 .4662978 -9.55 0.000 -5.36578 -3.537927 lpopau | 9.945126 3.85153 2.58 0.010 2.396266 17.49399 lpop | .2369152 .0720822 3.29 0.001 .0956367 .3781937 lxrate1 | -.0932609 .026619 -3.50 0.000 -.1454333 -.0410886 lremote | .414723 .1941828 2.14 0.033 .0341317 .7953143 ldist | -2.409012 .246972 -9.75 0.000 -2.893068 -1.924955 lopen | -.0769926 .0536293 -1.44 0.151 -.1821041 .0281188 english | .2561573 .1509766 1.70 0.090 -.0397514 .552066 white | 9.932389 .7794869 12.74 0.000 8.404622 11.46015 lwhitemg | -.9034206 .068868 -13.12 0.000 -1.038399 -.7684417 _cons | -79.60961 35.86685 -2.22 0.026 -149.9074 -9.311877 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001835 lgdp | -.002223 .007421 lgdpau | -.002458 .005573 1.24495 lgdpdfrati~w | -.002585 .004547 -.045471 .217434 lpopau | .0109 -.028821 -4.21451 .227812 14.8343 lpop | .001108 -.00509 -.002412 -.002195 .012469 .005196 lxrate1 | -.000118 .001085 .000829 .000337 -.006161 -.000987 .000709 lremote | .003069 -.004011 -.005282 -.016025 -.004339 .001691 .000423 ldist | .006703 -.008511 -.012301 -.008905 .048289 .00621 .000181 lopen | -.000037 .000039 .004474 .001815 -.022954 .000705 -.000085 english | -.000558 .002139 -.000134 .002328 .003807 -.000781 .000688 white | .014464 -.027455 -.023396 -.029826 .077354 .029768 -.005572 lwhitemg | -.001073 .000984 .000925 .000399 -.003432 -.001779 .000402 _cons | -.183511 .365539 37.3935 -2.64232 -135.856 -.185687 .064311</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .037707 ldist | .023813 .060995 lopen | .000921 .000675 .002876 english | .000703 .012308 -.00057 .022794 white | .061756 .082476 .002696 .010467 .6076 lwhitemg | -.002331 -.005902 -.000323 -.000664 -.049679 .004743 _cons | -.284727 -1.21083 .238294 -.230875 -1.90729 .121903 1286.43</p><p>. . **VI. SITC-1 Digit Level Disaggregate Exports . xtgls lrxsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 735.62 Log likelihood = -1444.518 Prob > chi2 = 0.0000 ------lrxsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3650861 .0865006 4.22 0.000 .195548 .5346243 lgdp | .2923158 .1406021 2.08 0.038 .0167407 .5678908 lgdpau | -.8533963 1.244454 -0.69 0.493 -3.292481 1.585689 lgdpdfrati~w | -.7984442 .6053725 -1.32 0.187 -1.984952 .3880641 lpopau | 9.682235 4.211967 2.30 0.022 1.426932 17.93754 lpop | .0773838 .140511 0.55 0.582 -.1980127 .3527803 lxrate1 | -.0886445 .0467915 -1.89 0.058 -.1803542 .0030652 lremote | .2665413 .2695352 0.99 0.323 -.261738 .7948205 ldist | -2.054953 .49754 -4.13 0.000 -3.030113 -1.079793 lopen | -.3277618 .174326 -1.88 0.060 -.6694344 .0139108 english | 1.499644 .3299268 4.55 0.000 .8529991 2.146288 white | 20.23788 1.843009 10.98 0.000 16.62564 23.85011 lwhitemg | -1.958938 .1770216 -11.07 0.000 -2.305894 -1.611982 _cons | -126.2054 39.43346 -3.20 0.001 -203.4936 -48.91728 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .007482 lgdp | -.009263 .019769 lgdpau | -.009305 .011064 1.54867 lgdpdfrati~w | -.002058 -.001967 .131537 .366476 lpopau | .031437 -.029462 -5.05976 -.236929 17.7407 lpop | .003038 -.01218 -.001813 .001903 -.018412 .019743 lxrate1 | .000442 .001032 -.000186 .000089 .00259 -.001768 .002189 lremote | .002081 .001358 -.045822 -.060744 .00294 -.000463 -.000553 ldist | .020888 -.019985 -.045883 -.033125 .090887 .018662 .001939 lopen | -.00066 -.000251 .007946 -.005238 -.091856 .007062 -.001214 english | -.009689 .011343 .012501 .004342 -.049561 -.001291 .003307 white | .034834 -.074821 -.039072 -.049363 .02339 .082017 .002875 lwhitemg | -.003321 .005118 -.000773 -.00029 -.004475 -.005916 -.000314 _cons | -.374302 .17029 43.832 .958619 -161.554 .133171 -.060111</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .072649 ldist | .04445 .247546 lopen | .011076 .005707 .03039 english | -.004116 .025427 -.006891 .108852 white | .041724 .173731 -.001125 .112729 3.39668 lwhitemg | .001385 -.015987 .000586 -.00924 -.316766 .031337 _cons | .14199 -2.99432 1.09477 .058924 -1.199 .2381 1555</p><p>. xtgls lrxsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 762.31 Log likelihood = -244.942 Prob > chi2 = 0.0000</p><p>------lrxsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0164844 .0172495 0.96 0.339 -.0173239 .0502927 lgdp | .0112795 .0426655 0.26 0.791 -.0723432 .0949023 lgdpau | .0465013 .2615899 0.18 0.859 -.4662056 .5592082 lgdpdfrati~w | -.078103 .1547412 -0.50 0.614 -.3813902 .2251841 lpopau | 3.060671 .9553157 3.20 0.001 1.188287 4.933056 lpop | .2916956 .052546 5.55 0.000 .1887074 .3946837 lxrate1 | -.0266846 .0140562 -1.90 0.058 -.0542343 .0008652 lremote | -.0644208 .0944101 -0.68 0.495 -.2494612 .1206197 ldist | -3.425821 .3349521 -10.23 0.000 -4.082315 -2.769327 lopen | -.0347571 .0257089 -1.35 0.176 -.0851455 .0156314 english | 1.024831 .1333548 7.68 0.000 .7634602 1.286201 white | 19.22744 1.363453 14.10 0.000 16.55512 21.89976 lwhitemg | -1.536676 .1254731 -12.25 0.000 -1.782599 -1.290753 _cons | -22.84545 10.77977 -2.12 0.034 -43.97341 -1.717486 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000298 lgdp | -.000199 .00182 lgdpau | .000379 -.001392 .068429 lgdpdfrati~w | -.000358 .000667 -.005478 .023945 lpopau | -.00154 .006316 -.23546 .028486 .912628 lpop | -.000073 -.001454 .000386 .000059 -.004262 .002761 lxrate1 | .000027 -5.3e-06 .000444 .000366 -.003427 .000023 .000198 lremote | .000159 .000902 -.005886 -.000534 .018403 -.000256 .000072 ldist | .001336 .001779 -.007087 -.000597 .025039 .00016 -.000347 lopen | .000028 -.000056 .000058 -.000076 -.00132 .000091 -.000027 english | -.000238 -.000057 -.000483 -.000478 .011114 .001349 .000043 white | .001144 -.008022 .004907 -.005342 -.033534 .011579 .000379 lwhitemg | -.000171 .000309 -.00049 .00038 .001729 -.000804 -2.3e-07 _cons | .005931 -.110723 2.2578 -.358502 -9.449 .05101 .046477</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .008913 ldist | .009876 .112193 lopen | -.000047 -.000379 .000661 english | .000932 .013069 -.0006 .017783 white | .005983 .022708 -.000596 .029145 1.859 lwhitemg | -.000257 -.004017 .000086 -.003039 -.166178 .015743 _cons | -.340564 -1.44086 .024649 -.3268 .146795 .031425 116.203</p><p>. xtgls lrxsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 882.24 Log likelihood = -1312.091 Prob > chi2 = 0.0000</p><p>------lrxsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2316819 .0580437 3.99 0.000 .1179183 .3454454 lgdp | .6587369 .1101855 5.98 0.000 .4427773 .8746966 lgdpau | -4.591221 1.835576 -2.50 0.012 -8.188883 -.993559 lgdpdfrati~w | .0410704 .8236905 0.05 0.960 -1.573333 1.655474 lpopau | 12.80139 6.35658 2.01 0.044 .3427214 25.26006 lpop | .2881799 .1230482 2.34 0.019 .0470098 .5293499 lxrate1 | -.0518483 .0356937 -1.45 0.146 -.1218067 .0181101 lremote | -.8802338 .3279973 -2.68 0.007 -1.523097 -.2373708 ldist | -2.569092 .5431923 -4.73 0.000 -3.633729 -1.504455 lopen | -.139583 .1824527 -0.77 0.444 -.4971837 .2180176 english | .3262743 .2567076 1.27 0.204 -.1768634 .8294119 white | 11.28273 1.476336 7.64 0.000 8.38916 14.17629 lwhitemg | -1.287784 .1561653 -8.25 0.000 -1.593862 -.9817052 _cons | -75.97934 59.40543 -1.28 0.201 -192.4118 40.45315 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003369 lgdp | -.004333 .012141 lgdpau | -.004849 .009084 3.36934 lgdpdfrati~w | -.005041 .005759 -.056701 .678466 lpopau | .019584 -.053185 -11.3918 .464911 40.4061 lpop | .001582 -.008359 .002698 -.002308 -.023877 .015141 lxrate1 | -.000373 .001664 .001758 .003911 -.011084 -.001094 .001274 lremote | .005289 -.009758 -.020392 -.056786 .034933 .001735 -.0056 ldist | .020163 -.019987 -.017962 -.033399 -.034272 .015894 -.000187 lopen | -.000589 .000238 .020187 -.004284 -.17118 .00834 -.000985 english | -.001463 .005104 .00569 .016499 -.02698 .001198 .003377 white | .029765 -.056861 -.032609 -.020461 .168716 .057735 -.002472 lwhitemg | -.002564 .00313 .000083 -.003053 -.002121 -.004462 -.000432 _cons | -.377689 .791316 100.783 -6.2032 -370.704 .111719 .161767</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .107582 ldist | .048629 .295058 lopen | .017231 .012239 .033289 english | -.017056 .020937 -.005598 .065899 white | .058066 .23147 -.005602 .10383 2.17957 lwhitemg | .004705 -.023968 .001444 -.012979 -.220703 .024388 _cons | -1.20976 -2.07285 1.94273 .079418 -4.47485 .243123 3529</p><p>. xtgls lrxsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 321.39 Log likelihood = -675.9096 Prob > chi2 = 0.0000</p><p>------lrxsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .065456 .0437886 1.49 0.135 -.0203682 .1512802 lgdp | .1582997 .1003081 1.58 0.115 -.0383006 .3549 lgdpau | -.0577646 .7913023 -0.07 0.942 -1.608689 1.493159 lgdpdfrati~w | .2276743 .2783155 0.82 0.413 -.317814 .7731626 lpopau | -1.679031 2.72428 -0.62 0.538 -7.018521 3.66046 lpop | .6572046 .1008485 6.52 0.000 .4595451 .8548641 lxrate1 | .042196 .0307405 1.37 0.170 -.0180543 .1024463 lremote | -.0708114 .2708757 -0.26 0.794 -.601718 .4600953 ldist | -1.929845 .542293 -3.56 0.000 -2.99272 -.8669704 lopen | .0148728 .0533183 0.28 0.780 -.0896291 .1193747 english | 1.663624 .339652 4.90 0.000 .9979184 2.32933 white | 14.50214 2.501213 5.80 0.000 9.599857 19.40443 lwhitemg | -1.161988 .2298253 -5.06 0.000 -1.612437 -.7115382 _cons | 34.99235 26.30579 1.33 0.183 -16.56604 86.55075 ------</p><p>. vce | limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001917 lgdp | -.001486 .010062 lgdpau | .002326 -.001763 .626159 lgdpdfrati~w | -.001186 .002119 -.01969 .077459 lpopau | -.014273 .000097 -2.09776 .075042 7.4217 lpop | .000173 -.007045 -.001008 -.000432 .004996 .01017 lxrate1 | .000154 .000325 .001515 .001679 -.00975 -.000466 .000945 lremote | .000796 .005212 -.037454 -.010368 .120152 -.00356 -.000727 ldist | .007907 -.001014 -.001146 -.001562 -.046956 .00427 .0023 lopen | .000144 -.000584 -.001808 .003375 .003216 .000952 -.000086 english | -.004196 -.006447 .002277 .00653 -.009708 .013905 .002086 white | .004902 -.049571 .044986 -.005201 -.174124 .058808 .001107 lwhitemg | -.000833 .002461 -.007329 -.000393 .031637 -.004375 -.000191 _cons | .117024 -.098449 18.7701 -.740999 -68.7865 -.068551 .100551</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .073374 ldist | .027131 .294082 lopen | -.000407 .00027 .002843 english | -.014658 .052401 -.00017 .115364 white | -.018216 .099248 .004094 .179247 6.25607 lwhitemg | .005014 -.014499 -.00031 -.016487 -.554005 .05282 _cons | -1.96189 -2.33238 -.009268 -.364083 1.03831 -.217772 691.994</p><p>. xtgls lrxsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 384.82 Log likelihood = -785.277 Prob > chi2 = 0.0000</p><p>------lrxsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0281988 .0393518 0.72 0.474 -.0489294 .105327 lgdp | -.0228608 .0740472 -0.31 0.758 -.1679905 .122269 lgdpau | .063737 .7094982 0.09 0.928 -1.326854 1.454328 lgdpdfrati~w | .0416546 .2499384 0.17 0.868 -.4482156 .5315248 lpopau | -.1167047 2.424591 -0.05 0.962 -4.868816 4.635406 lpop | .5934908 .0772241 7.69 0.000 .4421344 .7448473 lxrate1 | .0022447 .0207373 0.11 0.914 -.0383996 .042889 lremote | .3006615 .2200988 1.37 0.172 -.1307242 .7320473 ldist | -2.424368 .3685411 -6.58 0.000 -3.146696 -1.702041 lopen | .01272 .05351 0.24 0.812 -.0921576 .1175976 english | .7914926 .241159 3.28 0.001 .3188296 1.264156 white | -.0278579 1.740736 -0.02 0.987 -3.439638 3.383922 lwhitemg | .0788399 .1734834 0.45 0.650 -.2611813 .4188611 _cons | 13.05102 23.27853 0.56 0.575 -32.57407 58.6761 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001549 lgdp | -.001279 .005483 lgdpau | -.000172 -.001365 .503388 lgdpdfrati~w | -.00034 .001013 -.033971 .062469 lpopau | -.004364 .005396 -1.67489 .109744 5.87864 lpop | .000075 -.004139 .000863 -.000818 -.002582 .005964 lxrate1 | .000116 .000082 -.000482 .001282 -.002375 -.000238 .00043 lremote | .001164 .004246 -.024235 -.005972 .076601 -.003407 -.000243 ldist | .00466 -.003375 -.013828 -.00153 .015942 .005606 .000572 lopen | -.000117 .000168 .002111 .000688 -.008782 .000385 -.000073 english | -.002359 -.005417 -.001388 .003005 -.002251 .009836 .000953 white | .005439 -.031517 .004015 -.009395 -.064663 .032833 .0018 lwhitemg | -.000657 .002105 -.00214 .000383 .01282 -.002353 -.000164 _cons | .042656 -.10938 14.9762 -.937416 -54.595 -.004464 .047291</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .048443 ldist | .023866 .135823 lopen | .000668 -.000188 .002863 english | -.007999 .024223 -.000739 .058158 white | .016625 .021217 -.001283 .100674 3.03016 lwhitemg | .000446 -.00073 .000152 -.007511 -.293463 .030096 _cons | -1.32532 -1.45133 .078186 -.130353 .7592 -.159182 541.89</p><p>. xtgls lrxsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 679.67 Log likelihood = -1041.455 Prob > chi2 = 0.0000</p><p>------lrxsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1523254 .0727728 2.09 0.036 .0096933 .2949575 lgdp | .5306592 .1300282 4.08 0.000 .2758087 .7855097 lgdpau | -.6676752 .7823695 -0.85 0.393 -2.201091 .8657408 lgdpdfrati~w | -.5865269 .3544245 -1.65 0.098 -1.281186 .1081323 lpopau | 7.094986 2.642828 2.68 0.007 1.915139 12.27483 lpop | .4019738 .1122358 3.58 0.000 .1819958 .6219518 lxrate1 | -.1326022 .0325225 -4.08 0.000 -.1963453 -.0688592 lremote | .1676083 .2237968 0.75 0.454 -.2710253 .6062419 ldist | -3.122562 .4634382 -6.74 0.000 -4.030884 -2.21424 lopen | .0970849 .0871401 1.11 0.265 -.0737066 .2678763 english | .5102849 .2432317 2.10 0.036 .0335596 .9870103 white | 13.34274 1.892159 7.05 0.000 9.634174 17.0513 lwhitemg | -1.264587 .180044 -7.02 0.000 -1.617467 -.9117077 _cons | -86.75456 25.19997 -3.44 0.001 -136.1456 -37.36353 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .005296 lgdp | -.005787 .016907 lgdpau | -.004232 .004877 .612102 lgdpdfrati~w | .000039 -.001442 .033956 .125617 lpopau | .013577 -.025206 -1.99386 -.044866 6.98454 lpop | .001139 -.009959 -.00067 .002036 .004396 .012597 lxrate1 | .000421 .000867 .00067 .000406 -.004027 -.001139 .001058 lremote | .000724 .00541 -.029807 -.025954 .024488 -.00533 .001483 ldist | .014582 -.010988 -.023158 -.002985 .075807 .006122 .000384 lopen | -.000092 3.1e-06 .001152 .002107 -.023004 .001558 -.000453 english | -.004884 .014569 -.00053 -.004021 -.00866 -.00842 -.000236 white | .027786 -.045321 -.051464 -.031979 .085757 .038982 -.002068 lwhitemg | -.002604 .002004 .001855 .000438 -.003605 -.001964 .000094 _cons | -.179906 .149625 17.3893 -.01901 -64.0634 -.043248 .024706</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .050085 ldist | .019466 .214775 lopen | .001935 -.000486 .007593 english | .008198 .022884 -.00327 .059162 white | .042306 .111072 -.00397 .041602 3.58027 lwhitemg | -.000562 -.012666 .000254 -.005868 -.330485 .032416 _cons | -.271332 -2.81225 .321866 -.314481 -1.26029 .141867 635.038</p><p>. xtgls lrxsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 890.54 Log likelihood = -1129.598 Prob > chi2 = 0.0000</p><p>------lrxsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2634903 .0729514 3.61 0.000 .1205082 .4064724 lgdp | .4974147 .1077421 4.62 0.000 .286244 .7085854 lgdpau | .3990559 1.198351 0.33 0.739 -1.949669 2.747781 lgdpdfrati~w | -1.098956 .575334 -1.91 0.056 -2.22659 .0286782 lpopau | 1.528148 4.086278 0.37 0.708 -6.48081 9.537106 lpop | .1906202 .110048 1.73 0.083 -.0250701 .4063104 lxrate1 | -.0249313 .0375282 -0.66 0.506 -.0984852 .0486226 lremote | .2733737 .2862384 0.96 0.340 -.2876433 .8343907 ldist | -2.79813 .4690536 -5.97 0.000 -3.717458 -1.878802 lopen | -.10015 .0967023 -1.04 0.300 -.289683 .0893831 english | 1.10561 .2899142 3.81 0.000 .5373888 1.673832 white | 12.42683 1.210471 10.27 0.000 10.05435 14.79931 lwhitemg | -1.211777 .117885 -10.28 0.000 -1.442827 -.9807261 _cons | -22.02483 38.31779 -0.57 0.565 -97.12633 53.07666 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .005322 lgdp | -.005363 .011608 lgdpau | -.005112 .007993 1.43605 lgdpdfrati~w | -.003622 .004998 .038921 .331009 lpopau | .011958 -.028612 -4.75523 .053746 16.6977 lpop | .0016 -.008151 -.003573 -.001217 .009315 .012111 lxrate1 | .000536 .000568 .001863 .000717 -.011225 -.00089 .001408 lremote | .004983 -.003649 -.031405 -.048179 .003806 -.000305 .001395 ldist | .016277 -.01128 -.031127 -.02644 .070826 .004492 -.000499 lopen | -.000255 .000828 -.000096 .000722 -.025063 .000827 -.000379 english | -.005181 .010074 .004319 .000661 .000357 -.006671 -.001011 white | .030812 -.050915 -.054711 -.038136 .110817 .051138 -.000853 lwhitemg | -.002536 .002964 .002094 -.001198 -.007238 -.003629 .000138 _cons | -.197902 .295254 41.6385 -1.66349 -152.646 -.111707 .122821</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .081932 ldist | .047116 .220011 lopen | .004345 .00156 .009351 english | .001223 .037875 -.003317 .08405 white | .083621 .131239 -.008062 .02112 1.46524 lwhitemg | -.001373 -.013137 .000468 -.003743 -.135251 .013897 _cons | -.301042 -2.76015 .345683 -.596158 -2.22048 .211572 1468.25</p><p>. xtgls lrxsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 391.16 Log likelihood = -1203.291 Prob > chi2 = 0.0000</p><p>------lrxsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2355665 .0534871 4.40 0.000 .1307336 .3403993 lgdp | .2827858 .1032419 2.74 0.006 .0804354 .4851361 lgdpau | -2.160103 1.360107 -1.59 0.112 -4.825865 .5056581 lgdpdfrati~w | -2.196599 .6213841 -3.54 0.000 -3.414489 -.9787081 lpopau | 6.422455 4.642734 1.38 0.167 -2.677136 15.52205 lpop | .2036091 .0893958 2.28 0.023 .0283966 .3788217 lxrate1 | -.0995597 .0387391 -2.57 0.010 -.1754869 -.0236325 lremote | 1.065753 .2694693 3.96 0.000 .5376033 1.593903 ldist | -1.266919 .4505252 -2.81 0.005 -2.149932 -.3839057 lopen | .0223471 .1203216 0.19 0.853 -.2134789 .258173 english | .5813336 .196772 2.95 0.003 .1956676 .9669995 white | 7.848763 1.29828 6.05 0.000 5.304181 10.39334 lwhitemg | -.6322639 .1255754 -5.03 0.000 -.8783871 -.3861407 _cons | -49.59868 43.15447 -1.15 0.250 -134.1799 34.98252 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002861 lgdp | -.002703 .010659 lgdpau | -.004346 .006504 1.84989 lgdpdfrati~w | -.001625 .000083 .085897 .386118 lpopau | .015348 -.03702 -6.1632 -.150777 21.555 lpop | .000454 -.006086 -.000311 .000103 .001479 .007992 lxrate1 | .000267 .001424 .000762 .000529 -.006452 -.001478 .001501 lremote | .001045 .000457 -.030503 -.049377 .05403 .000206 -.00054 ldist | .011326 -.002818 -.024827 -.02501 .044038 .002592 .000803 lopen | -.000059 -.000099 .008568 .001042 -.064125 .003489 -.000362 english | -.003285 .007093 .007535 .005756 -.024226 -.001768 .000635 white | .014244 -.03056 -.034055 -.054051 .098256 .03329 -.004819 lwhitemg | -.001511 .000848 -.000204 .000496 .002451 -.00191 .000123 _cons | -.220133 .331338 54.0074 .521118 -196.02 -.026594 .068261</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .072614 ldist | .036462 .202973 lopen | .005151 .006984 .014477 english | -.007297 .008931 -.002843 .038719 white | .0511 .099998 .005168 .034912 1.68553 lwhitemg | .001337 -.012204 -.000474 -.004525 -.153393 .015769 _cons | -1.04481 -2.35502 .687336 .044719 -2.01771 .090881 1862.31 . xtgls lrxsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 591.08 Log likelihood = -979.5565 Prob > chi2 = 0.0000</p><p>------lrxsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .160872 .0481519 3.34 0.001 .0664961 .2552479 lgdp | .475085 .0956409 4.97 0.000 .2876322 .6625378 lgdpau | -1.586411 1.355788 -1.17 0.242 -4.243706 1.070883 lgdpdfrati~w | -1.125285 .5591662 -2.01 0.044 -2.22123 -.0293394 lpopau | 4.801036 4.659651 1.03 0.303 -4.331713 13.93378 lpop | .0928005 .0843935 1.10 0.271 -.0726078 .2582088 lxrate1 | -.0430943 .0378502 -1.14 0.255 -.1172793 .0310908 lremote | -.7019914 .2943387 -2.38 0.017 -1.278885 -.1250981 ldist | -2.987523 .4247421 -7.03 0.000 -3.820002 -2.155044 lopen | -.0260644 .1062397 -0.25 0.806 -.2342905 .1821617 english | .6234611 .1944633 3.21 0.001 .24232 1.004602 white | 11.28117 1.688126 6.68 0.000 7.972502 14.58983 lwhitemg | -1.122407 .1508677 -7.44 0.000 -1.418102 -.8267113 _cons | -11.10146 43.69419 -0.25 0.799 -96.7405 74.53757 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002319 lgdp | -.002461 .009147 lgdpau | -.00285 .005341 1.83816 lgdpdfrati~w | -.000939 .000354 -.030034 .312667 lpopau | .010334 -.026921 -6.17393 .186915 21.7124 lpop | .000348 -.005322 -.001596 -.000435 .005656 .007122 lxrate1 | -.000082 .001355 .002334 .001949 -.013292 -.001263 .001433 lremote | .002438 .000076 -.021353 -.036032 .055606 .00116 -.001978 ldist | .011315 -.008662 -.022944 -.013565 .060422 .003603 -.000738 lopen | -.00024 -.00034 .005713 .005279 -.048377 .002453 -.000122 english | -.002494 .002335 .007221 .007574 -.025015 -.000343 .002348 white | .012727 -.034334 .015601 -.023706 -.0104 .032226 -.005008 lwhitemg | -.001148 .001344 -.00293 -.000387 .007092 -.00185 .000257 _cons | -.188194 .276097 54.5465 -2.19233 -199.101 -.085515 .166647</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .086635 ldist | .048342 .180406 lopen | .003122 .002005 .011287 english | -.018358 .004017 -.002639 .037816 white | .039084 .111873 -.000778 .035505 2.84977 lwhitemg | .001129 -.01019 .000221 -.003337 -.245887 .022761 _cons | -1.56854 -2.45914 .581394 .28376 -1.45022 .054126 1909.18</p><p>. xtgls lrxsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 973.82 Log likelihood = -1562.085 Prob > chi2 = 0.0000</p><p>------lrxsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .45059 .0606093 7.43 0.000 .3317981 .569382 lgdp | .1922324 .114357 1.68 0.093 -.0319032 .416368 lgdpau | -2.197241 1.730995 -1.27 0.204 -5.589929 1.195447 lgdpdfrati~w | -1.136008 .5765241 -1.97 0.049 -2.265974 -.0060412 lpopau | 17.72324 5.902939 3.00 0.003 6.153692 29.29279 lpop | .5468998 .1072321 5.10 0.000 .3367287 .757071 lxrate1 | -.1103688 .040537 -2.72 0.006 -.1898199 -.0309176 lremote | .3889619 .312606 1.24 0.213 -.2237347 1.001658 ldist | -2.069434 .4490339 -4.61 0.000 -2.949524 -1.189343 lopen | -.122898 .1451333 -0.85 0.397 -.407354 .161558 english | .1559467 .2466019 0.63 0.527 -.3273841 .6392774 white | 17.56814 2.688601 6.53 0.000 12.29858 22.8377 lwhitemg | -1.667658 .2629446 -6.34 0.000 -2.18302 -1.152296 _cons | -230.6075 54.77791 -4.21 0.000 -337.9702 -123.2448 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003673 lgdp | -.003837 .013078 lgdpau | -.005012 .006583 2.99634 lgdpdfrati~w | -.002464 .003951 -.038504 .33238 lpopau | .016002 -.034254 -9.98723 .141722 34.8447 lpop | .001003 -.00865 -.002122 -.002034 .006421 .011499 lxrate1 | -.000338 .002048 -.000628 .003047 -.006445 -.00166 .001643 lremote | .004822 -.002033 -.04837 -.018761 .068413 .002009 .001246 ldist | .016968 -.011776 -.038213 -.000743 .10998 .008822 .000143 lopen | -.000047 -.001284 .005222 .00998 -.038405 .004595 -.000181 english | -.002315 .007235 .007029 .003013 -.051258 -.002459 .002537 white | .009191 -.031825 -.037443 -.047468 -.108332 .039384 .001961 lwhitemg | -.000663 .000611 -.001526 .001335 .018085 -.001625 -.0002 _cons | -.285889 .376267 87.8072 -1.55142 -317.355 -.134198 .083008</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .097723 ldist | .050552 .201631 lopen | .006125 .006023 .021064 english | -.010864 .013596 -.004278 .060812 white | .125785 -.028579 .002261 .012372 7.22858 lwhitemg | -.003522 .003633 .000057 -.001487 -.695602 .06914 _cons | -1.19409 -3.16083 .351023 .486624 2.01066 -.246863 3000.62 . . clear</p><p>. *Estimating the Australian Immigration Trade relationship; . insheet using k:\book2.txt (54 vars, 11640 obs)</p><p>. drop if ccode ==. (10630 observations deleted)</p><p>. . **Dropping Sweden . drop if ccode== 557520 (10 observations deleted)</p><p>. . . . ** Estimation Results . **Regression of Exports without Distinction between "white" and "non-white Aus > tralia" . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Exports . xtgls lrexp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 6951.03 Log likelihood = -1022.856 Prob > chi2 = 0.0000</p><p>------lrexp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5456542 .0383277 14.24 0.000 .4705332 .6207751 lgdp | 1.045737 .037949 27.56 0.000 .9713581 1.120115 lgdpau | -3.222486 .8675337 -3.71 0.000 -4.922821 -1.522152 lgdpdfrati~w | -1.641868 .3372741 -4.87 0.000 -2.302913 -.980823 lpopau | 4.245881 3.026814 1.40 0.161 -1.686565 10.17833 lpop | -.0067007 .0416941 -0.16 0.872 -.0884198 .0750183 lxrate1 | -.0010432 .0150604 -0.07 0.945 -.0305611 .0284748 lremote | .1101648 .0825921 1.33 0.182 -.0517127 .2720423 ldist | -1.376053 .145042 -9.49 0.000 -1.66033 -1.091776 lopen | .8960963 .0792455 11.31 0.000 .740778 1.051415 english | .1798232 .0952413 1.89 0.059 -.0068464 .3664928 white | 2.713596 .6272784 4.33 0.000 1.484153 3.943039 lwhitemg | -.3511574 .0560101 -6.27 0.000 -.4609352 -.2413796 _cons | 8.928215 28.10346 0.32 0.751 -46.15356 64.00999 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001469 lgdp | -.000839 .00144 lgdpau | -.003231 .002695 .752615 lgdpdfrati~w | .0009 -.001285 -.022894 .113754 lpopau | .012314 -.011061 -2.58339 .131101 9.1616 lpop | .00006 -.000732 .000819 -.000092 -.006506 .001738 lxrate1 | -.00001 .0002 -5.2e-07 -.000141 -.000293 -.000066 .000227 lremote | -.000365 .001241 .00457 -.002574 -.024894 .000098 .000086 ldist | .003551 -.002015 -.005078 .003919 .010232 .001956 .00046 lopen | -.000562 .000352 .010894 -.001213 -.058639 .000908 -.000068 english | -.000789 .001565 -.002524 .000295 .016592 -.000978 .000496 white | .006825 -.000865 -.006117 -.015054 -.004836 .009738 .002009 lwhitemg | -.000777 .000135 .000745 .001005 -.000229 -.000866 -.000167 _cons | -.144489 .105436 23.105 -1.68606 -84.0464 .05695 -.004668</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .006821 ldist | .002461 .021037 lopen | .002327 .000952 .00628 english | .000215 .001408 -.002994 .009071 white | .01702 .034359 .000129 .0044 .393478 lwhitemg | -.001277 -.003494 -.00003 -.000158 -.034721 .003137 _cons | .185408 -.275206 .647769 -.248147 -.432936 .046408 789.805</p><p>. **II. Conservative Estimates . *2.1. Aggregate reference priced Exports (conservative) . xtgls lrrefp_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 6998.04 Log likelihood = -1456.825 Prob > chi2 = 0.0000</p><p>------lrrefp_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3526368 .0461213 7.65 0.000 .2622406 .4430329 lgdp | 1.087399 .0672102 16.18 0.000 .95567 1.219129 lgdpau | -.3576417 .5094949 -0.70 0.483 -1.356233 .6409499 lgdpdfrati~w | -.2035654 .3007162 -0.68 0.498 -.7929583 .3858276 lpopau | 3.403582 1.83706 1.85 0.064 -.1969897 7.004153 lpop | .0191166 .0937022 0.20 0.838 -.1645364 .2027695 lxrate1 | -.0370901 .0299593 -1.24 0.216 -.0958093 .021629 lremote | -.2633171 .1661903 -1.58 0.113 -.589044 .0624098 ldist | -3.137468 .3840608 -8.17 0.000 -3.890214 -2.384723 lopen | -.0745789 .0546577 -1.36 0.172 -.1817061 .0325483 english | .599665 .1800798 3.33 0.001 .246715 .9526149 white | 7.075624 1.390546 5.09 0.000 4.350205 9.801044 lwhitemg | -.7871959 .141457 -5.56 0.000 -1.064446 -.5099453 _cons | -37.19282 18.524 -2.01 0.045 -73.4992 -.8864431 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002127 lgdp | -.001626 .004517 lgdpau | .001154 -.001359 .259585 lgdpdfrati~w | -.00196 .0032 -.024594 .09043 lpopau | -.005215 .003683 -.900639 .109468 3.37479 lpop | -.000094 -.004727 .003498 -.001347 -.01886 .00878 lxrate1 | .000133 .000384 .000609 .002673 -.006415 -.000556 .000898 lremote | .000097 .000262 -.021866 .002571 .092944 -.003465 .000594 ldist | .009139 -.010515 .003836 .002125 -.029415 .00507 .002095 lopen | .000047 -.000233 .002506 .001135 -.011753 .001131 -.00036 english | -.001164 -.00135 .006071 .004353 -.046038 .003087 .00162 white | .010129 -.026508 .021617 -.008044 -.154226 .033699 .001424 lwhitemg | -.001499 .002094 -.004519 .000981 .023073 -.00221 -.00011 _cons | -.003121 .048912 8.28143 -1.35792 -32.7514 .17562 .058651</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .027619 ldist | .003308 .147503 lopen | -.001997 .000879 .002987 english | -.004826 .000384 -.000664 .032429 white | -.008887 .05263 .002274 .044056 1.93362 lwhitemg | .003858 -.006749 -.000556 -.002302 -.191321 .02001 _cons | -1.20103 -.949644 .127681 .608696 1.56454 -.238434 343.139</p><p>. *2.2. Aggregate Differentiated Exports (conservative) . xtgls lrdiff_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3527.84 Log likelihood = -1564.257 Prob > chi2 = 0.0000</p><p>------lrdiff_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4563005 .0545833 8.36 0.000 .3493192 .5632817 lgdp | 1.101518 .0630326 17.48 0.000 .977976 1.225059 lgdpau | 2.683343 2.074796 1.29 0.196 -1.383182 6.749868 lgdpdfrati~w | -1.990084 .8327127 -2.39 0.017 -3.622171 -.3579974 lpopau | -10.25662 7.142974 -1.44 0.151 -24.2566 3.743347 lpop | -.1764348 .0797597 -2.21 0.027 -.332761 -.0201086 lxrate1 | -.0649504 .0283753 -2.29 0.022 -.120565 -.0093358 lremote | .0096092 .2005294 0.05 0.962 -.3834212 .4026395 ldist | -2.249135 .2351119 -9.57 0.000 -2.709946 -1.788325 lopen | .1137021 .0925872 1.23 0.219 -.0677655 .2951697 english | .6965304 .181184 3.84 0.000 .3414163 1.051645 white | 1.34412 .8840517 1.52 0.128 -.388589 3.07683 lwhitemg | -.1525254 .0830094 -1.84 0.066 -.3152209 .0101701 _cons | 103.3297 65.72753 1.57 0.116 -25.49388 232.1533 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002979 lgdp | -.002049 .003973 lgdpau | -.003016 .005756 4.30478 lgdpdfrati~w | -.003578 .00155 -.200799 .69341 lpopau | .010102 -.027933 -14.6015 .958654 51.0221 lpop | .000185 -.003346 -.000539 .001083 .004709 .006362 lxrate1 | .000217 .000471 .00074 -.000539 -.006776 -.000832 .000805 lremote | .004138 -.002599 .000506 -.006213 -.02131 -.000026 .000943 ldist | .006649 -.005812 -.007173 .011607 .01683 .002579 .002954 lopen | -.000423 .00077 .015745 .003116 -.080086 .00125 -.000145 english | -.003178 .002574 .000251 .010293 .008849 -.003352 .001247 white | .017772 -.019743 -.009278 -.060353 .02418 .014783 .000464 lwhitemg | -.001649 .001343 .000807 .005247 -.002437 -.000607 .000015 _cons | -.160709 .362478 129.473 -11.4558 -464.036 -.111473 .055137 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .040212 ldist | .022127 .055278 lopen | .004194 .000539 .008572 english | -.014209 .001592 -.003462 .032828 white | .047729 .028381 -.003389 -.008945 .781547 lwhitemg | -.001953 -.000591 .000443 .000741 -.070171 .006891 _cons | -.17878 -.783374 .844573 -.057644 -.70504 .027832 4320.11</p><p>. *2.3. Aggregate Homogenous Exports (conservative) . xtgls lrhomo_cx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1972.90 Log likelihood = -1616.342 Prob > chi2 = 0.0000</p><p>------lrhomo_cx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .446677 .0521212 8.57 0.000 .3445212 .5488327 lgdp | .9611333 .0957755 10.04 0.000 .7734167 1.14885 lgdpau | -.1810943 1.077836 -0.17 0.867 -2.293615 1.931426 lgdpdfrati~w | -.2226945 .4588748 -0.49 0.627 -1.122073 .6766836 lpopau | -5.227534 3.690029 -1.42 0.157 -12.45986 2.00479 lpop | .1801734 .1072209 1.68 0.093 -.0299758 .3903225 lxrate1 | .0610568 .0369252 1.65 0.098 -.0113153 .1334289 lremote | -1.094657 .2320988 -4.72 0.000 -1.549563 -.6397521 ldist | -1.675532 .4835421 -3.47 0.001 -2.623257 -.7278064 lopen | .0448177 .0941469 0.48 0.634 -.1397069 .2293423 english | 1.033835 .2937687 3.52 0.000 .458059 1.609611 white | 11.76113 2.742108 4.29 0.000 6.386698 17.13557 lwhitemg | -1.389895 .2903912 -4.79 0.000 -1.959051 -.8207389 _cons | 94.82158 34.77479 2.73 0.006 26.66423 162.9789 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002717 lgdp | -.002944 .009173 lgdpau | .005733 -.010757 1.16173 lgdpdfrati~w | -.003556 .007389 -.053299 .210566 lpopau | -.02249 .024255 -3.85946 .273518 13.6163 lpop | .000352 -.005812 .000513 -.00292 -.001442 .011496 lxrate1 | -.000128 .00119 .00286 .002692 -.018512 -.001432 .001363 lremote | .000242 .00863 -.03702 .012076 .101365 -.006827 .000702 ldist | .01411 -.010667 .022604 -.005546 -.144862 .012958 .00201 lopen | .000023 -.001102 -.019398 .006614 .047544 .002144 -.000271 english | -.00234 .003561 .017915 .004071 -.088048 .004789 .002933 white | .008125 -.017984 .080355 -.013644 -.434516 .032593 .007517 lwhitemg | -.00097 .000979 -.009172 .001649 .048243 -.002667 -.000606 _cons | .136081 -.203459 33.8768 -3.52359 -124.755 -.098816 .195588</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .05387 ldist | .023958 .233813 lopen | .00161 -.001248 .008864 english | -.014219 .015924 -.003599 .0863 white | .022445 .055085 .001931 .126237 7.51916 lwhitemg | -.000439 -.007403 .00016 -.012999 -.791089 .084327 _cons | -1.50075 -.668169 -.289362 .785949 4.18575 -.457375 1209.29</p><p>. **III. Liberal Estimates . *3.1. Aggregate reference priced Exports (liberal) . xtgls lrrefp_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1740.95 Log likelihood = -1463.817 