Heat and Mass Correlations

Heat and Mass Correlations

Heat and Mass Correlations Alexander Rattner, Jonathan Bohren November 13, 2008 Contents 1 Dimensionless Parameters 2 2 Boundary Layer Analogies - Require Geometric Similarity 2 3 External Flow 3 3.1 External Flow for a Flat Plate . 3 3.2 Mixed Flow Over a plate . 4 3.3 Unheated Starting Length . 4 3.4 Plates with Constant Heat Flux . 4 3.5 Cylinder in Cross Flow . 4 3.6 Flow over Spheres . 5 3.7 Flow Through Banks of Tubes . 6 3.7.1 Geometric Properties . 6 3.7.2 Flow Correlations . 7 3.8 Impinging Jets . 8 3.9 Packed Beds . 9 4 Internal Flow 9 4.1 Circular Tube . 9 4.1.1 Properties . 9 4.1.2 Flow Correlations . 10 4.2 Non-Circular Tubes . 12 4.2.1 Properties . 12 4.2.2 Flow Correlations . 12 4.3 Concentric Tube Annulus . 13 4.3.1 Properties . 13 4.3.2 Flow Correlations . 13 4.4 Heat Transfer Enhancement - Tube Coiling . 13 4.5 Internal Convection Mass Transfer . 14 5 Natural Convection 14 5.1 Natural Convection, Vertical Plate . 15 5.2 Natural Convection, Inclined Plate . 15 5.3 Natural Convection, Horizontal Plate . 15 5.4 Long Horizontal Cylinder . 15 5.5 Spheres . 15 5.6 Vertical Channels . 16 5.7 Inclined Channels . 16 5.8 Rectangular Cavities . 16 5.9 Concentric Cylinders . 17 5.10 Concentric Spheres . 17 1 JRB, ASR MEAM333 - Convection Correlations 1 Dimensionless Parameters Table 1: Dimensionless Parameters k α Thermal diffusivity ρcp τs Cf 2 Skin Friction Coefficient ρu1=2 α Le Lewis Number - heat transfer vs. mass transport DAB hL Nu Nusselt Number - Dimensionless Heat Transfer kf P e P e = RexP r Peclet Number ν µC P r = p Prandtl Number - momentum diffusivity vs. thermal diffusivity α k ρu x u x Re 1 = 1 Reynolds Number - Inertia vs. Viscosity µ ν ν Sc Schmidt Number momentum vs. mass transport DAB h L Sh m Sherwood Number - Dimensionless Mass Transfer DAB h Nu St = L Stanton Number - Modified Nusselt Number ρV cp ReLP r hm ShL Stm = Stanton mass Number - Modified Sherwood Number V ReLSc 2 Boundary Layer Analogies - Require Geometric Similarity Table 2: Boundary Layer Analogies Nu Sh = P rn Scn Heat and Mass Analogy Applies always for same geometry, n is positive hL hmL n = n kP r DABSc C j = f = StP r2=3 Chilton Colburn Heat H 2 0:6 < P r < 60 C j = f = St Sc2=3 Chilton Colburn Mass M 2 m 0:6 < Sc < 3000 2/17 JRB, ASR MEAM333 - Convection Correlations 3 External Flow T + T These typically use properties at the film temperature T = s 1 f 2 3.1 External Flow for a Flat Plate T + T These use properties at the film temperature T = s 1 f 2 Table 3: Flat Plate Isothermal Laminar Flow 5:0 Flat plate Boundary Layer Thickness δ = p Re < 5E5 u1=vx p Local Shear Stress τs = 0:332u1 ρµu1=x Re < 5E5 −0:5 Local Skin Friction Coefficient Cf;x = 0:664Rex Re < 1 hxx 0:5 1=3 Re < 5E5 Local Heat Transfer Nux = = 0:332Re P r k x P r ≥ 0:6 hm;xx 0:5 1=3 Re < 5E5 Local Mass Transfer Shx = = 0:332Rex Sc DAB Sc ≥ 0:6 −0:5 Average Skin Friction Coefficient Cf;x = 1:328Rex Re < 1 Isothermal h x Average Heat Transfer Nu = x = 0:664Re0:5P r1=3 Re < 5E5 x k x P r ≥ 0:6 hm;xx 0:5 1=3 Re < 5E5 Average Mass Transfer Shx = = 0:664Rex Sc DAB Sc ≥ 0:6 Liquid Metals 0:5 Nux = 2Nux Nux Nux = 0:565P e x P r ≤ 0:05 P ex ≥ 100 0:3387Re0:5P r1=3 All Prandtl Numbers Nu Nu = x x x 1=4 1 + (0:0468=P r)2=3 P ex ≥ 100 5 Table 4: Turbulent Flow Over an Isothermal Plate Rex > 5 · 10 −0:2 8 Skin Friction Coefficient Cf;x = 0:0592Rex 5E5 < Re < 10 −0:2 8 Boundary Layer Thickness δ = 0:37xRex 5E5 < Re < 10 8 0:8 1=3 5E5 < Re < 10 Heat Transfer Nux = StRexP r = 0:0296Re P r x 0:6 < P r < 60 8 0:8 1=3 5E5 < Re < 10 Mass Transfer Shx = StRexSc = 0:0296Re Sc x 0:6 < P r < 3000 3/17 JRB, ASR MEAM333 - Convection Correlations 3.2 Mixed Flow Over a plate xc If transition occurs at L ≥ 0:95 The laminar plate model may be used for h. Once the