Argentina to China

Argentina to China

<p>Argentina to china ------log: K:\Argentian_to_China.log opened on: 25 Jul 2006, 21:51:25</p><p>After Argentina: 1-20 After Bolivia 21-40 After Brazil 41-60 After china 61-81</p><p>. 2</p><p>. *Dropping Argentina . drop if ccode==330320 (10 observations deleted)</p><p>. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t)</p><p> variable | N mean sd p50 min max ------+------rimp | 1000 490606.7 1561357 7348 0 1.39e+07 immig | 1000 33352.59 117064.7 2790 0 1137050 gdp | 1000 2.76e+11 9.70e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.7001 16.95095 102.7439 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.93e+07 1.54e+08 1.02e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1043.108 10901.71 16.2185 .0068 270182.6 remote | 1000 6703.117 4131.335 6764 1293 39620 dist | 1000 13385.54 3528.833 14305 2409 17972 open | 1000 .7133269 .3866026 .63975 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.052493 .1814267 1.017907 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------3</p><p>. sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou > ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 404267.6 1597736 2944.5 0 1.39e+07 immig | 870 14771.19 27168.46 1403.5 0 158613 gdp | 870 2.34e+11 1.00e+12 1.00e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.8278 17.31375 101.6682 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.31e+07 1.65e+08 1.03e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1182.981 11681.74 22.9426 .0068 270182.6 remote | 870 7124.075 4103.561 6927 1293 39620 dist | 870 13218.32 3418.617 14051 2410 17972 phone | 870 157.0011 242.1507 47.025 .54 1449.75 open | 870 .7215039 .4077011 .63975 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.044054 .1863521 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . 4</p><p>. **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8299.66 Log likelihood = -540.6866 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .338514 .0307509 11.01 0.000 .2782434 .3987846 lgdp | 1.168648 .0334382 34.95 0.000 1.10311 1.234186 lgdpau | .1384731 .5989043 0.23 0.817 -1.035358 1.312304 lgdpdfrati~w | -.9267992 .2451255 -3.78 0.000 -1.407236 -.446362 lpopau | -2.572674 2.066631 -1.24 0.213 -6.623197 1.477849 lpop | .0370743 .0408698 0.91 0.364 -.043029 .1171777 lxrate1 | -.1349864 .0164338 -8.21 0.000 -.167196 -.1027769 lremote | -.3984378 .0760015 -5.24 0.000 -.547398 -.2494777 ldist | -2.066601 .1571122 -13.15 0.000 -2.374535 -1.758666 lopen | .2688013 .0556107 4.83 0.000 .1598063 .3777963 english | .8035028 .129222 6.22 0.000 .5502322 1.056773 white | 4.496072 .5725474 7.85 0.000 3.3739 5.618244 lwhitemg | -.42037 .0508472 -8.27 0.000 -.5200288 -.3207113 _cons | 41.05261 19.04506 2.16 0.031 3.724989 78.38023 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000946 lgdp | -.000303 .001118 lgdpau | -.000933 .001412 .358686 lgdpdfrati~w | -.00078 .000162 -.009192 .060087 lpopau | .001874 -.008298 -1.21225 .048169 4.27096 lpop | -.000141 -.000746 .000127 .000227 -.000301 .00167 lxrate1 | .000084 .000167 .000386 .000244 -.002787 -.000091 .00027 lremote | .000504 .000098 -.000459 -.001885 -.003407 -.000293 .000059 ldist | .001669 .001008 .000565 -.001211 -.015741 -.000091 .001572 lopen | -.000182 .00063 .002507 .0008 -.016946 .000344 .000183 english | -.001162 .002811 .003001 .002368 -.011489 -.001251 .000639 white | .00458 -.001846 .003302 -.009482 -.027747 .005097 .000469 lwhitemg | -.00056 .00017 -.00029 .000889 .002922 -.000401 -.000062 _cons | -.023991 .075904 10.6784 -.596227 -38.7409 -.002348 .016431</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .005776 ldist | .005231 .024684 lopen | .001344 .001106 .003093 english | -.003291 .003063 -.000614 .016698 white | -.000592 .000319 -.000136 .001262 .327811 lwhitemg | .000139 -.000484 -.00006 .000065 -.028682 .002585 _cons | -.027672 -.070299 .175027 .059838 .298171 -.030607 362.714 5</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 63519.45 Log likelihood = -974.5601 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0532069 .0141344 3.76 0.000 .025504 .0809098 lgdp | 1.61302 .051051 31.60 0.000 1.512962 1.713078 lgdpau | .8721251 .361443 2.41 0.016 .1637097 1.58054 lgdpdfrati~w | -.4511029 .1504743 -3.00 0.003 -.7460272 -.1561786 lpopau | -6.307587 1.221196 -5.17 0.000 -8.701088 -3.914086 lpop | -.3581126 .0836639 -4.28 0.000 -.5220908 -.1941345 lxrate1 | -.122523 .0205693 -5.96 0.000 -.1628381 -.082208 lremote | -.9560443 .0975771 -9.80 0.000 -1.147292 -.7647966 ldist | -3.228652 .1593626 -20.26 0.000 -3.540997 -2.916307 lopen | -.0533902 .0270733 -1.97 0.049 -.1064529 -.0003275 english | .9857242 .0865166 11.39 0.000 .8161548 1.155294 white | 4.679344 .76076 6.15 0.000 3.188282 6.170406 lwhitemg | -.4659537 .0724452 -6.43 0.000 -.6079436 -.3239639 _cons | 94.66219 11.47936 8.25 0.000 72.16305 117.1613 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .0002 lgdp | -.000263 .002606 lgdpau | -.001251 .001792 .130641 lgdpdfrati~w | -.000606 .000527 -.012104 .022643 lpopau | .004959 -.007491 -.432172 .024398 1.49132 lpop | .000152 -.004012 -.001466 .00045 .004245 .007 lxrate1 | -.000028 .000284 -.000042 .000427 -.003258 -.000306 .000423 lremote | .000414 .000319 -.006688 -.003436 .02359 -.001071 .000054 ldist | .000604 -.001298 -.006464 -.001629 .016117 .002153 .000566 lopen | .000044 -.000102 -.000984 .000937 .003624 .000269 -.000074 english | -.000439 .000286 .003185 .002675 -.020927 .000309 .001148 white | .001112 -.012407 -.010561 -.00422 .044329 .018372 -.001128 lwhitemg | -.000094 .000629 .000431 .00023 -.002911 -.000828 .000151 _cons | -.055537 .090705 3.86221 -.080032 -13.698 -.062081 .045872</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .009521 ldist | .00463 .025396 lopen | .000645 .000244 .000733 english | -.002672 .002302 -.000405 .007485 white | .007392 -.027208 .00179 -.003047 .578756 lwhitemg | 9.2e-06 .00369 -.00013 .000507 -.053548 .005248 _cons | -.333086 -.392557 -.044881 .24836 -.262544 -.000635 131.776</p><p>. 6</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7627.17 Log likelihood = -936.7348 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0773631 .0189838 4.08 0.000 .0401555 .1145707 lgdp | 1.69107 .0684305 24.71 0.000 1.556949 1.825191 lgdpau | .3077696 .4777676 0.64 0.519 -.6286376 1.244177 lgdpdfrati~w | -.5382237 .1943257 -2.77 0.006 -.9190951 -.1573523 lpopau | -3.957813 1.655334 -2.39 0.017 -7.202208 -.7134185 lpop | -.5268908 .0807841 -6.52 0.000 -.6852248 -.3685568 lxrate1 | -.1561201 .0261984 -5.96 0.000 -.207468 -.1047721 lremote | -.4022688 .1220836 -3.30 0.001 -.6415482 -.1629894 ldist | -4.391715 .3316741 -13.24 0.000 -5.041785 -3.741646 lopen | .0345804 .0377026 0.92 0.359 -.0393155 .1084762 english | 1.335583 .1454115 9.18 0.000 1.050582 1.620584 white | 10.64587 1.886094 5.64 0.000 6.949191 14.34254 lwhitemg | -.8771812 .1879148 -4.67 0.000 -1.245487 -.508875 _cons | 77.45135 15.73515 4.92 0.000 46.61102 108.2917 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00036 lgdp | -.00057 .004683 lgdpau | -.001565 .00354 .228262 lgdpdfrati~w | -.000674 .001816 -.01682 .037762 lpopau | .004845 -.01893 -.765733 .049831 2.74013 lpop | .000412 -.004028 -.001624 -.001392 .005481 .006526 lxrate1 | -2.6e-06 .000429 -.000099 .000905 -.004782 -.000598 .000686 lremote | -.000072 -.001022 -.006534 -.001832 .022654 -.000849 .000101 ldist | .001547 .008835 -.008599 -.00195 -.014922 -.002102 .001187 lopen | .000084 -.000561 -.000552 .001645 .002677 .000858 -.000178 english | -.000741 .001641 .005764 .002015 -.04338 .003596 .00192 white | .000633 -.031652 .000576 -.001205 -.002467 .028427 .004414 lwhitemg | -.000069 .00157 -.00119 -.00033 .006259 -.001765 -.000435 _cons | -.047892 .105743 6.82462 -.406294 -25.153 -.033848 .065702</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .014904 ldist | .004936 .110008 lopen | .00057 -.000641 .001421 english | -.004853 .006126 -.001252 .021145 white | .013555 -.140031 .002375 .028165 3.55735 lwhitemg | .000748 .010382 -.000098 -.0031 -.346834 .035312 _cons | -.346075 -.794035 -.03029 .448351 1.46256 -.182559 247.595</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog 7</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2251.68 Log likelihood = -1114.211 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0970674 .0381287 2.55 0.011 .0223364 .1717984 lgdp | .9069852 .0788128 11.51 0.000 .752515 1.061455 lgdpau | -.5706697 .8845912 -0.65 0.519 -2.304437 1.163097 lgdpdfrati~w | -.2915543 .3582313 -0.81 0.416 -.9936747 .4105662 lpopau | .5302299 3.021501 0.18 0.861 -5.391803 6.452262 lpop | .048334 .0960327 0.50 0.615 -.1398866 .2365546 lxrate1 | -.1197343 .0331282 -3.61 0.000 -.1846643 -.0548043 lremote | .4065538 .2443268 1.66 0.096 -.0723179 .8854255 ldist | -1.575912 .3317722 -4.75 0.000 -2.226174 -.9256507 lopen | .3868819 .0794016 4.87 0.000 .2312577 .5425061 english | 1.75146 .2374831 7.38 0.000 1.286002 2.216919 white | 2.044587 2.24951 0.91 0.363 -2.364372 6.453545 lwhitemg | .1556904 .1973381 0.79 0.430 -.2310851 .5424659 _cons | -.9757449 28.58945 -0.03 0.973 -57.01005 55.05856 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001454 lgdp | -.001366 .006211 lgdpau | -.001922 .000713 .782502 lgdpdfrati~w | -.000366 .001439 -.019034 .12833 lpopau | .003209 -.007137 -2.61503 .051932 9.12947 lpop | .00037 -.00545 .000174 -.001111 -.00018 .009222 lxrate1 | .00011 .00086 .000291 .002363 -.007335 -.001169 .001097 lremote | .001345 .001146 -.031226 -.016923 .099268 .000923 -.000966 ldist | .003838 -.006394 -.020747 -.007878 .063138 .010709 -.000312 lopen | .000253 -.001172 .004258 .003137 -.023133 .003083 -.000203 english | -.003188 .000522 .009449 .007002 -.020471 -.001601 .001621 white | .002914 -.022535 .091077 .003124 -.360429 .017507 .000499 lwhitemg | -.000407 .000748 -.009608 -.001698 .039682 7.1e-06 -.000188 _cons | -.032027 .101285 23.3323 -.28772 -84.2508 -.131856 .117796</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .059696 ldist | .022814 .110073 lopen | .002122 -.000909 .006305 english | -.015052 .013877 -.002297 .056398 white | .043371 -.03116 .007116 .036936 5.0603 lwhitemg | -.000958 .006655 -.0004 -.002505 -.432887 .038942 _cons | -1.5906 -1.79583 .240797 .092209 3.7102 -.475057 817.357</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression 8</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 49747.28 Log likelihood = -904.7707 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0247763 .0136404 1.82 0.069 -.0019583 .051511 lgdp | 1.524983 .0553389 27.56 0.000 1.416521 1.633446 lgdpau | .6807611 .3590922 1.90 0.058 -.0230466 1.384569 lgdpdfrati~w | -.248376 .138675 -1.79 0.073 -.520174 .0234219 lpopau | -6.674125 1.217093 -5.48 0.000 -9.059583 -4.288667 lpop | -.11781 .0947004 -1.24 0.213 -.3034194 .0677993 lxrate1 | -.0448301 .0190099 -2.36 0.018 -.0820889 -.0075713 lremote | -.6297863 .1502675 -4.19 0.000 -.9243052 -.3352675 ldist | -2.385144 .1746081 -13.66 0.000 -2.72737 -2.042919 lopen | -.0428036 .0272664 -1.57 0.116 -.0962448 .0106376 english | 1.20701 .1133638 10.65 0.000 .9848211 1.429199 white | 3.810157 .8823719 4.32 0.000 2.08074 5.539574 lwhitemg | -.2786357 .0810255 -3.44 0.001 -.4374427 -.1198287 _cons | 92.61579 11.52454 8.04 0.000 70.0281 115.2035 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000186 lgdp | -.000201 .003062 lgdpau | -.000884 .00206 .128947 lgdpdfrati~w | -.000352 .000709 -.007476 .019231 lpopau | .003174 -.006947 -.42794 .011419 1.48132 lpop | .000124 -.004943 -.001814 .000032 .003245 .008968 lxrate1 | 8.1e-07 .000205 6.6e-06 .000498 -.002892 -.000211 .000361 lremote | -4.7e-06 -.000821 -.01329 -.005093 .049279 -.000016 -.000288 ldist | .000845 -.006011 -.00416 .001447 .001765 .010879 .000738 lopen | .000019 -.000116 -.000962 .000847 .003493 .0003 -.000069 english | -.000314 -.000535 .003684 .003001 -.020287 .000811 .001043 white | .000555 -.017458 -.015772 -.001284 .024794 .030536 .002177 lwhitemg | -.000091 .000812 .000041 -.000381 .002602 -.001617 -.000238 _cons | -.0354 .134679 3.86566 .002821 -13.7091 -.140034 .040166</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .02258 ldist | -.003324 .030488 lopen | .001117 .000313 .000743 english | -.004897 .007714 -.00045 .012851 white | .015372 .03697 .00117 .009136 .77858 lwhitemg | .001024 -.002342 4.2e-06 -.000664 -.068247 .006565 _cons | -.610479 -.228561 -.048108 .20046 -.583856 -.022194 132.815</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) 9</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8770.44 Log likelihood = -968.9937 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2146451 .0310052 6.92 0.000 .153876 .2754141 lgdp | 1.612228 .0717951 22.46 0.000 1.471512 1.752943 lgdpau | -.0896754 .6154667 -0.15 0.884 -1.295968 1.116617 lgdpdfrati~w | -.1463901 .2592893 -0.56 0.572 -.6545878 .3618076 lpopau | -1.533464 2.15483 -0.71 0.477 -5.756852 2.689925 lpop | -.5235453 .0813233 -6.44 0.000 -.682936 -.3641546 lxrate1 | -.1282733 .0282722 -4.54 0.000 -.1836857 -.0728608 lremote | -.3446117 .1203695 -2.86 0.004 -.5805315 -.1086919 ldist | -3.16112 .3320202 -9.52 0.000 -3.811867 -2.510372 lopen | .1164332 .0492957 2.36 0.018 .0198154 .213051 english | .9256633 .1411117 6.56 0.000 .6490895 1.202237 white | 10.26602 1.845337 5.56 0.000 6.649228 13.88282 lwhitemg | -.9020659 .1840195 -4.90 0.000 -1.262737 -.5413944 _cons | 36.06817 20.44121 1.76 0.078 -3.995864 76.1322 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000961 lgdp | -.001428 .005155 lgdpau | -.001845 .00381 .378799 lgdpdfrati~w | -.001196 .002655 -.024475 .067231 lpopau | .004688 -.017983 -1.28894 .095636 4.64329 lpop | .000856 -.00436 -.001793 -.0017 .007565 .006613 lxrate1 | .00008 .000318 .000013 .001149 -.00525 -.000599 .000799 lremote | .000024 -.000724 -.003982 -.000813 .00779 -.001159 .00022 ldist | .004325 .001852 -.010437 -.002808 -.014716 .000598 .001487 lopen | .000139 -.000752 .001454 .001563 -.007163 .0014 -.000247 english | -.001611 .003376 .003393 .004466 -.022093 .000589 .002008 white | .000603 -.027274 .01181 .001784 -.004941 .021291 .00483 lwhitemg | -.000019 .001556 -.002037 -.000586 .00455 -.00139 -.000445 _cons | -.055618 .143792 11.5589 -1.0115 -42.9943 -.080545 .067955</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .014489 ldist | .008321 .110237 lopen | .000365 -.000958 .00243 english | -.004864 -.001932 -.001618 .019913 white | .011435 -.153387 .003553 .019326 3.40527 lwhitemg | .000791 .013711 -.000238 -.002374 -.333529 .033863 _cons | -.198283 -.68061 .081981 .243729 1.37177 -.169869 417.843</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 10</p><p>Wald chi2(13) = 8492.21 Log likelihood = -1112.538 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0162451 .0154015 1.05 0.292 -.0139413 .0464314 lgdp | 1.382452 .0514318 26.88 0.000 1.281647 1.483256 lgdpau | .6014429 .5141061 1.17 0.242 -.4061866 1.609072 lgdpdfrati~w | .0109744 .1695993 0.06 0.948 -.321434 .3433829 lpopau | -5.653197 1.747016 -3.24 0.001 -9.077285 -2.229109 lpop | .0506689 .0720608 0.70 0.482 -.0905676 .1919054 lxrate1 | -.0603234 .0202273 -2.98 0.003 -.0999682 -.0206785 lremote | -1.056879 .1633455 -6.47 0.000 -1.377031 -.7367281 ldist | -3.433123 .2099507 -16.35 0.000 -3.844619 -3.021627 lopen | .0833814 .0426805 1.95 0.051 -.0002708 .1670336 english | 2.450852 .1368374 17.91 0.000 2.182656 2.719048 white | 3.798655 1.143881 3.32 0.001 1.556688 6.040621 lwhitemg | -.1953167 .0957082 -2.04 0.041 -.3829013 -.0077321 _cons | 90.85325 16.65969 5.45 0.000 58.20086 123.5056 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000237 lgdp | -.000389 .002645 lgdpau | -.000096 -.00022 .264305 lgdpdfrati~w | -.000509 .000629 .001925 .028764 lpopau | -.001336 .001955 -.877858 -.004789 3.05206 lpop | .000194 -.002876 -.000227 .00006 -.0017 .005193 lxrate1 | -.000019 .000236 .000325 .000641 -.002452 -.000425 .000409 lremote | .000256 .001103 -.017675 -.00197 .054139 -.001186 -.000183 ldist | .000612 .000828 -.011281 -.001839 .024238 -.000019 .000271 lopen | .000074 -.000356 -.000302 .002021 .001397 .000752 -.000128 english | -.000746 .000329 .002398 .001759 -.009265 .001753 .001055 white | .000364 -.014108 -.002971 -.001611 .005877 .024266 -.000311 lwhitemg | -5.6e-06 .000726 -.000898 .000199 .002929 -.001572 .000089</p><p>_cons | .022173 -.057042 7.89726 .019769 -28.3182 .026523 .030041</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .026682 ldist | .01737 .044079 lopen | .000916 .000121 .001822 english | -.004044 .002509 -.001384 .018724 white | .002832 -.00823 .000923 .032668 1.30846 lwhitemg | .001311 .002585 2.1e-06 -.002835 -.105911 .00916 _cons | -.838427 -.701935 -.028979 .059036 -.047804 -.052536 277.545</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1176.29 Log likelihood = -569.4546 Prob > chi2 = 0.0000 11</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1846138 .0230724 8.00 0.000 .1393927 .2298348 lgdp | -.1120138 .0273215 -4.10 0.000 -.1655629 -.0584647 lgdpau | .4792267 .1337772 3.58 0.000 .2170282 .7414252 lgdpdfrati~w | -.0821706 .0494154 -1.66 0.096 -.1790231 .0146819 lpopau | -2.380507 .5334076 -4.46 0.000 -3.425967 -1.335047 lpop | .6013053 .0661679 9.09 0.000 .4716186 .730992 lxrate1 | -.0076798 .008685 -0.88 0.377 -.024702 .0093424 lremote | .0063762 .0688453 0.09 0.926 -.128558 .1413105 ldist | -1.988487 .3728848 -5.33 0.000 -2.719327 -1.257646 lopen | .0668596 .0076416 8.75 0.000 .0518823 .081837 english | .9848173 .2096714 4.70 0.000 .5738689 1.395766 white | 11.67829 .6515851 17.92 0.000 10.4012 12.95537 lwhitemg | -1.000845 .0646473 -15.48 0.000 -1.127552 -.8741386 _cons | 44.27108 6.184305 7.16 0.000 32.15007 56.3921 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000532 lgdp | .000129 .000746</p><p> lgdpau | .001085 -.000438 .017896 lgdpdfrati~w | -.000365 -.000543 -.000488 .002442 lpopau | -.006046 .002774 -.065526 .000682 .284524 lpop | -.00033 -.000636 -.000434 .000478 -.006516 .004378 lxrate1 | -9.6e-06 -.000035 .000139 .000188 -.000973 -6.4e-06 .000075 lremote | .00046 .000768 -.002706 -.001163 .009152 -.001112 -.000065 ldist | .001263 .000148 .000537 -.000496 -.036603 .010483 .000105 lopen | .000104 -.000035 .00016 -.000107 -.001134 -1.7e-06 -.000024 english | -.00079 .000271 -.001759 .000693 -.006838 .005089 .000149 white | .000792 -.000725 .001943 .000844 -.042378 .009867 .000569 lwhitemg | -.000251 -.00008 -.000646 .000105 .005534 -.000776 -.00004 _cons | .05541 -.050737 .647301 .020746 -2.65141 -.024759 .012581</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .00474 ldist | .001744 .139043 lopen | .000044 .000196 .000058 english | -.001355 .015595 -.000295 .043962 white | .000129 -.067357 8.2e-06 .041742 .424563 lwhitemg | -9.9e-06 .006936 -.000033 -.001921 -.040066 .004179 _cons | -.140425 -.926662 .012941 -.085104 1.11328 -.124003 38.2456</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 4381.88 Log likelihood = -593.8769 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------12</p><p> limmig | .0972493 .022489 4.32 0.000 .0531716 .1413269 lgdp | .1644259 .0401597 4.09 0.000 .0857143 .2431375 lgdpau | -.0669899 .0390466 -1.72 0.086 -.1435198 .0095399 lgdpdfrati~w | -.0947424 .0266873 -3.55 0.000 -.1470485 -.0424363 lpopau | 2.361342 .1777164 13.29 0.000 2.013025 2.70966 lpop | .8383358 .0982928 8.53 0.000 .6456854 1.030986 lxrate1 | -.0101346 .0051911 -1.95 0.051 -.020309 .0000398 lremote | .1188065 .0219481 5.41 0.000 .075789 .1618239 ldist | -3.204647 .3363132 -9.53 0.000 -3.863809 -2.545485 lopen | .0142535 .0206075 0.69 0.489 -.0261365 .0546436 english | 1.187138 .2873131 4.13 0.000 .6240146 1.750261 white | 23.86449 2.986887 7.99 0.000 18.0103 29.71868 lwhitemg | -2.185924 .2760863 -7.92 0.000 -2.727043 -1.644804 _cons | -19.58185 4.525773 -4.33 0.000 -28.45221 -10.7115 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000506 lgdp | -.000188 .001613 lgdpau | -.000369 -.000424 .001525 lgdpdfrati~w | .000167 -.000638 .000332 .000712 lpopau | .00268 .000905 -.005608 .000138 .031583 lpop | -.000281 -.001435 .001094 .000317 -.002955 .009661 lxrate1 | .000016 .00005 -.000033 .000015 .000345 -.00015 .000027 lremote | -.00015 .000684 -.0003 -.000464 .000168 -.000438 .000013 ldist | .001788 .000046 -.001587 .000077 .013655 -.002019 4.7e-07 lopen | -.000232 -.000181 .000211 -.000165 -.002267 .000749 -.000078 english | -.000567 -.000694 .000646 .000336 -.007203 -.000731 .000011 white | .000986 -.003582 .001573 .001299 -.004475 .026564 -.000297 lwhitemg | -.00026 .000042 .000041 -.000027 -.00144 -.00303 .000024 _cons | -.044921 -.023074 .065163 -.00008 -.494989 -.074806 -.004011</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .000482 ldist | -1.7e-06 .113107 lopen | .000062 -.000593 .000425 english | -.00039 .058627 .000133 .082549 white | -.001575 .014278 .000924 .040247 8.92149 lwhitemg | .000035 -.003245 -3.7e-07 -.002622 -.812552 .076224 _cons | -.006319 -1.25032 .03166 -.445454 -.458776 .102881 20.4826</p><p>. . . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 497.85 Log likelihood = -552.5183 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .511787 .0503265 10.17 0.000 .4131489 .6104251 lgdp | -.0082559 .0820274 -0.10 0.920 -.1690267 .1525149 lgdpau | 2.047825 .7888814 2.60 0.009 .5016457 3.594004 lgdpdfrati~w | -.587426 .2806609 -2.09 0.036 -1.137511 -.0373406 13</p><p> lpopau | -9.815061 2.709088 -3.62 0.000 -15.12478 -4.505346 lpop | .3459539 .1014968 3.41 0.001 .1470239 .5448839 lxrate1 | -.0964723 .0261672 -3.69 0.000 -.147759 -.0451855 lremote | -.1342027 .2622122 -0.51 0.609 -.6481292 .3797238 ldist | -1.630433 .3251368 -5.01 0.000 -2.26769 -.9931767 lopen | .0609694 .0534703 1.14 0.254 -.0438305 .1657693 english | .0732928 .2324622 0.32 0.753 -.3823247 .5289103 white | 9.418267 1.110492 8.48 0.000 7.241742 11.59479 lwhitemg | -.8488783 .0979154 -8.67 0.000 -1.040789 -.6569676 _cons | 123.4599 25.74104 4.80 0.000 73.00844 173.9115 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002533 lgdp | -.001528 .006729 lgdpau | .000544 -.000829 .622334 lgdpdfrati~w | -.0013 .001358 -.018037 .078771 lpopau | -.006264 -.003855 -2.07723 .068581 7.33916 lpop | -.000283 -.004855 -.000427 -.000609 -.000786 .010302 lxrate1 | .000153 -.000217 .000522 .001003 -.004709 -.000365 .000685 lremote | .001725 .00523 -.024104 -.013196 .067893 -.003603 .000101 ldist | .005124 .001464 -.010137 -.004074 -.00892 .003999 .000652 lopen | -.000244 .00066 .000467 -.000244 -.00993 .000574 6.2e-06 english | -.00215 .001317 .005359 .005452 -.025872 .000361 .001175 white | .013151 -.028987 .018425 -.003845 -.088859 .033825 .006175 lwhitemg | -.001324 .001448 -.003051 -.000384 .01514 -.001923 -.000502 _cons | .048323 -.038372 18.4732 -.609184 -67.6956 -.035098 .063673</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .068755 ldist | .032787 .105714 lopen | .000996 .001962 .002859 english | -.013342 .018711 .000178 .054039 white | .010821 1.5e-06 -.00157 .028103 1.23319 lwhitemg | .00118 .000237 .000072 -.001663 -.104038 .009587 _cons | -1.45801 -1.00455 .10492 .17444 .856045 -.171545 662.601</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1383.98 Log likelihood = -316.3832 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0398224 .0175509 2.27 0.023 .0054232 .0742215 lgdp | .1840792 .0538204 3.42 0.001 .0785932 .2895652 lgdpau | -.2209656 .2750134 -0.80 0.422 -.759982 .3180508 lgdpdfrati~w | -.3738215 .1892098 -1.98 0.048 -.744666 -.002977 lpopau | 2.372464 .9838943 2.41 0.016 .4440669 4.300862 lpop | .1342727 .0675905 1.99 0.047 .0017976 .2667477 lxrate1 | -.0746543 .0176963 -4.22 0.000 -.1093384 -.0399701 lremote | -.1452021 .1011605 -1.44 0.151 -.3434731 .0530688 ldist | -1.390984 .2130651 -6.53 0.000 -1.808584 -.9733838 lopen | .0070515 .0234153 0.30 0.763 -.0388416 .0529446 english | 1.976966 .2086705 9.47 0.000 1.56798 2.385953 14</p><p> white | 9.986312 1.756516 5.69 0.000 6.543604 13.42902 lwhitemg | -.745627 .1807838 -4.12 0.000 -1.099957 -.3912972 _cons | -23.87571 10.07776 -2.37 0.018 -43.62775 -4.123668 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000308 lgdp | -.000331 .002897 lgdpau | .00026 -.001545 .075632 lgdpdfrati~w | -.000563 -.000158 -.001237 .0358 lpopau | -.001083 .006222 -.259624 .021011 .968048 lpop | .000118 -.002715 .001005 .000787 -.007224 .004568 lxrate1 | -.000017 .000148 .001108 .000728 -.005185 -.000133 .000313 lremote | .000151 .000852 -.005848 -.002964 .020904 -.000505 -.000296 ldist | .000856 .000728 -.001709 -.001582 -.001366 .002431 -.000296 lopen | .00002 -.000256 -.000174 .001031 -.00048 .000306 -9.0e-06 english | -.000207 -.002602 .003605 .003435 -.012626 .00448 .000278 white | .001672 -.022047 .014928 .002906 -.072596 .023812 .001103 lwhitemg | -.000172 .001297 -.00117 1.8e-06 .005359 -.001632 -.000081 _cons | .00628 -.096674 2.40369 -.323117 -9.44227 .063029 .059363</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .010233 ldist | .000952 .045397 lopen | -.00016 -.000108 .000548 english | -.003384 .015753 -.000018 .043543 white | .008161 -.027619 .00128 .066684 3.08535 lwhitemg | -.000346 .001498 -.000062 -.006242 -.313248 .032683 _cons | -.298712 -.429198 .015077 -.026269 1.09395 -.071059 101.561</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 825.43 Log likelihood = -842.224 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1345911 .0645674 2.08 0.037 .0080413 .2611408 lgdp | .4692669 .116048 4.04 0.000 .2418169 .6967169 lgdpau | -2.105175 1.093709 -1.92 0.054 -4.248805 .0384562 lgdpdfrati~w | -.9305827 .4385169 -2.12 0.034 -1.79006 -.0711054 lpopau | 4.30252 3.745178 1.15 0.251 -3.037895 11.64293 lpop | .2510543 .1270483 1.98 0.048 .0020442 .5000643 lxrate1 | -.1334429 .040498 -3.30 0.001 -.2128175 -.0540684 lremote | 1.450071 .310872 4.66 0.000 .840773 2.059369 ldist | -1.716694 .4948899 -3.47 0.001 -2.686661 -.7467281 lopen | .0203839 .0778175 0.26 0.793 -.1321356 .1729035 english | .468886 .2832642 1.66 0.098 -.0863016 1.024074 white | 11.21101 1.493082 7.51 0.000 8.284621 14.13739 lwhitemg | -.8586002 .1422561 -6.04 0.000 -1.137417 -.5797834 _cons | -23.36563 35.37632 -0.66 0.509 -92.70196 45.97069 ------</p><p>. vce 15</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004169 lgdp | -.003951 .013467 lgdpau | -.002848 .002241 1.1962 lgdpdfrati~w | -.002218 .002213 .005315 .192297 lpopau | .005436 -.016297 -3.99302 .029084 14.0264 lpop | .001275 -.01118 -.000326 -.001138 .004602 .016141 lxrate1 | 2.2e-06 .001152 .001619 .002022 -.011961 -.001201 .00164 lremote | .002615 .003522 -.045727 -.028262 .12367 -.001628 -.000521 ldist | .012395 -.00858 -.013791 -.012232 .004171 .014096 -.00261 lopen | .000195 -.00135 .007246 .001621 -.03593 .002472 -.000223 english | -.006453 .005966 .016795 .007733 -.057742 -.005338 .000593 white | .023915 -.061869 -.020085 -.022782 -.004402 .056561 .007768 lwhitemg | -.002806 .003691 -.001176 .000182 .014468 -.002929 -.000937 _cons | -.10608 .152212 35.3476 -.484758 -128.858 -.191591 .170373</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .096641 ldist | .027064 .244916 lopen | .000771 .003725 .006056 english | -.020283 .022725 .000943 .080239 white | .077374 .121311 .00592 .06488 2.22929 lwhitemg | -.002247 -.016522 -.000299 -.00719 -.201826 .020237 _cons | -1.98678 -2.34931 .35761 .428573 -.917148 -.048182 1251.48</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 544.66 Log likelihood = -88.70038 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .039675 .0318828 1.24 0.213 -.0228142 .1021642 lgdp | .1624306 .061158 2.66 0.008 .0425631 .2822982 lgdpau | .4037818 .4192476 0.96 0.335 -.4179285 1.225492 lgdpdfrati~w | .2944551 .1811843 1.63 0.104 -.0606596 .6495698 lpopau | 2.103155 1.479407 1.42 0.155 -.7964303 5.00274 lpop | .2852261 .0800574 3.56 0.000 .1283165 .4421358 lxrate1 | -.0261835 .0167028 -1.57 0.117 -.0589204 .0065534 lremote | .0201974 .1367297 0.15 0.883 -.247788 .2881827 ldist | -2.247343 .446629 -5.03 0.000 -3.12272 -1.371966 lopen | .0390521 .0357491 1.09 0.275 -.0310148 .1091189 english | .8614665 .193968 4.44 0.000 .4812962 1.241637 white | 15.44603 1.241377 12.44 0.000 13.01298 17.87909 lwhitemg | -1.299636 .117273 -11.08 0.000 -1.529486 -1.069785 _cons | -32.25415 15.22946 -2.12 0.034 -62.10333 -2.404967 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001017 lgdp | -.000683 .00374 lgdpau | -.000592 -.000191 .175769 lgdpdfrati~w | -.000762 .000961 -.000689 .032828 lpopau | .001336 .001628 -.592028 .013729 2.18865 16</p><p> lpop | -.000237 -.00262 .0006 .000453 -.005984 .006409 lxrate1 | .000056 .000093 .000237 .000563 -.002972 -.000117 .000279 lremote | .000981 .002139 -.008717 -.003237 .029782 -.001626 6.3e-06 ldist | .002891 -.004361 -.010342 -.007348 .00037 .009873 -6.0e-06 lopen | -.000028 -.000089 .000425 .00027 -.004738 .000506 -.000038 english | -.001732 -.000917 .003608 .002699 -.014711 .005097 .000112 white | .004406 -.018441 .035947 -.003551 -.288233 .026494 .003414 lwhitemg | -.000566 .00102 -.003757 .000144 .029496 -.002011 -.000375 _cons | -.028375 -.03859 5.38144 -.171866 -20.9917 -.03824 .041185</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .018695 ldist | .017574 .199477 lopen | 1.3e-06 .000408 .001278 english | -.005545 .006771 .000183 .037624 white | -.008255 -.004924 -8.8e-06 .050278 1.54102 lwhitemg | .001 .000859 .000042 -.004095 -.141977 .013753 _cons | -.6181 -1.86315 .058353 .069423 3.90538 -.393972 231.936</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 235.17 Log likelihood = 180.9602 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0151204 .0186459 0.81 0.417 -.0214249 .0516656 lgdp | .3209387 .0483423 6.64 0.000 .2261895 .4156879 lgdpau | -.173805 .3485854 -0.50 0.618 -.8570198 .5094098 lgdpdfrati~w | -.0114794 .1398854 -0.08 0.935 -.2856497 .2626909 lpopau | 3.579083 1.261434 2.84 0.005 1.106717 6.051448 lpop | -.1348569 .0563596 -2.39 0.017 -.2453197 -.0243941 lxrate1 | -.0825497 .0153516 -5.38 0.000 -.1126383 -.052461 lremote | .2655511 .1278111 2.08 0.038 .0150459 .5160563 ldist | -1.047237 .2387727 -4.39 0.000 -1.515223 -.5792507 lopen | .0608183 .0274479 2.22 0.027 .0070214 .1146152 english | .2189757 .1235605 1.77 0.076 -.0231983 .4611498 white | 9.352014 1.980881 4.72 0.000 5.469559 13.23447 lwhitemg | -.8174043 .1863908 -4.39 0.000 -1.182724 -.4520852 _cons | -51.47672 13.04809 -3.95 0.000 -77.0505 -25.90294 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000348 lgdp | -.000331 .002337 lgdpau | .000337 -.000318 .121512 lgdpdfrati~w | -.000431 .000647 -.006262 .019568 lpopau | -.002974 .00558 -.416363 .026883 1.59122 lpop | .00006 -.001803 -.000425 -.000058 -.001047 .003176 lxrate1 | .00001 .000013 .000463 .00043 -.004506 -.000137 .000236 lremote | .00019 .001313 -.006435 -.001189 .024262 -.00116 -.000087 ldist | .001219 -.001102 -.001036 -.001298 -.011989 .003693 -.000111 lopen | -6.4e-06 -.000117 -.000264 .000332 .000584 .000351 -.000034 english | -.000623 .000095 -.000097 .000476 .011175 .001174 -.000031 white | .002172 -.013085 .01569 -.005896 -.143545 .010012 .001719 17</p><p> lwhitemg | -.000273 .00067 -.001984 .000453 .014427 -.000701 -.00013 _cons | .032691 -.107107 3.8018 -.292057 -15.6775 -.006372 .064771</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016336 ldist | .004514 .057012 lopen | -.000021 -.000463 .000753 english | -.001213 .002488 .000319 .015267 white | .001463 -.002495 .000141 .014075 3.92389 lwhitemg | .000657 -.000745 6.7e-06 -.001311 -.362451 .034742 _cons | -.429225 -.394147 -.0007 -.217295 2.09417 -.188318 170.253</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 458.26 Log likelihood = -677.9144 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1735456 .0535736 3.24 0.001 .0685432 .278548 lgdp | .705941 .1074582 6.57 0.000 .4953268 .9165552 lgdpau | -.6265281 .6844125 -0.92 0.360 -1.967952 .7148957 lgdpdfrati~w | -.2598566 .2846807 -0.91 0.361 -.8178206 .2981073 lpopau | 3.773803 2.359868 1.60 0.110 -.8514533 8.399059 lpop | -.2971846 .1486523 -2.00 0.046 -.5885378 -.0058314 lxrate1 | -.1323262 .0318702 -4.15 0.000 -.1947906 -.0698618 lremote | .035029 .2406657 0.15 0.884 -.4366671 .5067251 ldist | -3.299867 .6875681 -4.80 0.000 -4.647476 -1.952258 lopen | .0601088 .0676139 0.89 0.374 -.072412 .1926296 english | -.3283619 .4359132 -0.75 0.451 -1.182736 .5260123 white | 21.44721 4.1654 5.15 0.000 13.28318 29.61124 lwhitemg | -1.907003 .3839546 -4.97 0.000 -2.65954 -1.154466 _cons | -23.57195 23.21185 -1.02 0.310 -69.06633 21.92244 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00287 lgdp | -.002403 .011547 lgdpau | .001238 -.001788 .46842 lgdpdfrati~w | -.0019 .003183 -.011504 .081043 lpopau | -.008539 -.000467 -1.55995 .065084 5.56898 lpop | -.00004 -.008269 -.001421 -.001622 -.006036 .022098 lxrate1 | .000129 .000436 .002141 .001304 -.011 -.000792 .001016 lremote | .001021 .005356 -.021373 -.012872 .041602 -.003196 .000344 ldist | .011118 .013276 -.005743 -.004538 -.059221 .003194 .000345 lopen | .000433 -.001144 -.000614 .000157 -.012222 .002018 -.000159 english | -.006571 .002493 .002796 .006187 -.021466 .017395 .000863 white | .00725 -.038224 .126626 .012294 -.40143 .077274 .005987 lwhitemg | -.001282 .001623 -.01322 -.002429 .044693 -.005872 -.00064 _cons | .037919 -.241343 13.8894 -.747251 -51.1578 -.026539 .116621</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .05792 ldist | .032778 .47275 18</p><p> lopen | .000523 .002993 .004572 english | -.005751 .128073 -.00147 .19002 white | .027064 .247443 .004365 .308785 17.3506 lwhitemg | -.000111 -.038604 -.000259 -.032776 -1.57274 .147421 _cons | -1.01263 -4.08456 .181546 -1.23879 .2129 .049785 538.79</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1132.68 Log likelihood = -571.577 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1920115 .0461401 4.16 0.000 .1015785 .2824445 lgdp | .5938788 .1027903 5.78 0.000 .3924135 .795344 lgdpau | .8041999 .6520733 1.23 0.217 -.4738403 2.08224 lgdpdfrati~w | .0008576 .2829278 0.00 0.998 -.5536707 .5553858 lpopau | -3.537551 2.257374 -1.57 0.117 -7.961922 .8868202 lpop | .5101734 .1306041 3.91 0.000 .254194 .7661528 lxrate1 | -.0858654 .0299192 -2.87 0.004 -.1445059 -.0272249 lremote | -.2492362 .2355304 -1.06 0.290 -.7108673 .2123948 ldist | -2.322274 .441103 -5.26 0.000 -3.18682 -1.457728 lopen | -.0627382 .0698884 -0.90 0.369 -.199717 .0742406 english | 1.192898 .3275796 3.64 0.000 .5508542 1.834943 white | 23.86623 3.127337 7.63 0.000 17.73676 29.99569 lwhitemg | -2.276009 .2774887 -8.20 0.000 -2.819877 -1.732141 _cons | 43.40252 21.71512 2.00 0.046 .8416751 85.96337 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002129 lgdp | -.001864 .010566 lgdpau | -.002276 .005607 .4252 lgdpdfrati~w | -.001929 .003408 -.013183 .080048 lpopau | .00673 -.037593 -1.42332 .044078 5.09574 lpop | .000338 -.00896 -.004031 -.002857 .019602 .017057 lxrate1 | .000054 .00067 .000537 .001421 -.006231 -.000858 .000895 lremote | .000556 .004295 -.014568 -.018229 .030033 -.003058 .000335 ldist | .007518 -.003443 -.009723 -.003166 .000834 .016603 .000254 lopen | .00021 -.000033 .000524 .002438 -.012036 .001223 -.000044 english | -.003403 .001936 .005928 .006769 -.024576 -.000552 .000715 white | .006242 -.036875 .02183 -.014939 -.03072 .06086 .003959 lwhitemg | -.000899 .001245 -.003603 -.000296 .012871 -.004111 -.000418 _cons | -.100383 .38085 12.6357 -.300238 -47.0059 -.415753 .077904</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .055475 ldist | .007104 .194572 lopen | .001177 .001667 .004884 english | -.010414 .058156 -.001422 .107308 white | .025663 .047367 .004428 .010148 9.78023 lwhitemg | .000326 -.008098 -.000482 .000738 -.852255 .077 _cons | -.700622 -1.90383 .140805 -.264362 -.928547 -.001073 471.546 19</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1645.55 Log likelihood = -750.0744 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0638416 .0314262 2.03 0.042 .0022474 .1254358 lgdp | .9924335 .0955229 10.39 0.000 .8052121 1.179655 lgdpau | .9332851 .6752196 1.38 0.167 -.3901209 2.256691 lgdpdfrati~w | -.0764988 .2622384 -0.29 0.771 -.5904766 .4374791 lpopau | 3.257037 2.360896 1.38 0.168 -1.370235 7.884308 lpop | -.4670377 .137272 -3.40 0.001 -.7360858 -.1979895 lxrate1 | -.1368609 .0231409 -5.91 0.000 -.1822162 -.0915056 lremote | -.474844 .1922184 -2.47 0.013 -.8515851 -.098103 ldist | -1.905602 .7226692 -2.64 0.008 -3.322008 -.4891964 lopen | -.0211241 .0694803 -0.30 0.761 -.1573029 .1150548 english | .1655184 .3376879 0.49 0.624 -.4963378 .8273746 white | 28.82227 2.638941 10.92 0.000 23.65004 33.9945 lwhitemg | -2.67603 .2558904 -10.46 0.000 -3.177566 -2.174494 _cons | -68.63984 23.88449 -2.87 0.004 -115.4526 -21.8271 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000988 lgdp | -.001697 .009125 lgdpau | .000039 -.000011 .455921 lgdpdfrati~w | -.001622 .003132 -.013598 .068769 lpopau | -.006847 -.003417 -1.52484 .04704 5.57383 lpop | .001587 -.010855 -.00319 -.003068 .024025 .018844 lxrate1 | .000063 .000207 .000753 .000919 -.010369 -.000624 .000535 lremote | .001013 .004829 -.019202 -.004009 .027679 -.003555 .00016 ldist | .005697 .013233 -.024042 -.001448 -.05109 .008581 .001499 lopen | .000273 -.00078 -.000872 .004734 -.00577 .000959 -.000219 english | -.000894 .001907 .003023 .00374 -.016135 .000689 .001103 white | .016277 -.058623 .032855 -.019931 -.418511 .06724 .010332 lwhitemg | -.001465 .004025 -.004429 .001436 .046007 -.004867 -.000981 _cons | .059259 -.141413 13.7914 -.46003 -52.5096 -.419651 .138053</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .036948 ldist | .061485 .522251 lopen | .000754 .001868 .004828 english | .000091 .070297 -.00089 .114033 white | .026775 .097587 -.005124 .224883 6.96401 lwhitemg | -.001833 -.016551 .00071 -.024773 -.665272 .06548 _cons | -.919417 -4.52685 .094788 -.552466 5.05259 -.475731 570.469</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic 20</p><p>Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 