IB Chemistry Notes Chapter 11: Properties of Solutions

IB Chemistry Notes Chapter 11: Properties of Solutions

<p>IB Chemistry Notes Chapter 11: Properties of Solutions</p><p>Solutions  ______– a homogeneous mixture of pure substances (occur in all phases, but we will focus on aqueous solutions)  The is the medium in which the are dissolved. o (The solvent is usually the most abundant substance.)</p><p>Concentration of Solution - refers to the amount of solute dissolved in a solution.</p><p>MOLARITY (M) = </p><p>MOLALITY (m) = </p><p>MASS PERCENT (%) = </p><p>MOLE FRACTION () = </p><p>NORMALITY (N) = </p><p>Energy of Making Solutions</p><p> Heat of solution ( Hsoln ) is the for making a solution.  Most easily understood if broken into steps. o Break apart solvent . Have to overcome attractive forces. o Break apart solute . Have to overcome attractive forces. o Mixing solvent and solute </p><p>. H3 depends on what you are mixing. . Molecules can attract each other – . Molecules can’t attract - o This explains the rule </p><p>Size of H3 determines whether a solution will form  Types of Solvent and solutes</p><p> If Hsoln is small and positive, a solution will still form because of entropy.  There are many more ways for them to become mixed than there is for them to stay separate. Solution Formation – Factors Favoring Spontaneity  Processes in which the energy content of the system decreases (exothermic) tend to occur spontaneously.  Processes in which the disorder (entropy) of the system increases tend to occur spontaneously. </p><p>Structure and Solubility IB Chemistry Notes Chapter 11: Properties of Solutions  Water soluble molecules must have dipole moments - </p><p> To be soluble in non polar solvents the molecules must be .</p><p>Pressure  Changing the pressure doesn’t affect the amount of solid or liquid that dissolves o They are incompressible.  Pressure does affect solubility of gases.</p><p>Dissolving Gases  Pressure affects the amount of that can dissolve in a liquid.  The dissolved gas is at equilibrium with the gas above the liquid.  If you increase the pressure the gas molecules dissolve faster. o The equilibrium is disturbed. o The system reaches a new equilibrium with more gas dissolved.  Henry’s Law:</p><p>Temperature Effects  Increased temperature increases the rate at which a solid dissolves.  We can’t predict whether it will increase the amount of solid that dissolves.  We must read it from a graph of experimental data.  Gases are predictable  As temperature increases, solubility decreases.  Gas molecules can move fast enough to escape.  Thermal pollution.</p><p>Vapor Pressure of Solutions  A nonvolatile solvent lowers the vapor pressure of the solution.  The molecules of the solvent must overcome the force of both the other solvent molecules and the solute molecules.</p><p>Raoult’s Law:</p><p> Applies only to an ideal solution where the solute doesn’t contribute to the vapor pressure.</p><p>To determine whether a sol’n is IDEAL…  Liquid-liquid solutions where both are volatile.  Modify Raoult’s Law to:</p><p>Ptotal = </p><p>• Ptotal = vapor pressure of mixture 0 • PA = vapor pressure of pure A</p><p> If this equation works then the solution is ideal. IB Chemistry Notes Chapter 11: Properties of Solutions  Solvent and solute are alike.</p><p>Colligative Properties of Solutions = physical properties of solutions that depend on the # of particles dissolved, not the kind of particle.  Lowering vapor pressure  Raising boiling point  Lowering freezing point  Generating an osmotic pressure</p><p>Boiling Point Elevation: a solution that contains a nonvolatile solute has a higher boiling pt than the pure solvent; the boiling pt elevation is proportional to the # of moles of solute dissolved in a given mass of solvent.</p><p> where: Tb = elevation of boiling pt m = molality of solute</p><p> kb = the molal boiling pt elevation constant for a particular solvent</p><p> kb for water = 0.52 °C/m </p><p>Freezing/Melting Point Depression: the freezing point of a solution is always lower than that of the pure solvent.</p><p> where: Tf = lowering of freezing point m = molality of solute</p><p> kf = the freezing pt depression constant</p><p> kf for water = 1.86 °C/m </p><p>3 3 Ex: An antifreeze solution is prepared containing 50.0 cm of ethylene glycol, C2H6O2, (d = 1.12 g/cm ), in 50.0 g water. Calculate the freezing point of this 50-50 mixture. Would this antifreeze protect a car in Chicago on a day when the temperature gets as low as –10° F? (-10 °F = -23.3° C)</p><p>Electrolytes and Colligative Properties  Colligative properties depend on the # of particles present in solution.  Because ionic solutes dissociate into ions, they have a greater effect on freezing pt and boiling pt than molecular solids of the same molal conc. o For example, the freezing pt of water is lowered by 1.86°C with the addition of any </p><p> molecular solute at a concentration of 1 m, such as C6H12O6, or any other covalent compound o However, a 1 m NaCl solution contains 2 molal conc. of IONS. Thus, the freezing pt depression for NaCl is 3.72°C…double that of a molecular solute. IB Chemistry Notes Chapter 11: Properties of Solutions</p><p>The relationships are given by the following equations:</p><p>Tf/b = f.p. depression/elevation of b.p. m = molality of solute</p><p> kf/b = b.p. elevation/f.p depression constant i = # particles formed from the dissociation of each formula unit of the solute (van’t Hoff factor)</p><p>Ex: What is the freezing pt of: a) a 1.15 m sodium chloride solution?</p><p>Ex: What is the freezing pt of: b) a 1.15 m calcium chloride solution?</p><p>Ex: What is the freezing pt of: c) a 1.15 m calcium phosphate solution?</p><p>Osmotic Pressure: Experiments show that dependence of the osmotic pressure on solution concentration is expressed by the eqn: </p><p>Where,  = osmotic pressure (atm) M = molarity (mol/L) R = gas law constant = 0.08206 T = temp (K)</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us