Prob > chi2 = 0.0000</p><p>------lrrefp_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3685219 .0475939 7.74 0.000 .2752396 .4618042 lgdp | .9062195 .0827255 10.95 0.000 .7440805 1.068358</p><p> lgdpau | -.2696137 .480338 -0.56 0.575 -1.211059 .6718315 lgdpdfrati~w | .1416375 .2469575 0.57 0.566 -.3423903 .6256653 lpopau | -2.358768 1.703705 -1.38 0.166 -5.697968 .9804315 lpop | .1688682 .0997964 1.69 0.091 -.0267291 .3644656 lxrate1 | -.0083309 .027701 -0.30 0.764 -.062624 .0459621 lremote | -.2450162 .1572872 -1.56 0.119 -.5532935 .063261 ldist | -2.246218 .4692124 -4.79 0.000 -3.165858 -1.326579 lopen | .0261051 .0500316 0.52 0.602 -.071955 .1241652 english | 1.014204 .2467207 4.11 0.000 .5306404 1.497768 white | 9.529853 1.995324 4.78 0.000 5.619089 13.44062 lwhitemg | -.9695186 .1961332 -4.94 0.000 -1.353933 -.5851046 _cons | 48.53195 17.15827 2.83 0.005 14.90237 82.16154 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002265 lgdp | -.002441 .006844 lgdpau | .001365 -.003784 .230725 lgdpdfrati~w | -.001867 .004329 -.023381 .060988 lpopau | -.006619 .013085 -.794241 .10087 2.90261 lpop | .000681 -.005775 .004752 -.003388 -.024312 .009959 lxrate1 | .000128 .000062 .001506 .001577 -.008063 -.00023 .000767 lremote | .000716 .000298 -.020267 .002088 .077394 -.003009 .000087 ldist | .007023 -.010282 .001476 -.000972 -.023573 .008847 .002441 lopen | -.000033 -.000034 .002002 .00101 -.008996 .000731 -.00016 english | -.0021 .000702 .008377 .004343 -.03193 .001141 .001908 white | .010245 -.030185 .024184 -.007179 -.135857 .034932 .009108 lwhitemg | -.001151 .001945 -.00352 .000635 .018114 -.002218 -.000792 _cons | .034951 -.078569 7.30845 -1.17525 -27.7288 .194542 .066671</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .024739 ldist | .010469 .22016 lopen | -.001529 -.000683 .002503 english | -.006589 .027974 -.000439 .060871 white | .026925 -.138028 -.003639 .015426 3.98132 lwhitemg | -.000546 .015537 .000144 .000316 -.385685 .038468 _cons | -1.03473 -1.80791 .107302 .046942 2.73688 -.352373 294.406</p><p>. *3.2. Aggregate Differentiated Exports (liberal) . xtgls lrdiff_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3263.39 Log likelihood = -1581.006 Prob > chi2 = 0.0000</p><p>------lrdiff_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4173582 .0576337 7.24 0.000 .3043983 .5303181 lgdp | 1.199152 .0696678 17.21 0.000 1.062606 1.335699 lgdpau | 2.353425 2.159865 1.09 0.276 -1.879832 6.586683 lgdpdfrati~w | -2.210264 .8379873 -2.64 0.008 -3.852689 -.5678392 lpopau | -9.489702 7.43501 -1.28 0.202 -24.06205 5.08265 lpop | -.2799381 .0815085 -3.43 0.001 -.4396918 -.1201844 lxrate1 | -.0263222 .0285417 -0.92 0.356 -.082263 .0296186 lremote | .1248092 .1970316 0.63 0.526 -.2613656 .5109839 ldist | -2.197273 .2341967 -9.38 0.000 -2.656291 -1.738256 lopen | .1374433 .1012824 1.36 0.175 -.0610666 .3359532 english | .8360951 .1977315 4.23 0.000 .4485485 1.223642 white | 1.26571 .8901593 1.42 0.155 -.4789703 3.01039 lwhitemg | -.1360729 .0840425 -1.62 0.105 -.3007931 .0286473 _cons | 97.40136 68.40553 1.42 0.154 -36.67102 231.4737 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003322 lgdp | -.002641 .004854 lgdpau | -.003694 .006639 4.66502 lgdpdfrati~w | -.003989 .002751 -.210322 .702223 lpopau | .013407 -.03274 -15.8203 .976644 55.2794 lpop | .000884 -.004069 -.000839 -.001 .006317 .006644 lxrate1 | .000041 .000659 .000797 .000314 -.00755 -.001 .000815 lremote | .003805 -.002542 -.001314 -.004674 -.015429 .001321 .000661 ldist | .006803 -.005906 -.008081 .011647 .018822 .003034 .002341 lopen | -.000534 .00082 .016653 .003688 -.088214 .00165 -.000197 english | -.004861 .004817 .002628 .013573 -.003262 -.005017 .00161 white | .018327 -.021917 -.017358 -.060063 .065869 .017223 -.001313 lwhitemg | -.001718 .001549 .001467 .005414 -.006073 -.000801 .000185 _cons | -.19445 .412083 140.264 -11.5211 -502.729 -.135198 .073311</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .038821 ldist | .022593 .054848 lopen | .004649 .000568 .010258 english | -.015163 .000351 -.003806 .039098 white | .047998 .014757 -.004 -.018997 .792384 lwhitemg | -.002139 .000828 .000533 .001815 -.071623 .007063 _cons | -.241691 -.795702 .945769 .079517 -1.04234 .056793 4679.32</p><p>. *3.3. Aggregate Homogenous Exports (liberal) . xtgls lrhomo_lx limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3061.88 Log likelihood = -1544.198 Prob > chi2 = 0.0000</p><p>------lrhomo_lx | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5476604 .0436759 12.54 0.000 .4620572 .6332635 lgdp | 1.095652 .0679376 16.13 0.000 .9624963 1.228807 lgdpau | -.4842262 .6668864 -0.73 0.468 -1.7913 .8228472 lgdpdfrati~w | -.4065451 .4822572 -0.84 0.399 -1.351752 .5386617 lpopau | 2.620204 2.397025 1.09 0.274 -2.077877 7.318286 lpop | -.1491649 .0830568 -1.80 0.073 -.3119533 .0136234 lxrate1 | -.0365492 .0301805 -1.21 0.226 -.0957018 .0226034 lremote | -.7407223 .1920156 -3.86 0.000 -1.117066 -.3643787 ldist | -2.044919 .3100401 -6.60 0.000 -2.652586 -1.437251 lopen | .0385244 .071533 0.54 0.590 -.1016778 .1787265 english | .7646377 .2320682 3.29 0.001 .3097923 1.219483 white | 5.601831 2.213769 2.53 0.011 1.262923 9.940739 lwhitemg | -.7694203 .2214571 -3.47 0.001 -1.203468 -.3353723 _cons | -25.03624 24.08395 -1.04 0.299 -72.2399 22.16743 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001908 lgdp | -.001846 .004616 lgdpau | .000181 -.003306 .444738 lgdpdfrati~w | -.003379 .003804 -.057592 .232572 lpopau | -.000475 .005942 -1.53998 .301488 5.74573 lpop | .00008 -.003228 .003878 .000801 -.020562 .006898 lxrate1 | -.000328 .000686 .00136 .002728 -.010192 -.000318 .000911 lremote | .001519 .001507 -.02775 .002527 .119022 -.004234 .000177 ldist | .006337 -.008797 -.003419 .000932 -.007583 .010475 .000779 lopen | .000084 -.000823 -.000181 .005292 -.004492 .001733 -.000317 english | -.001223 .001408 .015359 .007467 -.097675 .003056 .002945 white | .007676 -.010544 .03082 -.014081 -.228579 .018189 .007896 lwhitemg | -.00069 .000654 -.004094 .001848 .026873 -.001486 -.000592 _cons | -.037511 .008634 14.2206 -3.8589 -55.978 .141623 .109212</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .03687 ldist | .015141 .096125 lopen | -.002123 .001025 .005117 english | -.013228 .015023 -.00125 .053856 white | .021367 .061884 -.003305 .067012 4.90077 lwhitemg | .000269 -.004594 .000204 -.006653 -.483733 .049043 _cons | -1.69136 -.842545 .077784 1.08775 2.07573 -.281925 580.036</p><p>. *IV. Aggregate NON-Manufacturing Exports (Sum of Sitc0,1,2,3,4) . xtgls lrxnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1150.44 Log likelihood = -1134.889 Prob > chi2 = 0.0000</p><p>------lrxnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .383796 .0571056 6.72 0.000 .2718711 .495721 lgdp | .706263 .0954982 7.40 0.000 .51909 .893436 lgdpau | -5.368687 1.319668 -4.07 0.000 -7.955188 -2.782186 lgdpdfrati~w | -2.261532 .5646265 -4.01 0.000 -3.36818 -1.154884 lpopau | 15.57145 4.564957 3.41 0.001 6.624295 24.5186 lpop | -.1200941 .0899326 -1.34 0.182 -.2963589 .0561706 lxrate1 | -.0289263 .035184 -0.82 0.411 -.0978857 .0400332 lremote | -.3702193 .3002287 -1.23 0.218 -.9586567 .2182182 ldist | -1.965712 .2509887 -7.83 0.000 -2.457641 -1.473783 lopen | .0113691 .1144196 0.10 0.921 -.2128892 .2356274 english | 1.16618 .224138 5.20 0.000 .7268775 1.605482 white | 10.61783 1.08433 9.79 0.000 8.49258 12.74308 lwhitemg | -1.291884 .0954841 -13.53 0.000 -1.479029 -1.104738 _cons | -102.6176 42.65181 -2.41 0.016 -186.2136 -19.0216 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003261 lgdp | -.003295 .00912 lgdpau | -.002287 .005311 1.74152 lgdpdfrati~w | -.002472 .004402 -.116001 .318803 lpopau | .012452 -.038374 -5.88773 .488541 20.8388 lpop | .000374 -.005597 -.000406 -.001996 .00715 .008088 lxrate1 | -.000555 .001876 .001051 .001006 -.009455 -.001662 .001238 lremote | .001296 -.000953 .002616 -.028515 -.02811 .000925 .00034 ldist | .009504 -.011321 -.006505 -.008033 .027675 .005565 -.002553 lopen | .000124 -.000332 .009987 .003537 -.063604 .002918 -.0004 english | -.004992 .007584 .002974 .008899 -.016197 -.002061 .002856 white | .014196 -.033032 .015435 -.066599 .001939 .036256 -.006969 lwhitemg | -.001596 .002109 -.001684 .002579 .002206 -.00242 .000688 _cons | -.195149 .502851 52.0449 -5.12424 -191.185 -.162126 .131649</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .090137 ldist | .019127 .062995 lopen | .006481 .004512 .013092 english | -.013211 -.006133 -.00608 .050238 white | .063202 .086352 -.002799 .060353 1.17577 lwhitemg | .003369 -.008172 .00045 -.006141 -.094547 .009117 _cons | -.547267 -.922979 .664073 .215025 -1.69096 .055189 1819.18</p><p>. *V. Aggregate Manufacturing Exports (Sum of Sitc5,6,7,8,9) . xtgls lrxmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1129.89 Log likelihood = -968.1228 Prob > chi2 = 0.0000</p><p>------lrxmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2460644 .0425943 5.78 0.000 .1625811 .3295477 lgdp | .3322839 .0909142 3.65 0.000 .1540954 .5104724</p><p> lgdpau | -2.673927 1.113522 -2.40 0.016 -4.856391 -.4914643 lgdpdfrati~w | -4.363588 .4665615 -9.35 0.000 -5.278032 -3.449144 lpopau | 10.24796 3.846444 2.66 0.008 2.709069 17.78685 lpop | .152672 .0744784 2.05 0.040 .006697 .298647 lxrate1 | -.0763373 .0277449 -2.75 0.006 -.1307164 -.0219583 lremote | .5394838 .1734035 3.11 0.002 .199619 .8793485 ldist | -2.377755 .2315444 -10.27 0.000 -2.831573 -1.923936 lopen | -.0803098 .0533961 -1.50 0.133 -.1849641 .0243445 english | .4279658 .1616453 2.65 0.008 .1111467 .7447848 white | 9.51916 .9210721 10.33 0.000 7.713892 11.32443 lwhitemg | -.8567374 .0801531 -10.69 0.000 -1.013834 -.6996403 _cons | -81.31127 35.81229 -2.27 0.023 -151.5021 -11.12047 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001814 lgdp | -.002601 .008265 lgdpau | -.002731 .006362 1.23993 lgdpdfrati~w | -.002284 .005226 -.043621 .21768 lpopau | .012241 -.032994 -4.19998 .222282 14.7951 lpop | .001728 -.005868 -.003008 -.003843 .014827 .005547 lxrate1 | -.000167 .001215 .000954 .000765 -.006987 -.000973 .00077 lremote | .001847 -.003739 -.004249 -.014134 -.008143 .003906 -.0002 ldist | .005627 -.009012 -.01227 -.009208 .052201 .007529 -.000662 lopen | -.000104 .000189 .0048 .001993 -.023818 .000642 -.000082 english | -.002076 .003493 .0016 .002917 -.000686 -.000749 .000356 white | .015963 -.033246 -.025743 -.047659 .073182 .037882 -.00676 lwhitemg | -.001231 .001473 .00115 .001933 -.003026 -.002303 .000437 _cons | -.178702 .410985 37.2658 -2.60505 -135.533 -.231239 .084803</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .030069 ldist | .019078 .053613 lopen | .000806 .000307 .002851 english | -.002285 .008684 -.000787 .026129 white | .076561 .085271 .002952 .008955 .848374 lwhitemg | -.004075 -.006096 -.000366 -.000678 -.070001 .006425 _cons | -.171218 -1.16457 .246278 -.163359 -1.91779 .122813 1282.52</p><p>. . **VI. SITC-1 Digit Level Disaggregate Exports . xtgls lrxsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 744.68 Log likelihood = -1444.101 Prob > chi2 = 0.0000</p><p>------lrxsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3160094 .0871469 3.63 0.000 .1452047 .4868142 lgdp | .387482 .1420892 2.73 0.006 .1089924 .6659716 lgdpau | -.8546879 1.218147 -0.70 0.483 -3.242213 1.532837 lgdpdfrati~w | -.7974676 .5950918 -1.34 0.180 -1.963826 .3688909 lpopau | 10.29891 4.125379 2.50 0.013 2.213316 18.38451 lpop | -.0643328 .137648 -0.47 0.640 -.334118 .2054523 lxrate1 | -.0897273 .0467747 -1.92 0.055 -.1814041 .0019495 lremote | .3232571 .2563048 1.26 0.207 -.1790911 .8256053 ldist | -2.189206 .4606173 -4.75 0.000 -3.091999 -1.286412 lopen | -.3109182 .1730291 -1.80 0.072 -.650049 .0282125 english | 1.555377 .3138059 4.96 0.000 .9403284 2.170425 white | 19.84002 1.983557 10.00 0.000 15.95232 23.72772 lwhitemg | -1.924299 .187002 -10.29 0.000 -2.290816 -1.557782 _cons | -135.2704 38.55099 -3.51 0.000 -210.8289 -59.71183 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .007595 lgdp | -.009676 .020189 lgdpau | -.010013 .01078 1.48388 lgdpdfrati~w | -.002647 -.00252 .127866 .354134 lpopau | .031226 -.029133 -4.85161 -.232688 17.0188 lpop | .003297 -.012147 -.001505 .001816 -.017068 .018947 lxrate1 | .000497 .001087 -.000079 .000141 .002795 -.002078 .002188 lremote | .002747 .002109 -.041181 -.055666 -.000377 -.000775 -.000584 ldist | .019379 -.021909 -.048483 -.036116 .078639 .022286 .002141 lopen | -.000719 -.000321 .007979 -.005883 -.092025 .007112 -.001118 english | -.010996 .009867 .01027 .002317 -.05754 .003156 .003172 white | .0313 -.070647 -.045776 -.069691 .026718 .085023 .001004 lwhitemg | -.00282 .004924 .000974 .002697 -.005253 -.006516 -.000181 _cons | -.337979 .176163 42.0715 .998155 -154.919 .083093 -.064642</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .065692 ldist | .046437 .212168 lopen | .011669 .005015 .029939 english | -.002771 .013777 -.00678 .098474 white | .04997 .168865 .004509 .121566 3.9345 lwhitemg | -.000778 -.013426 .00026 -.008502 -.362673 .03497</p><p>_cons | .09621 -2.40272 1.09893 .322143 -1.1917 .206372 1486.18</p><p>. xtgls lrxsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 568.33 Log likelihood = -239.8758 Prob > chi2 = 0.0000</p><p>------lrxsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0061314 .0157835 0.39 0.698 -.0248037 .0370666 lgdp | .0474349 .0400538 1.18 0.236 -.031069 .1259388 lgdpau | .0396912 .2709724 0.15 0.884 -.4914049 .5707873 lgdpdfrati~w | -.0847518 .1492824 -0.57 0.570 -.3773399 .2078363 lpopau | 3.098813 .9800291 3.16 0.002 1.177991 5.019635 lpop | .2359788 .0500976 4.71 0.000 .1377893 .3341684 lxrate1 | -.0299055 .0138376 -2.16 0.031 -.0570267 -.0027843 lremote | -.0719915 .0952807 -0.76 0.450 -.2587382 .1147552 ldist | -3.337012 .3320588 -10.05 0.000 -3.987836 -2.686189 lopen | -.0380775 .0262427 -1.45 0.147 -.0895123 .0133573 english | 1.192904 .1443258 8.27 0.000 .9100309 1.475778 white | 15.59212 2.001871 7.79 0.000 11.66852 19.51571 lwhitemg | -1.266166 .176166 -7.19 0.000 -1.611445 -.920887 _cons | -23.9606 10.9323 -2.19 0.028 -45.38752 -2.533677 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000249 lgdp | -.000161 .001604 lgdpau | .000324 -.001096 .073426 lgdpdfrati~w | -.000251 .000455 -.00568 .022285 lpopau | -.001511 .005229 -.250897 .027599 .960457 lpop | -.000074 -.001257 .000109 .000101 -.003422 .00251 lxrate1 | .000025 -5.6e-06 .000388 .000349 -.003232 .000037 .000191 lremote | .000168 .000904 -.00584 -.000588 .0172 -.000163 .000082 ldist | .001102 .002112 -.007071 -.00067 .027714 -.000374 -.000366 lopen | .000029 -.000071 .000057 -.000046 -.00162 .000131 -.000019 english | -.000303 .000379 -.000643 -.000657 .012718 .000847 -4.2e-06 white | .000959 -.005176 .005813 -.005778 -.013615 .005577 -.000512 lwhitemg | -.000137 .000102 -.000618 .000402 .000505 -.000342 .000067 _cons | .008373 -.102091 2.38063 -.331821 -9.84181 .048169 .044634</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .009078 ldist | .010388 .110263 lopen | -.000012 -.000361 .000689 english | .000879 .016311 -.000553 .02083 white | .006744 .019217 -.000171 .032862 4.00749 lwhitemg | -.000351 -.00359 .000056 -.003455 -.346689 .031034 _cons | -.329627 -1.47005 .028825 -.381221 -.146337 .048891 119.515</p><p>. xtgls lrxsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 685.74 Log likelihood = -1324.777 Prob > chi2 = 0.0000</p><p>------lrxsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2203668 .0578373 3.81 0.000 .1070078 .3337259 lgdp | .693775 .1147901 6.04 0.000 .4687906 .9187594 lgdpau | -5.525915 1.892194 -2.92 0.003 -9.234548 -1.817282 lgdpdfrati~w | -.2522162 .8555319 -0.29 0.768 -1.929028 1.424595 lpopau | 15.94141 6.555506 2.43 0.015 3.092851 28.78996 lpop | .158561 .1285217 1.23 0.217 -.0933369 .4104589 lxrate1 | -.0599824 .0372998 -1.61 0.108 -.1330887 .0131238 lremote | -.7280438 .344435 -2.11 0.035 -1.403124 -.0529637 ldist | -2.85027 .4408735 -6.47 0.000 -3.714367 -1.986174 lopen | -.2038434 .1838988 -1.11 0.268 -.5642784 .1565915 english | .3226479 .2668073 1.21 0.227 -.2002849 .8455807 white | 13.80032 2.219513 6.22 0.000 9.450157 18.15049 lwhitemg | -1.476773 .2031419 -7.27 0.000 -1.874924 -1.078623 _cons | -100.5607 61.35199 -1.64 0.101 -220.8084 19.687 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003345 lgdp | -.004678 .013177 lgdpau | -.004355 .008852 