508.27 Log likelihood = -579.107 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4076176 .0587569 6.94 0.000 .2924562 .522779 lgdp | .2678914 .0990281 2.71 0.007 .0737999 .4619829 lgdpau | 1.14394 .7455715 1.53 0.125 -.3173531 2.605233 lgdpdfrati~w | -.5557374 .317146 -1.75 0.080 -1.177332 .0658574 lpopau | -4.813697 2.575597 -1.87 0.062 -9.861775 .2343818 lpop | .3271842 .104812 3.12 0.002 .1217565 .5326119 lxrate1 | -.077144 .0347013 -2.22 0.026 -.1451574 -.0091307 lremote | .0145153 .2298887 0.06 0.950 -.4360582 .4650888 ldist | -1.24992 .5802791 -2.15 0.031 -2.387246 -.1125941 lopen | .0940633 .0722913 1.30 0.193 -.0476251 .2357516 english | -.0567149 .2834604 -0.20 0.841 -.6122871 .4988572 white | 19.4662 2.069661 9.41 0.000 15.40974 23.52266 lwhitemg | -1.837652 .1960193 -9.37 0.000 -2.221843 -1.453461 _cons | 53.19728 24.36479 2.18 0.029 5.443169 100.9514 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003452 lgdp | -.003149 .009807 lgdpau | -.002355 .006458 .555877 lgdpdfrati~w | -.002566 .005831 -.009845 .100582 lpopau | .005229 -.035546 -1.85926 .050496 6.6337 lpop | .00103 -.006236 -.004103 -.00392 .011153 .010986 lxrate1 | .000336 .000468 -.000228 .000864 -.004036 -.00064 .001204 lremote | .000262 .003476 -.008888 -.016988 -.00477 .000517 .001496 ldist | .011066 .00171 -.004426 -.010698 -.074925 .006284 .000555 lopen | -.000323 .00081 .00222 .000052 -.02332 .001687 -.000138 english | -.00391 .006753 .006067 .002472 -.02619 .000037 -.00157 white | .022605 -.039788 -.003895 -.069753 .093701 .015572 -.000445 lwhitemg | -.002598 .002277 -.001381 .004229 .002083 -.000434 -.000283 _cons | -.09715 .2621 16.3237 -.486689 -60.0048 -.176015 .049048</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .052849 ldist | .037483 .336724 lopen | .002485 .003691 .005226 english | .006675 .09156 -.000084 .08035 white | .109405 .210865 -.007837 .143817 4.2835 lwhitemg | -.007743 -.03059 .000732 -.016929 -.396787 .038424 _cons | -.586722 -2.37685 .233272 -.798194 -3.89669 .333839 593.643</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1484.73 Log likelihood = -257.1413 Prob > chi2 = 0.0000 21</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0003907 .0244479 0.02 0.987 -.0475263 .0483077 lgdp | .4252807 .0840039 5.06 0.000 .260636 .5899253 lgdpau | -.3677946 .5008063 -0.73 0.463 -1.349357 .6137677 lgdpdfrati~w | .1726432 .2287232 0.75 0.450 -.2756461 .6209325 lpopau | 1.278287 1.725879 0.74 0.459 -2.104375 4.660948 lpop | -.2142471 .1202029 -1.78 0.075 -.4498405 .0213463 lxrate1 | -.0393842 .0229213 -1.72 0.086 -.0843091 .0055407 lremote | -.0215932 .1729928 -0.12 0.901 -.3606528 .3174664 ldist | -3.913304 .5205561 -7.52 0.000 -4.933576 -2.893033 lopen | .0089625 .050361 0.18 0.859 -.0897433 .1076684 english | -.0029618 .2961515 -0.01 0.992 -.5834081 .5774845 white | 16.28025 2.664749 6.11 0.000 11.05744 21.50306 lwhitemg | -1.178902 .2867591 -4.11 0.000 -1.740939 -.616864 _cons | 21.0442 17.2728 1.22 0.223 -12.80986 54.89825 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000598 lgdp | -.000748 .007057 lgdpau | .000143 -.002203 .250807 lgdpdfrati~w | -.000986 .002671 -.009699 .052314 lpopau | -.001353 .000534 -.836369 .051599 2.97866 lpop | .000216 -.006576 .000027 -.001145 -.003143 .014449 lxrate1 | -.000026 .000183 .001372 .00105 -.006521 -.00054 .000525 lremote | .000158 .002451 -.017983 -.004097 .05229 -.002806 -.000139 ldist | .002518 .003334 -.011345 -.001756 -.012255 .018532 -.000386 lopen | .000055 -.000175 -.002148 .001265 .002918 .000887 -.000038 english | -.001213 .000911 .001545 .002011 -.003273 .003975 .000601 white | .004498 -.037757 .046252 -.013286 -.289903 .064586 .002061 lwhitemg | -.000481 .001575 -.005598 .000481 .035543 -.005092 -.000032 _cons | .005002 -.056507 7.6109 -.644262 -27.8077 -.179095 .078134</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .029926 ldist | .014257 .270979 lopen | .00012 .001052 .002536 english | .000111 .058062 .00018 .087706 white | -.003985 .150962 -.001298 .101451 7.10089 lwhitemg | .002974 -.019562 .000197 -.01032 -.753993 .082231 _cons | -.801409 -2.60447 -.013298 -.636777 1.98481 -.235338 298.349 22</p><p>. . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping Bolivia . drop if ccode==330680 (10 observations deleted)</p><p>.. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 491185.4 1561186 8397.5 0 1.39e+07 immig | 1000 33456.37 117040.1 2986.5 0 1137050 gdp | 1000 2.79e+11 9.69e+11 1.74e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.7409 16.93165 102.8924 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.95e+07 1.54e+08 1.04e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1043.081 10901.71 16.2185 .0068 270182.6 remote | 1000 6716.166 4140.378 6764 1293 39620 dist | 1000 13372.2 3532.384 14305 2409 17972 open | 1000 .7103861 .3893649 .63975 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.052882 .1811695 1.017907 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------</p><p>. 23</p><p>. sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou > ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 404932.9 1597580 3326 0 1.39e+07 immig | 870 14890.48 27128.58 1606 0 158613 gdp | 870 2.37e+11 1.00e+12 1.09e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.8747 17.29439 101.7385 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.34e+07 1.65e+08 1.07e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1182.951 11681.74 22.9426 .0068 270182.6 remote | 870 7139.074 4112.485 6927 1293 39620 dist | 870 13202.99 3422.075 14051 2410 17972 phone | 870 158.6633 242.1575 49.45 .54 1449.75 open | 870 .7181237 .4107774 .63975 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.044501 .1860843 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------24</p><p>. . . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8941.38 Log likelihood = -525.8864 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3296604 .0307149 10.73 0.000 .2694603 .3898605 lgdp | 1.203869 .0335511 35.88 0.000 1.13811 1.269628 lgdpau | .081836 .6100588 0.13 0.893 -1.113857 1.277529 lgdpdfrati~w | -.864801 .2469888 -3.50 0.000 -1.34889 -.3807118 lpopau | -2.636948 2.104918 -1.25 0.210 -6.762512 1.488615 lpop | .0280567 .0412204 0.68 0.496 -.0527338 .1088472 lxrate1 | -.1239667 .0166097 -7.46 0.000 -.1565212 -.0914122 lremote | -.4472963 .0743425 -6.02 0.000 -.5930049 -.3015878 ldist | -2.065089 .1602401 -12.89 0.000 -2.379154 -1.751024 lopen | .2880444 .0567726 5.07 0.000 .1767721 .3993166 english | .9578183 .1294459 7.40 0.000 .704109 1.211528 white | 4.640046 .5840784 7.94 0.000 3.495274 5.784819 lwhitemg | -.4311582 .0520272 -8.29 0.000 -.5331296 -.3291868 _cons | 43.19581 19.38302 2.23 0.026 5.205792 81.18583 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000943 lgdp | -.00031 .001126 lgdpau | -.000869 .001322 .372172 lgdpdfrati~w | -.000826 .000209 -.009797 .061003 lpopau | .001732 -.007926 -1.25879 .050021 4.43068 lpop | -.000119 -.000783 .000093 .000086 -.000208 .001699 lxrate1 | .000089 .000157 .00034 .000189 -.002552 -.000109 .000276 lremote | .000459 .000047 -.000311 -.001526 -.00403 -.000152 .000099 ldist | .001563 .000974 .000729 -.001141 -.01587 .000085 .001728 lopen | -.000157 .000584 .002381 .000824 -.016847 .000338 .000128 english | -.001145 .002913 .002535 .002018 -.009255 -.001627 .000527 white | .004923 -.002672 .003276 -.010919 -.027429 .005532 .000245 lwhitemg | -.000593 .000246 -.000301 .001019 .002976 -.000446 -.000041 _cons | -.022057 .073246 11.0972 -.613719 -40.1769 -.005251 .012474</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .005527 ldist | .004863 .025677 lopen | .001487 .000729 .003223 25</p><p> english | -.003305 .003048 -.001091 .016756 white | .000293 -.000425 .000077 -.004028 .341148 lwhitemg | .000076 -.000397 -.000094 .000529 -.029943 .002707 _cons | -.016711 -.080501 .180604 .039121 .307895 -.032793 375.701</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 67602.80 Log likelihood = -953.1911 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0516757 .0137985 3.75 0.000 .0246312 .0787203 lgdp | 1.612168 .0505333 31.90 0.000 1.513125 1.711212 lgdpau | .9303925 .3540296 2.63 0.009 .2365071 1.624278 lgdpdfrati~w | -.4690614 .1464071 -3.20 0.001 -.7560139 -.1821088 lpopau | -6.457324 1.19471 -5.40 0.000 -8.798914 -4.115735 lpop | -.3600165 .0835404 -4.31 0.000 -.5237526 -.1962804 lxrate1 | -.1277465 .0202192 -6.32 0.000 -.1673753 -.0881176 lremote | -.9387314 .099227 -9.46 0.000 -1.133213 -.7442501 ldist | -3.173494 .1544958 -20.54 0.000 -3.476301 -2.870688 lopen | -.0543478 .026387 -2.06 0.039 -.1060653 -.0026304 english | .9686182 .085799 11.29 0.000 .8004552 1.136781 white | 4.488264 .7700904 5.83 0.000 2.978915 5.997614 lwhitemg | -.4443603 .0732114 -6.07 0.000 -.5878519 -.3008686 _cons | 95.01211 11.24677 8.45 0.000 72.96886 117.0554 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00019 lgdp | -.000239 .002554 lgdpau | -.001208 .001895 .125337 lgdpdfrati~w | -.000567 .000527 -.011502 .021435 lpopau | .004755 -.007463 -.414001 .023128 1.42733 lpop | .000128 -.003983 -.00168 .000404 .004533 .006979 lxrate1 | -.000024 .000259 -.000077 .000409 -.003019 -.000269 .000409 lremote | .000376 .000032 -.006727 -.003436 .023728 -.000632 .000045 ldist | .000557 -.001447 -.006546 -.001606 .016639 .002303 .00054 lopen | .000041 -.000096 -.000929 .000865 .003446 .000252 -.000072 english | -.00041 .000202 .002942 .002604 -.019639 .000361 .001104 white | .000927 -.01162 -.011299 -.005291 .046939 .017055 -.001076 lwhitemg | -.000082 .000515 .000428 .000311 -.002974 -.000627 .000146 _cons | -.052653 .092203 3.70148 -.073172 -13.1233 -.066884 .043192</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .009846 ldist | .004929 .023869 lopen | .000664 .000234 .000696 english | -.002641 .002149 -.000397 .007361 white | .011105 -.02983 .001755 -.003301 .593039 lwhitemg | -.0002 .004066 -.000123 .000538 -.054641 .00536 26</p><p>_cons | -.340465 -.385684 -.043211 .235684 -.289129 -.001976 126.49</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7332.89 Log likelihood = -918.5758 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0998726 .0217109 4.60 0.000 .0573199 .1424252 lgdp | 1.758343 .0692549 25.39 0.000 1.622606 1.89408 lgdpau | .2193579 .5382292 0.41 0.684 -.835552 1.274268 lgdpdfrati~w | -.5166171 .2126787 -2.43 0.015 -.9334597 -.0997746 lpopau | -3.545012 1.868345 -1.90 0.058 -7.206901 .1168756 lpop | -.6270366 .0809715 -7.74 0.000 -.7857379 -.4683353 lxrate1 | -.1641048 .02673 -6.14 0.000 -.2164945 -.111715 lremote | -.4331675 .1366783 -3.17 0.002 -.701052 -.1652829 ldist | -4.082617 .339113 -12.04 0.000 -4.747266 -3.417968 lopen | .0518637 .0417086 1.24 0.214 -.0298836 .1336111 english | 1.107911 .1427071 7.76 0.000 .8282103 1.387612 white | 9.788132 1.877769 5.21 0.000 6.107771 13.46849 lwhitemg | -.8448008 .1878309 -4.50 0.000 -1.212943 -.476659 _cons | 70.37748 17.81278 3.95 0.000 35.46508 105.2899 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000471 lgdp | -.000779 .004796 lgdpau | -.001827 .003732 .289691 lgdpdfrati~w | -.000778 .002176 -.018242 .045232 lpopau | .005418 -.019597 -.975035 .05917 3.49071 lpop | .000582 -.00399 -.001668 -.00215 .00469 .006556 lxrate1 | .000014 .00054 -2.1e-06 .000963 -.004936 -.000811 .000714 lremote | -.000079 -.000076 -.008357 -.001955 .025734 -.001192 .000071 ldist | .001997 .008322 -.011832 -.002363 -.004969 -.001949 .001294 lopen | .000095 -.000541 -.000258 .001936 .001542 .000954 -.0002 english | -.000826 .002715 .006598 .000832 -.046751 .002428 .001708 white | .001289 -.028866 .006225 -.005272 -.023756 .025126 .003237 lwhitemg | -.000108 .001528 -.001813 -.000035 .0084 -.001679 -.000365 _cons | -.053222 .104656 8.73097 -.522074 -32.2252 -.017334 .065714</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .018681 ldist | .00971 .114998 lopen | .00062 -.000601 .00174 english | -.004728 .005171 -.001415 .020365 white | .010399 -.143673 .002251 .019981 3.52602 lwhitemg | .000972 .011372 -.000118 -.002665 -.345784 .03528 _cons | -.442854 -.957281 -.021873 .488394 1.73423 -.21445 317.295</p><p>. 