critical transition point 0:8 0:5 has been found, we define A = 0:037Rex;c − 0:664Rex;c These typically use properties at the film temperature T + T T = s 1 f 2 Table 5: Mixed Flow Over an Isothermal Plate 0:8 1=3 0:6 < P r < 60 Average Heat Transfer NuL = (0:037ReL − A)P r 5 8 5 · 10 < ReL < 10 −0:2 2A 5 8 Average Skin Friction Coefficient CfL = 0:074Re − 5 · 10 < ReL < 10 ReL 0:8 1=3 0:6 < Sc < 60 Average Mass Transfer ShL = (0:037ReL − A)Sc 5 8 5 · 10 < ReL < 10 3.3 Unheated Starting Length T + T Here the plate has T = T until x = ζ These typically use properties at the film temperature T = s 1 s 1 f 2 Table 6: Unheated Starting Length Nu j laminar Local Heat Transfer Nu = x ζ=0 x 1=3 5 [1 − (ζ=x)0:75] 0 < ReL < 5 · 10 Nu j turbulent Local Heat Transfer Nu = x ζ=0 x 1=9 5 8 1 − (ζ=x)9=10 5 · 10 < ReL < 10 p=(p+1) L h p+1 i p = 2 Laminar Flow Average Heat Transfer NuL = NuLjζ=0 1 − (ζ=L) p+2 L−ζ p = 8 Turbulent Flow 3.4 Plates with Constant Heat Flux R For average heat transfer values, it is acceptable to use the isothermal results for T = 0 L(Ts − T1)dx Table 7: Constant Heat Flux 5 0:5 1=3 0 < ReL < 5 · 10 Local Heat Transfer Laminar Nux = 0:453Re P r x P r > 0:6 5 0:8 1=3 ReL > 5 · 10 Local Heat Transfer Turbulent Nux = 0:0308Re P r x 0:6 < P r < 60 3.5 Cylinder in Cross Flow ρV D VD For the cylinder in cross flow, we use ReD = µ = ν These typically use properties at the film temperature T + T T = s 1 f 2 4/17 JRB, ASR MEAM333 - Convection Correlations Table 8: Cylinder in Cross Flow 0:7 < P r < 60 m 1=3 NuD = CReD P r C; m are found as functions of ReD on P426 0:7 < P r < 500 6 0:25 1 < ReD < 10 m n P r NuD = CReD P r All properties evaluated at P rs T1 except P rs Uses table 7.4 P428 " #4=5 0:62Re0:5P r1=3 Re 5=8 Nu = 0:3 + D 1 + d D 1=4 P r > 0:2 1 + (0:4=P r)2=3 282; 000 3.6 Flow over Spheres Table 9: Flow over Spheres 0:71 < P r < 380 4 1=4 3:5 < P r < 6:6 · 10 0:5 2=3 0 µ NuD = 2 + (0:4ReD + 0:06ReD )P r :4 1:0 < (µ/µs) < 3:2 µs All properties except µs are evaluated at T1 0:5 1=3 NuD = 2 + 0:6ReD P r For Freely Falling Drops Infinite Stationary Medium NuD = 2 Red ! 0 5/17 JRB, ASR MEAM333 - Convection Correlations 3.7 Flow Through Banks of Tubes 3.7.1 Geometric Properties Table 10: Tube Bank Properties ρV D Re = max D µ Aligned OR ST Vmax = Vi ST + D ST − D Staggered and S > D 2 ST ST + D Vmax = Vi Staggered and SD < 2(SD − D) 2 Figure 1: Tube bank geometries for aligned (a) and staggered (b) banks 6/17 JRB, ASR MEAM333 - Convection Correlations 3.7.2 Flow Correlations Table 11: Flow through banks of tubes More than 10 rows of tubes 2000 < ReD;max < 40; 000 m 1=3 NuD = 1:13C1ReD;maxP r P r > 0:7 Coefficients come from table 7.5 on P438 C2 comes from Table 7.6 on P439 2000 < ReD;max < 40; 000 NuDj(NL<10) = C2NuDj(NL≥10) P r > 0:7 Coefficients come from table 7.5 on P438 C; m comes from Table 7.7 on P440 0:25 6 m 0:36 P r 1000 < ReD;max < 2 · 10 NuD = CReD;maxP r P rs 0:7 < P r < 500 More than 20 rows For the above correlation C2 comes from Table 7.8 on P440 NuDj(NL<20) = C2NuDj(NL≥20) 2000 < ReD;max < 40; 000 P r > 0:7 Table 12: Flow through banks of tubes 2 (Ts − Ti) − (Ts − T o) Log Mean Temp. ∆Tlm = ln Ts−Ti Ts−To T − T πDNh¯ Dimensionless Temp Correlation s o = exp − Ts − Ti ρV NT ST cP N - total number of tubes, NT - total number of tubes in transverse plane 0 ¯ Heating Per Unit Length q = NhπD∆Tlm 7/17 JRB, ASR MEAM333 - Convection Correlations 3.8 Impinging Jets 00 Heat and mass transfer is measured against the fluid properties at the nozzle exit q = h(Ts − Te) The Reynolds Ac;e and Nusselt numbers are measured using the hydraulic diameter of the nozzle Dh = P The Reynolds number uses the nozzle exit velocity. All correlations use the target cell region Ar which is affected by the nozzle.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us