3.5804 lgdpdfrati~w | -.005537 .006543 -.071688 .731935 lpopau | .018484 -.054362 -12.1008 .566107 42.9747 lpop | .001913 -.009364 .002832 -.003911 -.019768 .016518 lxrate1 | -.00048 .001767 .001724 .004234 -.010954 -.001411 .001391 lremote | .005035 -.009872 -.017696 -.062385 .02635 .002586 -.006319 ldist | .016119 -.019997 -.012874 -.041164 -.023861 .014015 -.002631 lopen | -.00037 -.000028 .023459 -.003711 -.177152 .007964 -.001171 english | -.001554 .005552 .003674 .01564 -.017461 -2.6e-06 .003598 white | .03419 -.074637 -.012553 -.170109 .023237 .084991 -.008905 lwhitemg | -.002805 .004513 -.00141 .009121 .009007 -.006639 .000144 _cons | -.327919 .810996 106.953 -7.41507 -394.897 .052159 .192647</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .118635 ldist | .051528 .194369 lopen | .018452 .011529 .033819 english | -.01699 .018251 -.007505 .071186 white | .168913 .250729 .02048 .121262 4.92624 lwhitemg | -.003459 -.02229 -.000585 -.014447 -.436189 .041267 _cons | -1.26494 -1.37509 1.96283 .007014 -3.61879 .142956 3764.07</p><p>. xtgls lrxsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 259.91 Log likelihood = -722.0268 Prob > chi2 = 0.0000</p><p>------lrxsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .058905 .0445113 1.32 0.186 -.0283356 .1461455 lgdp | .1213641 .1064109 1.14 0.254 -.0871975 .3299256 lgdpau | -.0798677 .8673386 -0.09 0.927 -1.77982 1.620085 lgdpdfrati~w | .2232906 .3022891 0.74 0.460 -.3691851 .8157663 lpopau | -1.492309 2.97991 -0.50 0.617 -7.332824 4.348207 lpop | .6266062 .1142091 5.49 0.000 .4027606 .8504519 lxrate1 | .0452596 .0325427 1.39 0.164 -.018523 .1090421 lremote | -.1918048 .2913684 -0.66 0.510 -.7628764 .3792669 ldist | -1.79727 .5645831 -3.18 0.001 -2.903832 -.6907074 lopen | .0088712 .0619077 0.14 0.886 -.1124656 .1302081 english | 1.66809 .3659562 4.56 0.000 .9508294 2.385351 white | 7.363284 3.096768 2.38 0.017 1.29373 13.43284 lwhitemg | -.5881447 .2587863 -2.27 0.023 -1.095357 -.0809328 _cons | 33.64263 28.63247 1.17 0.240 -22.47597 89.76124 ------. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001981 lgdp | -.001581 .011323 lgdpau | .002054 -.001748 .752276 lgdpdfrati~w | -.001497 .002426 -.024809 .091379 lpopau | -.013419 -.001792 -2.51587 .087785 8.87986 lpop | .000146 -.008378 -.000855 -.000158 .00465 .013044 lxrate1 | .000151 .000374 .0015 .001989 -.010483 -.000498 .001059 lremote | .000966 .006531 -.043236 -.01301 .138875 -.005437 -.000944 ldist | .007448 -.000212 -.001794 -.00304 -.055075 .008222 .002096 lopen | .000155 -.000527 -.002343 .00442 .004135 .001119 -.000102 english | -.004167 -.00737 .00577 .008173 -.018493 .012889 .00239 white | .006393 -.062155 .102771 -.009761 -.369058 .073961 .000145 lwhitemg | -.000916 .003276 -.01204 -.000088 .047655 -.005529 -.000099 _cons | .115319 -.093031 22.4572 -.805179 -82.0654 -.103814 .11564</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .084896 ldist | .026144 .318754 lopen | -.000044 .000142 .003833 english | -.021056 .063775 -.000672 .133924 white | -.089342 .154554 .003696 .205285 9.58997 lwhitemg | .011377 -.020435 -.000267 -.019598 -.780962 .06697 _cons | -2.2087 -2.48978 -.016886 -.333169 2.88728 -.35863 819.818</p><p>. xtgls lrxsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 229.38 Log likelihood = -775.1753 Prob > chi2 = 0.0000</p><p>------lrxsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0098472 .0410209 0.24 0.810 -.0705522 .0902467 lgdp | .0682492 .0799128 0.85 0.393 -.0883769 .2248754 lgdpau | .0538861 .6828489 0.08 0.937 -1.284473 1.392245 lgdpdfrati~w | .0086487 .2443547 0.04 0.972 -.4702778 .4875752 lpopau | -.1664601 2.351246 -0.07 0.944 -4.774818 4.441898 lpop | .5283226 .0978034 5.40 0.000 .3366314 .7200138 lxrate1 | -.0029528 .0211706 -0.14 0.889 -.0444464 .0385409 lremote | .3147309 .2366404 1.33 0.184 -.1490758 .7785376 ldist | -2.637359 .3937224 -6.70 0.000 -3.40904 -1.865677 lopen | .0244552 .0511858 0.48 0.633 -.0758672 .1247776 english | .7005106 .3341357 2.10 0.036 .0456166 1.355405 white | .2971079 2.137766 0.14 0.889 -3.892836 4.487052 lwhitemg | .0435147 .2040782 0.21 0.831 -.3564712 .4435006 _cons | 15.16607 22.94294 0.66 0.509 -29.80127 60.1334 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001683 lgdp | -.001199 .006386 lgdpau | -.000447 .000792 .466283 lgdpdfrati~w | -.000297 .000589 -.033065 .059709 lpopau | -.00452 -.003183 -1.55559 .109693 5.52836 lpop | -.000055 -.004625 -.000451 -.000834 -.007619 .009566 lxrate1 | .000142 .000029 -.000318 .001264 -.002996 -.000171 .000448 lremote | .002201 .003239 -.027755 -.008006 .085807 -.002981 -.000195 ldist | .004555 -.003136 -.016652 -.002111 .04127 .001469 .000474 lopen | -.000093 .000308 .002169 .000452 -.009952 .000573 -.000033 english | -.003739 -.003131 .000539 .002295 .01107 .002704 .00066 white | .004974 -.031854 -.004821 -.016683 -.071385 .038196 .00253 lwhitemg | -.00059 .001753 -.002112 .000975 .015887 -.002468 -.000209 _cons | .044227 -.031031 13.9992 -.924363 -51.9529 .105341 .053822</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .055999 ldist | .029043 .155017 lopen | .000405 -.000867 .00262 english | -.011142 .044344 -.001488 .111647 white | .044709 .021272 -.001207 .1433 4.57004 lwhitemg | -.001461 -.000382 .000118 -.012512 -.425065 .041648</p><p>_cons | -1.48804 -1.96473 .098372 -.505044 .77827 -.187492 526.378</p><p>. xtgls lrxsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 555.34 Log likelihood = -1053.64 Prob > chi2 = 0.0000</p><p>------lrxsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1222841 .075 1.63 0.103 -.0247132 .2692815 lgdp | .5944689 .1370878 4.34 0.000 .3257818 .863156 lgdpau | -.7247424 .8292963 -0.87 0.382 -2.350133 .9006485 lgdpdfrati~w | -.6904444 .3750205 -1.84 0.066 -1.425471 .0445823 lpopau | 7.279445 2.804397 2.60 0.009 1.782927 12.77596 lpop | .250871 .1245825 2.01 0.044 .0066938 .4950483 lxrate1 | -.1491111 .0345652 -4.31 0.000 -.2168576 -.0813645 lremote | .1961435 .2342885 0.84 0.402 -.2630535 .6553406 ldist | -3.094593 .4443017 -6.97 0.000 -3.965408 -2.223778 lopen | .1087849 .0910271 1.20 0.232 -.0696249 .2871948 english | .6857382 .2620249 2.62 0.009 .1721788 1.199298 white | 11.64816 2.351784 4.95 0.000 7.038749 16.25757 lwhitemg | -1.136143 .2118302 -5.36 0.000 -1.551322 -.7209631 _cons | -87.46675 26.60711 -3.29 0.001 -139.6157 -35.31777 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .005625 lgdp | -.006299 .018793 lgdpau | -.004844 .005829 .687732 lgdpdfrati~w | -.000105 -.001401 .036711 .14064 lpopau | .015526 -.029074 -2.24443 -.048557 7.86464 lpop | .001441 -.011698 -.001113 .001933 .004075 .015521 lxrate1 | .000478 .000981 .000538 .000498 -.003688 -.001271 .001195 lremote | .000916 .006017 -.032237 -.027798 .02723 -.005916 .001716 ldist | .014668 -.01028 -.02485 -.004563 .078271 .002826 .000616 lopen | -.000124 .000126 .001958 .002161 -.02754 .001807 -.0005 english | -.005532 .016525 .000297 -.004127 -.008018 -.011553 -.000377 white | .029107 -.052023 -.059596 -.045647 .091179 .05139 -.002581 lwhitemg | -.002654 .002282 .002298 .001513 -.003401 -.002622 .000126 _cons | -.193926 .164251 19.5866 -.012641 -72.0601 .00166 .016976</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054891 ldist | .022229 .197404 lopen | .00223 -.000458 .008286 english | .008246 .027598 -.003878 .068657 white | .053345 .106486 -.002783 .042129 5.53089 lwhitemg | -.001312 -.011827 .000169 -.006481 -.484803 .044872 _cons | -.326162 -2.62977 .367063 -.383109 -1.23279 .129125 707.938</p><p>. xtgls lrxsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 726.32 Log likelihood = -1135.859 Prob > chi2 = 0.0000</p><p>------lrxsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2498051 .0745189 3.35 0.001 .1037508 .3958594 lgdp | .5966373 .1120665 5.32 0.000 .3769909 .8162836 lgdpau | .0911493 1.133113 0.08 0.936 -2.129712 2.312011 lgdpdfrati~w | -1.125451 .5538726 -2.03 0.042 -2.211021 -.0398802 lpopau | 2.688735 3.854831 0.70 0.485 -4.866595 10.24406 lpop | -.017097 .1192646 -0.14 0.886 -.2508513 .2166573 lxrate1 | -.032553 .0377391 -0.86 0.388 -.1065202 .0414143 lremote | .399143 .2760041 1.45 0.148 -.141815 .940101 ldist | -2.664705 .4366279 -6.10 