27</p><p>. *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2262.72 Log likelihood = -1105.278 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0975552 .0386671 2.52 0.012 .021769 .1733414 lgdp | .9197125 .0777565 11.83 0.000 .7673125 1.072113 lgdpau | -.6501132 .8548457 -0.76 0.447 -2.32558 1.025354 lgdpdfrati~w | -.4157705 .3531413 -1.18 0.239 -1.107915 .2763737 lpopau | .6884364 2.921371 0.24 0.814 -5.037345 6.414218 lpop | .0140361 .096096 0.15 0.884 -.1743087 .2023808 lxrate1 | -.1452723 .0335994 -4.32 0.000 -.2111259 -.0794186 lremote | .5051519 .2320821 2.18 0.030 .0502794 .9600244 ldist | -1.358994 .326708 -4.16 0.000 -1.99933 -.718658 lopen | .3629126 .0764861 4.74 0.000 .2130026 .5128227 english | 1.732392 .2396771 7.23 0.000 1.262634 2.202151 white | .8912906 2.197608 0.41 0.685 -3.415942 5.198523 lwhitemg | .2375222 .1950566 1.22 0.223 -.1447818 .6198261 _cons | -3.894558 27.55129 -0.14 0.888 -57.89409 50.10498 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001495 lgdp | -.001401 .006046 lgdpau | -.002039 .001369 .730761 lgdpdfrati~w | -.000432 .001695 -.019273 .124709 lpopau | .004545 -.010906 -2.44762 .042669 8.53441 lpop | .000368 -.00547 .000228 -.001128 .001491 .009234 lxrate1 | .000121 .00092 .000398 .002277 -.00828 -.001277 .001129 lremote | .001219 .00034 -.028918 -.015998 .094079 .000848 -.000904 ldist | .004091 -.007875 -.02031 -.007543 .05994 .012805 -.00007 lopen | .000217 -.00111 .00412 .00308 -.021412 .003001 -.000172 english | -.003167 .000372 .010521 .007336 -.029523 -.000603 .001698 white | .003117 -.021843 .10953 .010298 -.423765 .017717 .000532 lwhitemg | -.000446 .000738 -.011532 -.002484 .046287 -.000109 -.000213 _cons | -.051963 .171525 21.8737 -.13898 -78.625 -.179572 .128169</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .053862 ldist | .018525 .106738 lopen | .00179 -.001419 .00585 english | -.015314 .01153 -.001969 .057445 white | .038902 -.007702 .007066 .044076 4.82948 lwhitemg | -.000354 .004263 -.000418 -.003328 -.417618 .038047 _cons | -1.45552 -1.68838 .223111 .227372 4.06778 -.513671 759.074</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog 28</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 53790.89 Log likelihood = -918.9735 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0241371 .0133383 1.81 0.070 -.0020054 .0502797 lgdp | 1.573185 .054189 29.03 0.000 1.466976 1.679393 lgdpau | .711032 .3520977 2.02 0.043 .0209332 1.401131 lgdpdfrati~w | -.2898556 .1388316 -2.09 0.037 -.5619606 -.0177505 lpopau | -6.656072 1.191499 -5.59 0.000 -8.991367 -4.320778 lpop | -.2094904 .0937993 -2.23 0.026 -.3933338 -.0256471 lxrate1 | -.0600908 .0190584 -3.15 0.002 -.0974445 -.0227371 lremote | -.6112231 .148039 -4.13 0.000 -.9013742 -.321072 ldist | -2.589178 .16477 -15.71 0.000 -2.912121 -2.266235 lopen | -.0511602 .0267408 -1.91 0.056 -.1035712 .0012507 english | 1.110476 .1118133 9.93 0.000 .8913261 1.329626 white | 3.358489 .9081755 3.70 0.000 1.578498 5.13848 lwhitemg | -.252626 .083387 -3.03 0.002 -.4160614 -.0891906 _cons | 93.7931 11.28386 8.31 0.000 71.67714 115.9091 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000178 lgdp | -.000177 .002936 lgdpau | -.000901 .002157 .123973 lgdpdfrati~w | -.000367 .000798 -.008048 .019274 lpopau | .003363 -.007215 -.410787 .012618 1.41967 lpop | .000087 -.004801 -.002125 -.00012 .004032 .008798 lxrate1 | -3.7e-06 .000202 -.000067 .000492 -.002762 -.000199 .000363 lremote | .00002 -.001214 -.012422 -.005419 .045607 .000819 -.000228 ldist | .000737 -.005365 -.004869 .001156 .005008 .009722 .000696 lopen | .000019 -.000107 -.000965 .000779 .003535 .000281 -.000068 english | -.000331 -.000144 .003515 .003103 -.019724 .000097 .001034 white | .000383 -.01675 -.016955 -.003004 .032472 .029174 .001688 lwhitemg | -.000076 .000732 .000209 -.000266 .001438 -.001418 -.000175 _cons | -.037173 .134096 3.71435 .004133 -13.1436 -.141142 .039738</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .021916 ldist | -.0018 .027149 lopen | .001137 .000266 .000715 english | -.004707 .006299 -.000484 .012502 white | .019827 .030267 .001283 .005691 .824783 lwhitemg | .000648 -.001655 -9.1e-06 -.00042 -.072383 .006953 _cons | -.585379 -.240331 -.048272 .210041 -.644468 -.012318 127.326</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares 29</p><p>Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7875.13 Log likelihood = -946.8322 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2083725 .0304076 6.85 0.000 .1487746 .2679703 lgdp | 1.620122 .0715295 22.65 0.000 1.479927 1.760317 lgdpau | -.1622169 .6089295 -0.27 0.790 -1.355697 1.031263 lgdpdfrati~w | -.2158456 .2549943 -0.85 0.397 -.7156253 .2839341 lpopau | -1.290109 2.130316 -0.61 0.545 -5.465451 2.885233 lpop | -.5111695 .0808836 -6.32 0.000 -.6696984 -.3526406 lxrate1 | -.1423948 .027769 -5.13 0.000 -.1968212 -.0879685 lremote | -.3528825 .1310003 -2.69 0.007 -.6096384 -.0961267 ldist | -3.219778 .3335455 -9.65 0.000 -3.873515 -2.566041 lopen | .1039948 .04859 2.14 0.032 .0087602 .1992294 english | .922975 .1418094 6.51 0.000 .6450338 1.200916 white | 10.43812 1.854309 5.63 0.000 6.803739 14.0725 lwhitemg | -.9242772 .1850743 -4.99 0.000 -1.287016 -.5615382 _cons | 34.37695 20.26184 1.70 0.090 -5.335526 74.08942 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000925 lgdp | -.001383 .005116 lgdpau | -.001951 .003802 .370795 lgdpdfrati~w | -.001153 .002641 -.022712 .065022 lpopau | .005237 -.01922 -1.25978 .088159 4.53825 lpop | .000838 -.004238 -.001921 -.001792 .00883 .006542 lxrate1 | .000074 .000385 .000042 .0011 -.005178 -.000698 .000771 lremote | -6.7e-06 -.00009 -.005074 -.001106 .00963 -.001083 .000106 ldist | .004139 .002658 -.011895 -.003191 -.009256 .00021 .001347 lopen | .00014 -.000689 .001288 .001637 -.006325 .001316 -.000265 english | -.001554 .003645 .003685 .003915 -.023158 .000518 .001826 white | .000449 -.026205 .012323 .000763 -.002336 .02089 .003913 lwhitemg | 1.1e-06 .001516 -.002106 -.000541 .004523 -.001391 -.000387 _cons | -.060472 .149704 11.309 -.922969 -42.0715 -.096105 .068687</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .017161 ldist | .010633 .111253 lopen | .000446 -.000839 .002361 english | -.004516 -.001699 -.001719 .02011 white | .010241 -.158591 .002876 .018144 3.43846 lwhitemg | .000815 .014343 -.000196 -.002347 -.337274 .034252 _cons | -.259452 -.772858 .070512 .244581 1.36488 -.173402 410.542</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 30</p><p>Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8261.13 Log likelihood = -1095.858 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0167552 .0143443 1.17 0.243 -.0113592 .0448695 lgdp | 1.357355 .0475193 28.56 0.000 1.264219 1.450491 lgdpau | .7210373 .4628158 1.56 0.119 -.1860651 1.62814 lgdpdfrati~w | -.0460182 .1487632 -0.31 0.757 -.3375886 .2455523 lpopau | -6.43196 1.575639 -4.08 0.000 -9.520156 -3.343764 lpop | .0615968 .0678965 0.91 0.364 -.0714779 .1946716 lxrate1 | -.0509399 .0183262 -2.78 0.005 -.0868587 -.0150211 lremote | -.8316394 .154405 -5.39 0.000 -1.134268 -.5290111 ldist | -3.434425 .2274905 -15.10 0.000 -3.880298 -2.988552 lopen | .0517122 .0386546 1.34 0.181 -.0240494 .1274738 english | 2.456877 .1284634 19.13 0.000 2.205093 2.70866 white | 3.961717 1.153195 3.44 0.001 1.701495 6.221938 lwhitemg | -.177148 .0970437 -1.83 0.068 -.3673502 .0130541 _cons | 99.04228 15.11592 6.55 0.000 69.41563 128.6689 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000206 lgdp | -.000343 .002258 lgdpau | .000054 .000019 .214199 lgdpdfrati~w | -.000372 .000432 .002742 .02213 lpopau | -.001688 .001124 -.712822 -.007675 2.48264 lpop | .000175 -.002478 -.000373 .000217 -.001128 .00461 lxrate1 | -.000015 .000186 .000235 .000434 -.001952 -.000332 .000336 lremote | .000164 .000534 -.01626 -.000796 .051373 -.000692 -.000144 ldist | .000563 .000591 -.009463 -.001047 .017413 .000936 .000319 lopen | .000056 -.000274 .000243 .001908 -.000311 .000623 -.00012 english | -.000644 .00028 .001252 .001066 -.006246 .002022 .000931 white | .000372 -.012646 -.005778 -.000776 .009237 .0234 .000028 lwhitemg | -.000015 .000649 -.00081 .000158 .003445 -.001586 .000052 _cons | .024554 -.039848 6.44143 .03729 -23.1015 .007301 .023447</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .023841 ldist | .014389 .051752 lopen | .00082 .000124 .001494 english | -.003431 .003098 -.001146 .016503 white | .004113 .000468 .000702 .032136 1.32986 lwhitemg | .001329 .0015 4.4e-06 -.00286 -.108168 .009417 _cons | -.77315 -.695556 -.01399 .026314 -.144315 -.051082 228.491</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 563.82 Log likelihood = -567.9489 Prob > chi2 = 0.0000 31</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3530836 .0403831 8.74 0.000 .2739341 .432233 lgdp | .0881648 .052424 1.68 0.093 -.0145845 .190914 lgdpau | .4474832 .3300783 1.36 0.175 -.1994583 1.094425 lgdpdfrati~w | -.59248 .1252841 -4.73 0.000 -.8380323 -.3469278 lpopau | -3.190708 1.251765 -2.55 0.011 -5.644122 -.7372941 lpop | .5019608 .0790703 6.35 0.000 .3469858 .6569358 lxrate1 | -.1305852 .0228351 -5.72 0.000 -.1753412 -.0858291 lremote | .2495812 .1460481 1.71 0.087 -.0366677 .5358302 ldist | -1.336929 .3888455 -3.44 0.001 -2.099052 -.5748058 lopen | .1229301 .0186631 6.59 0.000 .0863511 .159509 english | .6274749 .2174493 2.89 0.004 .2012822 1.053668 white | 10.60006 .7064178 15.01 0.000 9.215509 11.98462 lwhitemg | -1.003895 .0702914 -14.28 0.000 -1.141664 -.8661267 _cons | 47.2497 13.19297 3.58 0.000 21.39195 73.10744 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001631 lgdp | -.00042 .002748 lgdpau | .003545 -.003371 .108952 lgdpdfrati~w | -.001313 -.00081 -.003397 .015696 lpopau | -.021424 .021467 -.391585 .009066 1.56692 lpop | -.000683 -.002041 -.000565 .001118 -.007114 .006252 lxrate1 | .000054 .000078 .001447 .000805 -.008022 -.000305 .000521 lremote | .00199 .001956 -.011553 -.00541 .034087 -.00257 -.000325 ldist | .003994 -.003969 .001248 -.000828 -.072603 .011925 .000979 lopen | .000399 -.000387 .000219 -.000711 -.003924 .00017 -.000165 english | -.001925 .000872 -.001281 .003769 -.002426 .00557 .001212 white | .006009 -.002802 .024198 .000805 -.163238 .009822 .003912 lwhitemg | -.000714 -.000195 -.002999 .000175 .016548 -.000383 -.000373 _cons | .218469 -.277099 3.78908 -.015389 -15.5602 -.006743 .088346</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .02133 ldist | .014995 .151201 lopen | .000407 .001064 .000348 english | -.003564 .012169 -.000982 .047284 white | .004532 -.030454 .00033 .054168 .499026 lwhitemg | .000064 .005187 -.000019 -.002894 -.046981 .004941 _cons | -.601801 -.527998 .051257 -.144103 2.13956 -.227453 174.054</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3214.87 Log likelihood = -586.0307 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] 32</p><p>------+------limmig | .1510212 .0322566 4.68 0.000 .0877994 .2142429 lgdp | .2508267 .0544986 4.60 0.000 .1440115 .357642 lgdpau | -.1217539 .0680508 -1.79 0.074 -.255131 .0116232 lgdpdfrati~w | -.1232767 .0443028 -2.78 0.005 -.2101086 -.0364448 lpopau | 2.717633 .2750038 9.88 0.000 2.178636 3.256631 lpop | .8100947 .102931 7.87 0.000 .6083535 1.011836 lxrate1 | -.0144324 .0086939 -1.66 0.097 -.0314721 .0026073 lremote | .1402415 .033778 4.15 0.000 .0740378 .2064451 ldist | -3.433874 .34476 -9.96 0.000 -4.109591 -2.758157 lopen | -.0092624 .0311895 -0.30 0.766 -.0703927 .0518678 english | .406043 .2783117 1.46 0.145 -.1394379 .9515239 white | 23.29539 2.989728 7.79 0.000 17.43563 29.15515 lwhitemg | -2.200056 .2776116 -7.92 0.000 -2.744165 -1.655947 _cons | -23.58013 5.187604 -4.55 0.000 -33.74765 -13.41261 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00104 lgdp | -.000628 .00297 lgdpau | -.00073 -.000398 .004631 lgdpdfrati~w | .000345 -.001153 .000915 .001963 lpopau | .004968 -.00064 -.015808 .000314 .075627 lpop | -.000247 -.0025 .001326 .000608 -.00499 .010595 lxrate1 | 4.6e-06 .000081 -.00005 .00003 .000704 -.000236 .000076 lremote | -.000346 .001226 -.000716 -.001084 -.00007 -.000825 .00004 ldist | .003746 -.000329 -.003309 .000045 .022454 -.001643 -.000124 lopen | -.000347 -.000229 .00024 -.000465 -.004426 .001163 -.000178 english | -.000732 .000183 .000701 .000146 -.005547 .000917 .000036 white | .003271 -.00634 .000971 .002333 -.000979 .029138 -.000598 lwhitemg | -.000584 .000248 .000182 -.000135 -.001999 -.002966 .000056 _cons | -.084302 -.011585 .170465 -.007581 -.989789 -.038256 -.008081</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .001141 ldist | -.000089 .118859 lopen | .000227 -.000835 .000973 english | -.000115 .056339 -.000054 .077457 white | -.002767 .023613 .00153 .040104 8.93848 lwhitemg | .00017 -.005102 -.000014 -.003342 -.817617 .077068 _cons | -.001166 -1.4131 .063868 -.497393 -.57155 .121847 26.9112</p><p>. . . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 534.36 Log likelihood = -541.7396 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .531839 .050399 10.55 0.000 .4330588 .6306191 lgdp | -.0043676 .0788178 -0.06 0.956 -.1588477 .1501126 lgdpau | 1.975581 .8052843 2.45 0.014 .397253 3.553909 33 lgdpdfrati~w | -.6418171 .2897674 -2.21 0.027 -1.209751 -.0738833 lpopau | -10.03899 2.767672 -3.63 0.000 -15.46352 -4.614448 lpop | .353779 .0980323 3.61 0.000 .1616393 .5459187 lxrate1 | -.1089129 .0258885 -4.21 0.000 -.1596535 -.0581723 lremote | -.0711244 .2614848 -0.27 0.786 -.5836253 .4413764 ldist | -1.491232 .3197512 -4.66 0.000 -2.117933 -.8645307 lopen | .0522087 .0539087 0.97 0.333 -.0534503 .1578678 english | .0314133 .2319926 0.14 0.892 -.4232839 .4861106 white | 9.368772 1.137529 8.24 0.000 7.139257 11.59829 lwhitemg | -.8475055 .1012837 -8.37 0.000 -1.046018 -.6489931 _cons | 126.9617 26.26554 4.83 0.000 75.48215 178.4412 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00254 lgdp | -.001545 .006212 lgdpau | .000493 -.00058 .648483 lgdpdfrati~w | -.001432 .001541 -.019299 .083965 lpopau | -.006169 -.003805 -2.1668 .076602 7.66001 lpop | -.000276 -.004381 -.000378 -.000615 -.001043 .00961 lxrate1 | .00016 -.000189 .000496 .000872 -.004743 -.000395 .00067 lremote | .001844 .004573 -.022663 -.013358 .064758 -.003441 .000271 ldist | .004973 .00158 -.009036 -.00377 -.01266 .004102 .000721 lopen | -.000264 .000642 .000543 -.000413 -.010529 .00065 2.1e-06 english | -.002236 .001487 .005361 .005708 -.027243 .000759 .001081 white | .013462 -.027101 .020154 -.005454 -.096508 .031147 .005819 lwhitemg | -.001349 .001406 -.003186 -.000238 .015607 -.001773 -.000464 _cons | .048824 -.037311 19.2454 -.719345 -70.6123 -.034319 .062786</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .068374 ldist | .032039 .102241 lopen | .001112 .002174 .002906 english | -.014013 .020767 .000151 .053821 white | .01229 .008921 -.001528 .030825 1.29397 lwhitemg | .001185 -.000664 .000088 -.002045 -.11059 .010258 _cons | -1.4219 -.936851 .10941 .173455 .839463 -.168551 689.879</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1337.96 Log likelihood = -379.1516 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0392904 .0186352 2.11 0.035 .002766 .0758148 lgdp | .2263024 .0569796 3.97 0.000 .1146245 .3379803 lgdpau | -.2623685 .3271173 -0.80 0.423 -.9035067 .3787696 lgdpdfrati~w | -.4148412 .205335 -2.02 0.043 -.8172904 -.0123919 lpopau | 2.717031 1.159513 2.34 0.019 .4444284 4.989634 lpop | .1218427 .0714392 1.71 0.088 -.0181755 .261861 lxrate1 | -.0782518 .0191146 -4.09 0.000 -.1157157 -.0407879 lremote | -.1524501 .1162422 -1.31 0.190 -.3802807 .0753805 ldist | -1.340912 .2121364 -6.32 0.000 -1.756692 -.925132 lopen | .0009132 .0263523 0.03 0.972 -.0507363 .0525627 34</p><p> english | 1.991091 .2152992 9.25 0.000 1.569113 2.41307 white | 9.554786 1.782526 5.36 0.000 6.061099 13.04847 lwhitemg | -.7228078 .1831726 -3.95 0.000 -1.08182 -.3637961 _cons | -29.60026 11.69123 -2.53 0.011 -52.51466 -6.685866 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000347 lgdp | -.000369 .003247 lgdpau | .000263 -.001622 .107006 lgdpdfrati~w | -.000676 -.000036 -.000733 .042162 lpopau | -.001221 .006873 -.364155 .022681 1.34447 lpop | .000117 -.003022 .000967 .000861 -.008454 .005104 lxrate1 | -.000022 .000189 .001328 .000822 -.006118 -.000176 .000365 lremote | .000199 .001021 -.007373 -.003907 .024862 -.000609 -.000395 ldist | .000918 .000782 -.00188 -.001812 -.000013 .002416 -.000353 lopen | .000028 -.000263 -.000261 .001035 -.0008 .000336 -7.9e-06 english | -.000329 -.002889 .004592 .004119 -.01589 .00514 .000374 white | .00179 -.024233 .015851 .001914 -.089451 .027197 .001122 lwhitemg | -.000183 .001441 -.001332 .00004 .006964 -.001891 -.000089 _cons | .008279 -.110665 3.33041 -.364344 -12.9867 .084111 .069992</p><p>| lremote ldist lopen english white lwhitemg _cons</p><p>------+------lremote | .013512 ldist | .001007 .045002 lopen | -.000033 -.000099 .000694 english | -.004759 .015564 -.000199 .046354 white | .011193 -.027397 .001327 .072766 3.1774 lwhitemg | -.000446 .001372 -.000058 -.006781 -.321975 .033552 _cons | -.354097 -.444461 .021327 .010612 1.31661 -.09042 136.685</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1024.99 Log likelihood = -831.0683 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1387979 .064022 2.17 0.030 .013317 .2642788 lgdp | .5368966 .1089111 4.93 0.000 .3234347 .7503585 lgdpau | -2.128205 1.067819 -1.99 0.046 -4.221092 -.0353172 lgdpdfrati~w | -1.026817 .4243351 -2.42 0.016 -1.858499 -.1951356 lpopau | 4.272985 3.659822 1.17 0.243 -2.900134 11.4461 lpop | .2124929 .1239528 1.71 0.086 -.0304501 .4554358 lxrate1 | -.1479946 .0390998 -3.79 0.000 -.2246289 -.0713603 lremote | 1.697969 .2699161 6.29 0.000 1.168943 2.226994 ldist | -1.696918 .4895356 -3.47 0.001 -2.65639 -.7374454 lopen | -.010243 .0771621 -0.13 0.894 -.1614779 .1409919 english | .3234176 .2601568 1.24 0.214 -.1864803 .8333155 white | 10.88508 1.466107 7.42 0.000 8.011561 13.7586 lwhitemg | -.8363452 .1419931 -5.89 0.000 -1.114647 -.5580438 _cons | -25.34248 34.43188 -0.74 0.462 -92.82772 42.14275 ------35</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004099 lgdp | -.00432 .011862 lgdpau | -.002308 .005576 1.14024 lgdpdfrati~w | -.001643 .004032 .001447 .18006 lpopau | .004376 -.02716 -3.80964 .038005 13.3943 lpop | .001526 -.010044 -.002441 -.002341 .01107 .015364 lxrate1 | .00006 .001566 .000708 .001379 -.008654 -.001473 .001529 lremote | .00152 -.002352 -.031579 -.019856 .080827 .002243 .000872 ldist | .012133 -.010521 -.011264 -.010018 -.001216 .0151 -.002314 lopen | .000344 -.00082 .006051 .001039 -.032548 .002151 -.000382 english | -.005576 .011014 .007568 .001626 -.030481 -.008737 -.000424 white | .025995 -.049034 -.039035 -.035089 .058284 .04813 .004738 lwhitemg | -.002911 .002951 .000039 .000923 .010289 -.002471 -.000739 _cons | -.087135 .328163 33.5939 -.632316 -122.643 -.29697 .120655</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .072855 ldist | .022368 .239645 lopen | .002897 .004229 .005954 english | -.003953 .025791 -.000809 .067682 white | .111282 .130729 .00213 .030922 2.14947 lwhitemg | -.004279 -.016804 -.000086 -.005141 -.198463 .020162 _cons | -1.34054 -2.21118 .304134 -.000926 -1.96746 .017015 1185.55</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 568.34 Log likelihood = -128.7319 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0358428 .0287154 1.25 0.212 -.0204384 .0921239 lgdp | .1471111 .0586495 2.51 0.012 .0321603 .2620619 lgdpau | .3781364 .4075728 0.93 0.354 -.4206916 1.176964 lgdpdfrati~w | .3387665 .1825399 1.86 0.063 -.0190052 .6965381 lpopau | 2.613721 1.439424 1.82 0.069 -.2074979 5.43494 lpop | .2913011 .078941 3.69 0.000 .1365796 .4460226 lxrate1 | -.0327854 .0166537 -1.97 0.049 -.0654261 -.0001447 lremote | -.0108014 .1270729 -0.09 0.932 -.2598598 .238257 ldist | -2.250527 .4188052 -5.37 0.000 -3.07137 -1.429684 lopen | .055512 .0376227 1.48 0.140 -.0182272 .1292512 english | .833979 .1872768 4.45 0.000 .4669232 1.201035 white | 15.76888 1.202743 13.11 0.000 13.41154 18.12621 lwhitemg | -1.332742 .1119232 -11.91 0.000 -1.552108 -1.113377 _cons | -39.52253 14.80217 -2.67 0.008 -68.53425 -10.51082 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000825 lgdp | -.000625 .00344 lgdpau | -.000559 -.000107 .166116 36</p><p> lgdpdfrati~w | -.000705 .000718 -.000222 .033321 lpopau | .001397 .001594 -.557032 .015269 2.07194 lpop | -.000131 -.002519 .000508 .000643 -.005162 .006232 lxrate1 | .000053 .000091 .000214 .000548 -.002724 -.000113 .000277 lremote | .000858 .002127 -.007201 -.003412 .020333 -.001741 .000095 ldist | .002275 -.003714 -.009467 -.007275 -.001081 .008839 .000083 lopen | -.000017 -.000048 .000165 .000264 -.004258 .00051 -.000047 english | -.001262 -.000755 .003324 .002877 -.015328 .004858 .000185 white | .003994 -.016418 .030461 -.003283 -.275056 .024857 .003718 lwhitemg | -.00047 .000905 -.003093 .000196 .026915 -.001893 -.000391 _cons | -.025329 -.041401 5.03126 -.207483 -19.8895 -.039041 .035991</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016148 ldist | .01541 .175398 lopen | .000084 .00028 .001415 english | -.005144 .008085 .000113 .035073 white | -.005788 -.020538 -.00036 .0452 1.44659 lwhitemg | .000587 .002898 .000059 -.00384 -.131609 .012527 _cons | -.455417 -1.61052 .056896 .069064 3.94157 -.384213 219.104</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 265.34 Log likelihood = 124.579 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0019244 .018669 -0.10 0.918 -.0385149 .034666 lgdp | .2641678 .0494399 5.34 0.000 .1672673 .3610683 lgdpau | -.3366129 .3512339 -0.96 0.338 -1.025019 .3517929 lgdpdfrati~w | -.1125331 .1433355 -0.79 0.432 -.3934655 .1683992 lpopau | 4.541124 1.278785 3.55 0.000 2.034752 7.047496 lpop | -.0727873 .0596916 -1.22 0.223 -.1897807 .0442061 lxrate1 | -.1034402 .0152353 -6.79 0.000 -.1333008 -.0735796 lremote | .372213 .1287654 2.89 0.004 .1198374 .6245885 ldist | -1.342023 .276949 -4.85 0.000 -1.884833 -.7992128 lopen | .0234167 .0283062 0.83 0.408 -.0320625 .078896 english | .1496322 .1586976 0.94 0.346 -.1614093 .4606738 white | 9.217225 2.010751 4.58 0.000 5.276225 13.15822 lwhitemg | -.7682341 .1915088 -4.01 0.000 -1.143584 -.3928838 _cons | -60.74661 13.54797 -4.48 0.000 -87.30014 -34.19308 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000349 lgdp | -.000337 .002444 lgdpau | .000278 -.000742 .123365 lgdpdfrati~w | -.000455 .000427 -.005722 .020545 lpopau | -.002902 .005191 -.423476 .026591 1.63529 lpop | .000048 -.002191 -.000108 -.000069 .000734 .003563 lxrate1 | 4.0e-07 1.6e-06 .00049 .000472 -.004408 -.000119 .000232 lremote | .000293 .001892 -.007422 -.001205 .02501 -.001532 -.000052 ldist | .001509 -.001256 -.002032 -.001617 .000072 .004285 .000032 37</p><p> lopen | 2.8e-06 -.000016 .000041 .00021 -.00124 .000154 -.000029 english | -.000435 -.001761 -.000028 .000659 .019911 .004348 .000205 white | .002678 -.015224 .017151 -.005169 -.142631 .014973 .001873 lwhitemg | -.000303 .001009 -.002009 .000527 .014035 -.001169 -.000135 _cons | .029654 -.089394 3.89334 -.294738 -16.3658 -.044311 .06074</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016581 ldist | .006946 .076701 lopen | .000144 -.000398 .000801 english | -.001311 .014969 -.000358 .025185 white | -.000869 .013531 -.000832 .031418 4.04312 lwhitemg | .000659 -.002305 .000112 -.002881 -.378843 .036676 _cons | -.448634 -.789784 .020383 -.495064 1.87503 -.16615 183.547</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 476.50 Log likelihood = -662.8887 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .207551 .0561382 3.70 0.000 .097522 .3175799 lgdp | .7713611 .1075816 7.17 0.000 .5605051 .9822171 lgdpau | -.8215292 .6992795 -1.17 0.240 -2.192092 .5490336 lgdpdfrati~w | -.3276602 .2991492 -1.10 0.273 -.913982 .2586615 lpopau | 3.581739 2.412787 1.48 0.138 -1.147236 8.310714 lpop | -.3437838 .147252 -2.33 0.020 -.6323924 -.0551752 lxrate1 | -.1588031 .0325271 -4.88 0.000 -.2225549 -.0950512 lremote | .2015504 .241032 0.84 0.403 -.2708636 .6739644 ldist | -2.994239 .6796182 -4.41 0.000 -4.326266 -1.662211 lopen | .041709 .0706586 0.59 0.555 -.0967793 .1801974 english | -.6254806 .4269973 -1.46 0.143 -1.46238 .2114186 white | 19.71043 4.19578 4.70 0.000 11.48685 27.93401 lwhitemg | -1.795107 .3834079 -4.68 0.000 -2.546573 -1.043641 _cons | -20.18484 23.63031 -0.85 0.393 -66.4994 26.12971 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003152 lgdp | -.002779 .011574 lgdpau | .001294 -.001123 .488992 lgdpdfrati~w | -.002033 .004219 -.011615 .08949 lpopau | -.008723 -.003119 -1.62958 .070359 5.82154 lpop | .00004 -.008456 -.001235 -.001932 -.005698 .021683 lxrate1 | .000178 .000602 .002264 .001386 -.011701 -.000812 .001058 lremote | .00078 .004041 -.020979 -.013508 .041949 -.003017 .00049 ldist | .012467 .008934 -.004969 -.003635 -.058379 .003783 .000689 lopen | .000454 -.001048 -.000894 .000178 -.012901 .002136 -.000182 english | -.006706 .003245 .002019 .006291 -.014773 .017404 .000417 white | .008868 -.03856 .133394 .023754 -.359139 .077535 .004863 lwhitemg | -.001458 .001788 -.013974 -.003634 .042371 -.005865 -.000611 _cons | .034167 -.159007 14.4761 -.8619 -53.4882 -.033956 .116797</p><p>| lremote ldist lopen english white lwhitemg _cons 38</p><p>------+------lremote | .058096 ldist | .028967 .461881 lopen | .000784 .00338 .004993 english | -.004724 .117872 -.001777 .182327 white | .027715 .239792 .005486 .282341 17.6046 lwhitemg | .000373 -.037383 -.000371 -.030828 -1.5814 .147002 _cons | -.966937 -3.89876 .190657 -1.25191 -.609089 .090192 558.392</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1031.57 Log likelihood = -552.0824 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2323486 .0484969 4.79 0.000 .1372964 .3274007 lgdp | .6044931 .100046 6.04 0.000 .4084064 .8005797 lgdpau | .4173084 .5884669 0.71 0.478 -.7360655 