0.000 -3.52048 -1.80893 lopen | -.1043257 .093396 -1.12 0.264 -.2873786 .0787271 english | 1.229429 .2869487 4.28 0.000 .6670199 1.791838 white | 12.83692 2.67474 4.80 0.000 7.594528 18.07932 lwhitemg | -1.245992 .2322128 -5.37 0.000 -1.701121 -.7908632 _cons | -34.45201 36.12659 -0.95 0.340 -105.2588 36.3548 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .005553 lgdp | -.005523 .012559 lgdpau | -.005429 .008461 1.28395 lgdpdfrati~w | -.003479 .004254 .049529 .306775 lpopau | .013789 -.030292 -4.23168 .017326 14.8597 lpop | .001332 -.009185 -.004017 -.000651 .010136 .014224 lxrate1 | .000539 .000755 .00163 .00031 -.010305 -.001214 .001424 lremote | .004401 -.001855 -.031229 -.04799 -.001487 -.001639 .00177 ldist | .015002 -.01028 -.028956 -.025173 .05887 .004387 .000575 lopen | -.000362 .000856 .000712 .000926 -.024598 .000893 -.000363 english | -.00615 .010885 .004894 -.000347 -.00648 -.006369 -.000654 white | .02772 -.053589 -.034973 -.070674 .034545 .054878 -.002276 lwhitemg | -.002358 .003218 .00048 .001819 -.001589 -.00373 .000232 _cons | -.19595 .280753 36.9085 -1.31811 -135.668 -.108894 .101256 | lremote ldist lopen english white lwhitemg _cons ------+------lremote | .076178 ldist | .044393 .190644 lopen | .003828 .000986 .008723 english | .002117 .032646 -.003326 .08234 white | .075571 .10635 -.007894 .061627 7.15424 lwhitemg | -.001461 -.010388 .000526 -.006961 -.611707 .053923 _cons | -.157904 -2.3317 .324435 -.474922 -1.11276 .126789 1305.13</p><p>. xtgls lrxsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 436.75 Log likelihood = -1196.241 Prob > chi2 = 0.0000</p><p>------lrxsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2165027 .0512099 4.23 0.000 .1161331 .3168723 lgdp | .315293 .1027394 3.07 0.002 .1139275 .5166586 lgdpau | -2.098713 1.385178 -1.52 0.130 -4.813613 .6161866 lgdpdfrati~w | -2.162755 .6297187 -3.43 0.001 -3.396981 -.9285287 lpopau | 6.464583 4.733427 1.37 0.172 -2.812764 15.74193 lpop | .1132565 .0774451 1.46 0.144 -.038533 .265046 lxrate1 | -.1015419 .0383533 -2.65 0.008 -.176713 -.0263709 lremote | 1.091796 .2639381 4.14 0.000 .5744868 1.609105 ldist | -1.240897 .408511 -3.04 0.002 -2.041563 -.4402296 lopen | .0071914 .1180251 0.06 0.951 -.2241334 .2385163 english | .6170806 .1855664 3.33 0.001 .2533771 .9807841 white | 6.025571 1.040568 5.79 0.000 3.986096 8.065047 lwhitemg | -.4922947 .1102249 -4.47 0.000 -.7083315 -.2762579 _cons | -51.59758 43.88999 -1.18 0.240 -137.6204 34.42522 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002622 lgdp | -.002591 .010555 lgdpau | -.00375 .006287 1.91872 lgdpdfrati~w | -.001313 .000166 .085473 .396546 lpopau | .014066 -.038616 -6.40855 -.136597 22.4053 lpop | .000583 -.005444 -.000638 -.001101 .003965 .005998 lxrate1 | .000202 .001557 .000962 .000703 -.006949 -.001548 .001471 lremote | .000326 .000943 -.028221 -.047055 .047431 .001543 -.000842 ldist | .01231 -.00588 -.025911 -.025932 .045614 .0051 .001857 lopen | -.000157 .000347 .009621 .001121 -.064488 .003066 -.000456 english | -.002944 .005395 .006837 .006399 -.023802 .000727 .000926 white | .014076 -.030214 -.033755 -.036515 .11628 .027804 -.004509 lwhitemg | -.001551 .000943 -.000026 -.000666 .000552 -.001578 .000032 _cons | -.220815 .379867 56.2701 .287875 -203.655 -.077543 .062183</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .069663 ldist | .041162 .166881 lopen | .00496 .007809 .01393 english | -.007292 -.000541 -.002036 .034435 white | .035822 .099694 .003895 .035679 1.08278 lwhitemg | .002277 -.010564 -.000423 -.004242 -.106147 .01215 _cons | -1.04318 -2.02589 .655715 .142766 -2.12255 .087807 1926.33</p><p>. xtgls lrxsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 468.83 Log likelihood = -984.5645 Prob > chi2 = 0.0000</p><p>------lrxsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1347076 .0501959 2.68 0.007 .0363255 .2330897 lgdp | .5004814 .0982001 5.10 0.000 .3080128 .6929499 lgdpau | -1.416528 1.351408 -1.05 0.295 -4.065239 1.232183 lgdpdfrati~w | -1.093459 .5578126 -1.96 0.050 -2.186752 -.0001669 lpopau | 4.493575 4.644366 0.97 0.333 -4.609214 13.59636 lpop | .0654407 .0948023 0.69 0.490 -.1203684 .2512498 lxrate1 | -.0405272 .0385106 -1.05 0.293 -.1160066 .0349521 lremote | -.7490996 .3005592 -2.49 0.013 -1.338185 -.1600144 ldist | -2.92902 .4530034 -6.47 0.000 -3.81689 -2.041149 lopen | -.0411491 .1069811 -0.38 0.701 -.2508282 .1685299 english | .6497035 .1966899 3.30 0.001 .2641984 1.035209 white | 9.245326 2.005891 4.61 0.000 5.313852 13.1768 lwhitemg | -.9564102 .1733056 -5.52 0.000 -1.296083 -.6167375 _cons | -10.66235 43.59736 -0.24 0.807 -96.1116 74.78691 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00252 lgdp | -.002421 .009643 lgdpau | -.003099 .005772 1.8263 lgdpdfrati~w | -.001145 .000106 -.028979 .311155 lpopau | .01086 -.028753 -6.13123 .183859 21.5701 lpop | -.000218 -.00566 -.001357 .000608 .00523 .008987 lxrate1 | .00002 .001449 .002283 .001713 -.013253 -.001477 .001483 lremote | .003662 .000346 -.021445 -.036117 .053971 -.002073 -.001454 ldist | .011545 -.008022 -.023482 -.01464 .062757 .002867 -.000646 lopen | -.000252 -.000209 .00596 .005413 -.049642 .002309 -.000087 english | -.002451 .003049 .007456 .006275 -.02533 -.00114 .002199 white | .012424 -.037228 .029055 -.026618 -.0366 .036197 -.005354 lwhitemg | -.00104 .001382 -.004074 -.000103 .009427 -.002239 .00028 _cons | -.196409 .280785 54.1418 -2.1654 -197.822 -.069295 .162801</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .090336 ldist | .049695 .205212 lopen | .003291 .001129 .011445 english | -.018573 .007176 -.00264 .038687 white | .027663 .11894 .000066 .040197 4.0236 lwhitemg | .002004 -.0112 .000155 -.003936 -.338363 .030035</p><p>_cons | -1.54622 -2.73742 .601996 .252399 -1.33538 .052461 1900.73</p><p>. xtgls lrxsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 829.27 Log likelihood = -1576.058 Prob > chi2 = 0.0000</p><p>------lrxsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4328379 .0676923 6.39 0.000 .3001634 .5655124 lgdp | .2064774 .1257627 1.64 0.101 -.0400129 .4529678 lgdpau | -2.194494 1.739165 -1.26 0.207 -5.603194 1.214206 lgdpdfrati~w | -1.027448 .5807702 -1.77 0.077 -2.165737 .1108405 lpopau | 18.11086 5.930198 3.05 0.002 6.487887 29.73384 lpop | .4956545 .1185095 4.18 0.000 .2633802 .7279288 lxrate1 | -.1254214 .042463 -2.95 0.003 -.2086473 -.0421956 lremote | .3978871 .3115938 1.28 0.202 -.2128256 1.0086 ldist | -1.862036 .4460463 -4.17 0.000 -2.736271 -.9878015 lopen | -.1071395 .138117 -0.78 0.438 -.3778439 .1635649 english | .2501511 .2738397 0.91 0.361 -.2865649 .7868672 white | 17.73801 2.317862 7.65 0.000 13.19509 22.28094 lwhitemg | -1.677799 .2262906 -7.41 0.000 -2.121321 -1.234278 _cons | -238.6157 55.03871 -4.34 0.000 -346.4895 -130.7418 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004582 lgdp | -.005236 .015816 lgdpau | -.006106 .008645 3.02469 lgdpdfrati~w | -.002207 .003195 -.039543 .337294 lpopau | .019283 -.041798 -10.0707 .142015 35.1672 lpop | .00167 -.010477 -.003457 -.001806 .009079 .014044 lxrate1 | -.00013 .001672 -.000956 .003454 -.005526 -.001412 .001803 lremote | .005074 -.00192 -.047789 -.018142 .061032 .001879 .001238 ldist | .016406 -.011658 -.034297 -.001885 .096178 .009356 -.000624 lopen | -.000437 -.000298 .007124 .008731 -.04477 .003784 -.000312 english | -.004349 .010658 .008621 .001569 -.053932 -.00557 .001669 white | .020199 -.049173 -.062407 -.034605 -.016379 .055846 .004629 lwhitemg | -.001543 .001909 .001006 .000509 .008749 -.00288 -.000411 _cons | -.293552 .422006 88.3879 -1.51744 -320.216 -.151506 .086407</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .097091 ldist | .047113 .198957 lopen | .00594 .004359 .019076 english | -.011492 .024858 -.004809 .074988 white | .115576 .004095 .001791 -.021805 5.37248 lwhitemg | -.003166 .000735 .000026 .001531 -.51205 .051207 _cons | -1.05078 -2.98707 .417236 .372118 .966195 -.136912 3029.26</p><p> log: K:\Roger-Australia\Robustness-1\South Africa-Sweden_Exports.log log type: text closed on: 18 Aug 2006, 19:22:47 ------</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    90 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us