1.570682 lgdpdfrati~w | -.0467191 .2646579 -0.18 0.860 -.565439 .4720009 lpopau | -1.963648 2.03184 -0.97 0.334 -5.94598 2.018684 lpop | .4700728 .1253728 3.75 0.000 .2243466 .715799 lxrate1 | -.1025077 .027845 -3.68 0.000 -.157083 -.0479325 lremote | -.1507604 .2037709 -0.74 0.459 -.550144 .2486233 ldist | -2.232936 .4538649 -4.92 0.000 -3.122495 -1.343377 lopen | -.1029724 .0737505 -1.40 0.163 -.2475207 .0415759 english | .8276879 .3230809 2.56 0.010 .194461 1.460915 white | 23.057 3.164095 7.29 0.000 16.85549 29.25851 lwhitemg | -2.246904 .27925 -8.05 0.000 -2.794224 -1.699584 _cons | 26.2191 19.69166 1.33 0.183 -12.37584 64.81404 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002352 lgdp | -.00211 .010009 lgdpau | -.002373 .004466 .346293 lgdpdfrati~w | -.00153 .001974 -.00015 .070044 lpopau | .007605 -.031231 -1.15523 .008124 4.12837 lpop | .000463 -.00805 -.00298 -.001744 .015024 .015718 lxrate1 | .000058 .000577 .000621 .000995 -.005336 -.000745 .000775 lremote | .000455 .003562 -.016948 -.015792 .034444 -.002449 .000629 ldist | .008673 -.002876 -.010281 -.003255 .007062 .015048 .000454 lopen | .000274 -.000148 .000684 .001326 -.015136 .00142 -.000089 english | -.003389 .003739 .005756 .005191 -.023683 -.00167 .000613 white | .00718 -.033543 .017272 -.005988 -.005666 .054294 .003664 lwhitemg | -.000996 .001221 -.003017 -.00064 .008851 -.003818 -.000373 _cons | -.120725 .306048 10.2814 -.043455 -38.1311 -.35837 .057423</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .041523 ldist | .007879 .205993 lopen | .00146 .001663 .005439 english | -.005282 .059085 -.002182 .104381 white | .017386 .032859 .00378 .003508 10.0115 39</p><p> lwhitemg | .000373 -.007253 -.000427 .000941 -.868922 .077981 _cons | -.593603 -2.1039 .186837 -.347685 -.995841 .038755 387.761</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1914.37 Log likelihood = -745.0421 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0706538 .0353299 2.00 0.046 .0014085 .139899 lgdp | 1.020578 .1013136 10.07 0.000 .8220067 1.219149 lgdpau | .4971219 .7076627 0.70 0.482 -.8898714 1.884115 lgdpdfrati~w | -.1426582 .2894428 -0.49 0.622 -.7099555 .4246392 lpopau | 4.883862 2.461795 1.98 0.047 .0588328 9.708891 lpop | -.4624511 .1477941 -3.13 0.002 -.7521221 -.17278 lxrate1 | -.1538592 .0257107 -5.98 0.000 -.2042512 -.1034672 lremote | -.2710804 .1964616 -1.38 0.168 -.656138 .1139772 ldist | -1.430823 .7705546 -1.86 0.063 -2.941082 .0794366 lopen | -.0113747 .0732048 -0.16 0.877 -.1548535 .132104 english | .0336668 .3405476 0.10 0.921 -.6337942 .7011278 white | 28.37503 2.622664 10.82 0.000 23.2347 33.51536 lwhitemg | -2.637692 .2534914 -10.41 0.000 -3.134526 -2.140858 _cons | -91.06037 24.68889 -3.69 0.000 -139.4497 -42.67103 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001248 lgdp | -.002084 .010264 lgdpau | -.000236 .000609 .500786 lgdpdfrati~w | -.002195 .003614 -.014341 .083777 lpopau | -.006599 -.005652 -1.67463 .066611 6.06043 lpop | .001983 -.012758 -.004131 -.0031 .025496 .021843 lxrate1 | 6.1e-06 .000515 .001299 .001035 -.011492 -.000932 .000661 lremote | .001386 .004776 -.018222 -.005648 .015214 -.003477 .000414 ldist | .007332 .011583 -.030126 -.00819 -.047523 .015227 .001619 lopen | .000231 -.00041 -.002509 .004865 -.000791 .00056 -.000217 english | -.001499 .004121 .004795 .00488 -.014131 -.002618 .001228 white | .018837 -.061637 .048015 -.028733 -.445488 .072764 .009475 lwhitemg | -.00169 .004269 -.00574 .002273 .048004 -.005177 -.000917 _cons | .045306 -.100259 15.1484 -.710151 -56.5645 -.487962 .136501</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .038597 ldist | .074023 .593754 lopen | .001619 .002049 .005359 english | .000264 .057766 -.000877 .115973 white | .033125 .106935 -.008195 .214109 6.87837 lwhitemg | -.002419 -.01689 .000972 -.024139 -.654955 .064258 _cons | -.874115 -5.29072 .044562 -.509342 4.94078 -.466792 609.541</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog 40</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 469.81 Log likelihood = -576.3594 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4020182 .0584349 6.88 0.000 .2874879 .5165485 lgdp | .2572493 .1004956 2.56 0.010 .0602817 .454217 lgdpau | 1.04971 .7351346 1.43 0.153 -.391127 2.490548 lgdpdfrati~w | -.5317048 .3168677 -1.68 0.093 -1.152754 .0893445 lpopau | -4.347096 2.544399 -1.71 0.088 -9.334027 .639835 lpop | .3309592 .1052131 3.15 0.002 .1247453 .5371731 lxrate1 | -.085766 .0343972 -2.49 0.013 -.1531833 -.0183486 lremote | .0169579 .2276187 0.07 0.941 -.4291666 .4630824 ldist | -1.371435 .5959734 -2.30 0.021 -2.539521 -.2033486 lopen | .0936772 .0716478 1.31 0.191 -.0467499 .2341043 english | -.1287559 .300756 -0.43 0.669 -.7182268 .460715 white | 19.32596 2.065805 9.36 0.000 15.27705 23.37486 lwhitemg | -1.816684 .1974954 -9.20 0.000 -2.203768 -1.4296 _cons | 49.31758 24.05102 2.05 0.040 2.178448 96.45671 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003415 lgdp | -.00309 .010099 lgdpau | -.002289 .006924 .540423 lgdpdfrati~w | -.00244 .006764 -.008228 .100405 lpopau | .004821 -.038872 -1.8093 .040084 6.47397 lpop | .001065 -.006059 -.00404 -.00366 .010002 .01107 lxrate1 | .000329 .000556 -.000167 .000975 -.004446 -.000585 .001183 lremote | .000116 .002462 -.009495 -.017888 .001469 .000506 .001382 ldist | .011479 .003953 -.002258 -.005663 -.094279 .007574 .001019 lopen | -.000293 .000876 .002241 .00017 -.023615 .001678 -.000131 english | -.00336 .009315 .008171 .006526 -.045518 .000632 -.001161 white | .023264 -.036439 -.003678 -.067484 .071497 .015223 -.000647 lwhitemg | -.002675 .001751 -.001661 .003552 .005969 -.000488 -.0003 _cons | -.096807 .279964 15.8699 -.425186 -58.4144 -.177361 .047672</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .05181 ldist | .033429 .355184 lopen | .002315 .004012 .005133 english | .004922 .106398 .000293 .090454 white | .108151 .225628 -.007675 .1511 4.26755 lwhitemg | -.007269 -.033361 .000664 -.018906 -.398528 .039004 _cons | -.60018 -2.34238 .234025 -.741115 -3.74287 .314 578.451</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) 41</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1448.30 Log likelihood = -252.1083 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .00334 .0237078 0.14 0.888 -.0431265 .0498065 lgdp | .4388091 .0823144 5.33 0.000 .2774759 .6001423 lgdpau | -.3725147 .4879191 -0.76 0.445 -1.328819 .5837892 lgdpdfrati~w | .1579858 .2252095 0.70 0.483 -.2834166 .5993883 lpopau | 1.441363 1.683383 0.86 0.392 -1.858007 4.740732 lpop | -.2293311 .1192428 -1.92 0.054 -.4630427 .0043805 lxrate1 | -.0435224 .0229245 -1.90 0.058 -.0884536 .0014087 lremote | -.0004721 .1689138 -0.00 0.998 -.3315371 .330593 ldist | -3.915923 .5183804 -7.55 0.000 -4.93193 -2.899916 lopen | -.0022764 .0493871 -0.05 0.963 -.0990733 .0945204 english | -.0437274 .2870981 -0.15 0.879 -.6064294 .5189746 white | 16.55575 2.588683 6.40 0.000 11.48202 21.62947 lwhitemg | -1.217411 .2774657 -4.39 0.000 -1.761234 -.6735886 _cons | 18.25097 16.90846 1.08 0.280 -14.889 51.39093 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000562 lgdp | -.000698 .006776 lgdpau | .000127 -.00223 .238065 lgdpdfrati~w | -.000933 .002488 -.009675 .050719 lpopau | -.00124 .001822 -.793565 .052543 2.83378 lpop | .000204 -.006357 .000051 -.001036 -.005047 .014219 lxrate1 | -.000034 .000171 .001329 .001028 -.006385 -.0005 .000526 lremote | .000108 .002356 -.016853 -.00344 .04866 -.002492 -.000089 ldist | .002357 .003075 -.011099 -.001151 -.012701 .018601 -.00034 lopen | .000054 -.000216 -.002007 .001392 .001797 .000858 -.000014 english | -.001183 .000676 .001469 .001969 -.004156 .004589 .000586 white | .003963 -.037498 .039049 -.014713 -.267579 .066869 .002062 lwhitemg | -.000439 .001628 -.004651 .000772 .031795 -.005333 -.000015 _cons | .00473 -.071149 7.22322 -.668435 -26.4899 -.153218 .075764</p><p>| lremote ldist lopen english white lwhitemg _cons</p><p>------+------lremote | .028532 ldist | .013795 .268718 lopen | .000042 .000893 .002439 english | .00008 .054476 .000183 .082425 white | .000085 .153239 .000064 .107719 6.70128 lwhitemg | .002428 -.019677 .000073 -.010887 -.70828 .076987 _cons | -.757551 -2.57281 .004945 -.589669 1.7049 -.189702 285.896 42</p><p>. . . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping Brazil . drop if ccode==330760 (10 observations deleted)</p><p>. </p><p>. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 488487 1561789 7348 0 1.39e+07 immig | 1000 33427.69 117047.8 2790 0 1137050 gdp | 1000 2.72e+11 9.69e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.5044 16.69005 102.7439 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.80e+07 1.54e+08 1.02e+07 41000 1.26e+09</p><p> popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1043.11 10901.71 16.2185 .0068 270182.6 remote | 1000 6699.616 4128.267 6764 1293 39620 dist | 1000 13362.32 3531.729 14305 2409 17972 open | 1000 .7136704 .3861407 .63975 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.050508 .1786471 1.016437 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------43</p><p>. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou > ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 401831.3 1598090 2944.5 0 1.39e+07 immig | 870 14857.51 27144.21 1403.5 0 158613 gdp | 870 2.29e+11 1.00e+12 1.00e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.6028 17.00813 101.6928 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.17e+07 1.64e+08 1.03e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1182.983 11681.74 22.9426 .0068 270182.6 remote | 870 7120.051 4100.423 6927 1293 39620 dist | 870 13191.63 3420.734 14040 2410 17972 phone | 870 157.8029 242.2526 47.025 .54 1449.75 open | 870 .7218987 .4071896 .63975 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.041772 .1831318 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. 44</p><p>. . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 10453.98 Log likelihood = -547.6266 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3221989 .0303017 10.63 0.000 .2628088 .3815891 lgdp | 1.199812 .0328465 36.53 0.000 1.135434 1.26419 lgdpau | .1660327 .6066228 0.27 0.784 -1.022926 1.354992 lgdpdfrati~w | -.8910203 .2459937 -3.62 0.000 -1.373159 -.4088814 lpopau | -2.682483 2.093429 -1.28 0.200 -6.785529 1.420563 lpop | .0200435 .041031 0.49 0.625 -.0603758 .1004628 lxrate1 | -.1340721 .0169401 -7.91 0.000 -.1672742 -.1008701 lremote | -.4469176 .0757392 -5.90 0.000 -.5953636 -.2984715 ldist | -2.163849 .16602 -13.03 0.000 -2.489242 -1.838456 lopen | .277687 .0563841 4.92 0.000 .1671762 .3881977 english | .948382 .128343 7.39 0.000 .6968344 1.19993 white | 4.54096 .5828932 7.79 0.000 3.39851 5.68341 lwhitemg | -.419032 .0516372 -8.11 0.000 -.520239 -.317825 _cons | 42.98905 19.25377 2.23 0.026 5.252359 80.72575 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000918 lgdp | -.00029 .001079 lgdpau | -.000883 .001348 .367991 lgdpdfrati~w | -.000853 .000131 -.009555 .060513 lpopau | .001934 -.00787 -1.24634 .050439 4.38245 lpop | -.000125 -.000741 .000152 .000158 -.000558 .001684 lxrate1 | .00009 .000164 .000392 .000116 -.002609 -.000102 .000287 lremote | .000409 .000023 -.000434 -.001737 -.002839 -.000194 .000077 ldist | .001532 .001183 .001375 -.001709 -.01723 .000056 .001872 lopen | -.000147 .000593 .002471 .000706 -.016941 .000331 .000134 english | -.001145 .002853 .002895 .001995 -.010358 -.001534 .000542 white | .004629 -.002555 .002759 -.011154 -.022885 .005227 .000213 lwhitemg | -.000569 .000227 -.000273 .001036 .002687 -.000425 -.000048 _cons | -.024454 .070276 10.9936 -.618279 -39.6981 -.001181 .010661</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .005736 ldist | .004324 .027563 lopen | .001397 .00074 .003179 english | -.003447 .003034 -.000986 .016472 white | .000261 -.003384 -.00025 -.002807 .339765 lwhitemg | .00014 -.000288 -.000075 .000376 -.029587 .002666 45</p><p>_cons | -.028329 -.09186 .180304 .049737 .277718 -.030272 370.708</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 72470.03 Log likelihood = -971.6456 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0497779 .0139602 3.57 0.000 .0224164 .0771394 lgdp | 1.635324 .0508471 32.16 0.000 1.535665 1.734982 lgdpau | .8873081 .3611032 2.46 0.014 .1795588 1.595057 lgdpdfrati~w | -.4229691 .1487882 -2.84 0.004 -.7145885 -.1313496 lpopau | -6.43209 1.220048 -5.27 0.000 -8.82334 -4.04084 lpop | -.398691 .0840446 -4.74 0.000 -.5634154 -.2339666 lxrate1 | -.1106484 .0211669 -5.23 0.000 -.1521348 -.0691621 lremote | -.9656801 .0910697 -10.60 0.000 -1.144173 -.7871868 ldist | -3.190204 .1583738 -20.14 0.000 -3.500611 -2.879797 lopen | -.0546493 .0269337 -2.03 0.042 -.1074383 -.0018602 english | 1.031093 .0867598 11.88 0.000 .8610472 1.201139 white | 4.484711 .7561797 5.93 0.000 3.002626 5.966796 lwhitemg | -.4480635 .0721937 -6.21 0.000 -.5895606 -.3065664 _cons | 96.10324 11.44105 8.40 0.000 73.6792 118.5273 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000195 lgdp | -.000278 .002585 lgdpau | -.001242 .00178 .130396 lgdpdfrati~w | -.000596 .000581 -.011872 .022138 lpopau | .00487 -.007602 -.431369 .024177 1.48852 lpop | .000189 -.004041 -.001482 .000361 .004856 .007063 lxrate1 | -.000029 .000325 -.000037 .00041 -.003365 -.000384 .000448 lremote | .000449 .00041 -.0064 -.002962 .022409 -.001335 .000105 ldist | .000646 -.001374 -.006229 -.001208 .015 .002159 .000625 lopen | .000045 -.000097 -.00096 .000958 .003524 .000262 -.000075 english | -.00043 .000431 .003184 .002596 -.020998 -8.2e-06 .001217 white | .001232 -.012377 -.010171 -.003772 .042554 .018836 -.001243 lwhitemg | -.000095 .000675 .000431 .000212 -.002865 -.000948 .000165 _cons | -.055231 .093487 3.85074 -.090041 -13.6571 -.069606 .046694</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .008294 ldist | .003519 .025082 lopen | .000582 .000202 .000725 english | -.002592 .002349 -.000408 .007527 white | .005195 -.023743 .001709 -.003065 .571808 lwhitemg | .000054 .00324 -.000132 .000496 -.053239 .005212 _cons | -.298239 -.366649 -.042895 .249775 -.265581 .003394 130.898 46</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8565.73 Log likelihood = -933.1487 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0922318 .0214827 4.29 0.000 .0501264 .1343372 lgdp | 1.647111 .0690919 23.84 0.000 1.511693 1.782528 lgdpau | .1909031 .4977579 0.38 0.701 -.7846844 1.166491 lgdpdfrati~w | -.4581472 .2121884 -2.16 0.031 -.8740288 -.0422655 lpopau | -3.220877 1.736563 -1.85 0.064 -6.624478 .1827238 lpop | -.5431275 .0812242 -6.69 0.000 -.7023239 -.3839311 lxrate1 | -.1613751 .0268418 -6.01 0.000 -.2139841 -.1087661 lremote | -.2816059 .1126217 -2.50 0.012 -.5023404 -.0608714 ldist | -4.358191 .3372323 -12.92 0.000 -5.019154 -3.697228 lopen | .0706411 .0415152 1.70 0.089 -.0107273 .1520094 english | 1.138888 .1462681 7.79 0.000 .8522076 1.425568 white | 10.53739 1.949025 5.41 0.000 6.717373 14.35741 lwhitemg | -.8458002 .1944462 -4.35 0.000 -1.226908 -.4646926 _cons | 68.02983 16.53934 4.11 0.000 35.61332 100.4463 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000462 lgdp | -.000687 .004774 lgdpau | -.001316 .002637 .247763 lgdpdfrati~w | -.000833 .002586 -.015897 .045024 lpopau | .00349 -.015564 -.835266 .05314 3.01565 lpop | .000478 -.004165 -.000551 -.002216 .00201 .006597 lxrate1 | .000026 .000403 -.000254 .001001 -.004779 -.000579 .00072 lremote | -.000023 -.001535 -.004995 -.000331 .017511 -.00087 .000195 ldist | .002186 .007849 -.008432 -.000256 -.021479 -.0017 .001347 lopen | .000102 -.000703 .000383 .001824 -.001259 .00111 -.000223 english | -.000867 .001711 .004439 .001597 -.037057 .003223 .00198 white | .00089 -.031599 .008488 -.004765 -.029362 .027883 .005079 lwhitemg | -.000099 .001554 -.001686 -.000056 .008036 -.001704 -.000501 _cons | -.037228 .08738 7.4542 -.52638 -27.816 -.005514 .067285</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .012684 ldist | .002549 .113726 lopen | .000458 -.001007 .001724 english | -.005285 .005238 -.001434 .021394 white | .014558 -.137588 .00308 .028073 3.7987 lwhitemg | .000661 .009905 -.000153 -.003064 -.371102 .037809 _cons | -.24921 -.693166 .014381 .394969 1.67629 -.194187 273.55</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog 47</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2328.19 Log likelihood = -1113.511 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1021156 .0335705 3.04 0.002 .0363187 .1679125 lgdp | .920797 .0751801 12.25 0.000 .7734467 1.068147 lgdpau | -.4461326 .853224 -0.52 0.601 -2.118421 1.226156 lgdpdfrati~w | -.3397956 .3489667 -0.97 0.330 -1.023758 .3441666 lpopau | .1968337 2.916265 0.07 0.946 -5.518942 5.912609 lpop | -.0441361 .0934995 -0.47 0.637 -.2273918 .1391196 lxrate1 | -.1394802 .0332415 -4.20 0.000 -.2046324 -.0743281 lremote | .3932255 .2338323 1.68 0.093 -.0650774 .8515285 ldist | -1.469456 .3258212 -4.51 0.000 -2.108054 -.8308584 lopen | .3683613 .0756889 4.87 0.000 .2200137 .5167089 english | 1.794696 .2281092 7.87 0.000 1.34761 2.241782 white | 1.066016 2.286539 0.47 0.641 -3.415519 5.547551 lwhitemg | .2156932 .2051721 1.05 0.293 -.1864367 .617823 _cons | 1.658797 27.46345 0.06 0.952 -52.16857 55.48617 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001127 lgdp | -.001049 .005652 lgdpau | -.001557 .000891 .727991 lgdpdfrati~w | 9.0e-06 .000806 -.02067 .121778 lpopau | .002272 -.008284 -2.4394 .046962 8.5046 lpop | .000371 -.005171 .000424 -.000388 -.000233 .008742 lxrate1 | .00011 .00089 .000394 .002194 -.008014 -.001253 .001105 lremote | .001067 .00061 -.028031 -.016569 .093448 .000775 -.001108 ldist | .003354 -.007045 -.017302 -.00568 .047122 .012963 -.000236 lopen | .000203 -.001115 .004304 .003395 -.021777 .003064 -.000182 english | -.002441 -2.7e-06 .007345 .005586 -.01694 -.001942 .001783 white | .003193 -.021852 .108603 .012607 -.425634 .017439 .000627 lwhitemg | -.000423 .000716 -.011556 -.00273 .04735 -.000216 -.000227 _cons | -.025218 .134046 21.7806 -.17662 -78.2454 -.156777 .127709</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054678 ldist | .016072 .106159 lopen | .001783 -.001374 .005729 english | -.013429 .01429 -.002524 .052034 white | .035745 .009477 .00616 .039093 5.22826 lwhitemg | -.000013 .001896 -.000314 -.002813 -.457174 .042096 _cons | -1.45474 -1.54612 .222865 .08602 3.98537 -.508474 754.241</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression 48</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 68278.78 Log likelihood = -906.6679 Prob > chi2 = 0.0000</p><p>------</p><p> lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0254022 .0141927 1.79 0.073 -.0024151 .0532195 lgdp | 1.59689 .0525662 30.38 0.000 1.493862 1.699918 lgdpau | .6520706 .3902323 1.67 0.095 -.1127707 1.416912 lgdpdfrati~w | -.1978852 .1408348 -1.41 0.160 -.4739163 .0781458 lpopau | -6.57492 1.320931 -4.98 0.000 -9.163898 -3.985942 lpop | -.2367292 .0907562 -2.61 0.009 -.4146081 -.0588504 lxrate1 | -.0317558 .018847 -1.68 0.092 -.0686953 .0051837 lremote | -.6092037 .1517003 -4.02 0.000 -.9065308 -.3118766 ldist | -2.533549 .1626507 -15.58 0.000 -2.852338 -2.214759 lopen | -.0347603 .0293845 -1.18 0.237 -.0923528 .0228323 english | 1.173341 .1143198 10.26 0.000 .9492788 1.397404 white | 3.611596 .8510207 4.24 0.000 1.943627 5.279566 lwhitemg | -.2775641 .0780208 -3.56 0.000 -.4304821 -.1246461 _cons | 93.12775 12.42432 7.50 0.000 68.77652 117.479</p><p>------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000201 lgdp | -.000218 .002763 lgdpau | -.000805 .001936 .152281 lgdpdfrati~w | -.000346 .000864 -.007371 .019834 lpopau | .002664 -.006814 -.505772 .012092 1.74486 lpop | .00014 -.004481 -.001561 -.000274 .003496 .008237 lxrate1 | .000013 .000235 -.000043 .000456 -.002528 -.000291 .000355 lremote | .000032 -.00087 -.015573 -.003473 .055506 -.000049 -.000184 ldist | .000937 -.005239 -.003391 .000921 .000835 .009142 .000672 lopen | .000015 -.000066 -.00095 .001122 .003253 .000265 -.000066 english | -.000331 .000017 .003943 .00246 -.01913 -.000481 .000978 white | .000715 -.015414 -.017362 -.001831 .033359 .027274 .002011 lwhitemg | -.000105 .000729 -.000055 -.000228 .002702 -.001492 -.000227 _cons | -.03021 .127838 4.55583 -.019408 -16.0924 -.131965 .035731</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .023013 ldist | -.002893 .026455 lopen | .001147 .000247 .000863 english | -.004621 .005583 -.000522 .013069 white | .01742 .030834 .001034 .004048 .724236 lwhitemg | .0009 -.001997 4.4e-06 -.000274 -.063358 .006087 _cons | -.662383 -.187876 -.044824 .20094 -.636387 -.023842 154.364</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares 49</p><p>Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 9658.75 Log likelihood = -963.6933 Prob > chi2 = 0.0000</p><p>------</p><p> lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .189206 .0295921 6.39 0.000 .1312066 .2472053 lgdp | 1.600593 .0696457 22.98 0.000 1.46409 1.737096 lgdpau | -.0585307 .5530397 -0.11 0.916 -1.142469 1.025407 lgdpdfrati~w | -.1844107 .2472434 -0.75 0.456 -.6689988 .3001774 lpopau | -1.364298 1.943511 -0.70 0.483 -5.173509 2.444913 lpop | -.5264478 .0800042 -6.58 0.000 -.6832532 -.3696425 lxrate1 | -.1414232 .0280161 -5.05 0.000 -.1963338 -.0865126 lremote | -.2799386 .10954 -2.56 0.011 -.4946331 -.065244 ldist | -3.393783 .3332941 -10.18 0.000 -4.047027 -2.740539 lopen | .1097714 .0473161 2.32 0.020 .0170336 .2025092 english | .9179382 .1438201 6.38 0.000 .6360561 1.19982 white | 10.46261 1.921512 5.44 0.000 6.696512 14.2287 lwhitemg | -.8934413 .1918132 -4.66 0.000 -1.269388 -.5174944 _cons | 34.53754 18.52528 1.86 0.062 -1.771341 70.84643</p><p>------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000876 lgdp | -.001238 .004851 lgdpau | -.001604 .002935 .305853 lgdpdfrati~w | -.001172 .002662 -.020263 .061129 lpopau | .003974 -.015787 -1.04068 .080631 3.77723 lpop | .000724 -.004162 -.000958 -.001696 .00549 .006401 lxrate1 | .000085 .000289 -.000291 .001146 -.004516 -.00053 .000785 lremote | .000055 -.001219 -.003042 -.00047 .006196 -.000985 .000215 ldist | .004183 .00249 -.00996 -.002268 -.019778 .000408 .001429 lopen | .000138 -.00081 .001626 .001513 -.007365 .001388 -.000285 english | -.0015 .002896 .002246 .004462 -.019727 .001207 .002048 white | .000428 -.027482 .011894 .001904 -.005201 .021903 .00545 lwhitemg | -.000035 .001524 -.001827 -.00057 .004282 -.001391 -.000516 _cons | -.050793 .131749 9.3434 -.875337 -35.0749 -.069063 .064007</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .011999 ldist | .005332 .111085 lopen | .000365 -.00112 .002239 english | -.005157 -.001471 -.00174 .020684 white | .012318 -.149492 .003449 .023337 3.69221 lwhitemg | .000649 .012644 -.000207 -.002667 -.362083 .036792 _cons | -.138224 -.601105 .083957 .232473 1.31913 -.158223 343.186</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) 50</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8203.08 Log likelihood = -1124.035 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0263254 .0163716 1.61 0.108 -.0057623 .0584132 lgdp | 1.395924 .0515678 27.07 0.000 1.294853 1.496995 lgdpau | .6708442 .5569601 1.20 0.228 -.4207775 1.762466 lgdpdfrati~w | -.0527853 .1889307 -0.28 0.780 -.4230826 .317512 lpopau | -5.978946 1.892656 -3.16 0.002 -9.688485 -2.269408 lpop | .0141241 .0696363 0.20 0.839 -.1223605 .1506087 lxrate1 | -.0743806 .0222541 -3.34 0.001 -.1179978 -.0307633 lremote | -1.205969 .1626665 -7.41 0.000 -1.52479 -.8871488 ldist | -3.66639 .231587 -15.83 0.000 -4.120292 -3.212488 lopen | .0863571 .0459177 1.88 0.060 -.00364 .1763543 english | 2.366468 .1392743 16.99 0.000 2.093496 2.639441 white | 3.350233 1.161603 2.88 0.004 1.073533 5.626932 lwhitemg | -.1853271 .0982163 -1.89 0.059 -.3778276 .0071733 _cons | 98.42704 17.85286 5.51 0.000 63.43608 133.418 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000268 lgdp | -.000455 .002659 lgdpau | -.000312 .000124 .310205 lgdpdfrati~w | -.000633 .000667 .002985 .035695 lpopau | -.001046 .001017 -1.03234 -.007655 3.58215 lpop | .000248 -.00271 -.000348 .000324 -.001054 .004849 lxrate1 | -.000033 .000295 .000447 .000668 -.00319 -.000494 .000495 lremote | .000385 .001148 -.016621 -.002277 .049832 -.001356 -.000286 ldist | .000805 .001182 -.01049 -.002298 .017075 .000199 .000303 lopen | .000094 -.000416 -.000106 .002524 .000867 .000877 -.000149 english | -.000888 .000961 .00335 .00215 -.012138 .001074 .001358 white | .000551 -.012795 -.000597 -.000527 -.004067 .022356 -.000085 lwhitemg | -.000013 .000662 -.001031 .000132 .003659 -.001552 .000078 _cons | .020816 -.057563 9.23227 .034968 -32.9374 .02032 .03906</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .02646 ldist | .016678 .053633 lopen | .001113 .000274 .002108 english | -.004972 .003247 -.001602 .019397 white | -.000322 -.003555 .001123 .03031 1.34932 lwhitemg | .001523 .001654 3.5e-06 -.002781 -.110389 .009646 _cons | -.783458 -.700885 -.029507 .078254 .038081 -.052909 318.725</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 51</p><p>Wald chi2(13) = 686.44 Log likelihood = -577.7911 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2947635 .0397758 7.41 0.000 .2168044 .3727227 lgdp | .1884155 .0736343 2.56 0.011 .0440949 .3327361 lgdpau | -1.565925 .2996087 -5.23 0.000 -2.153147 -.9787028 lgdpdfrati~w | -.5505116 .1822316 -3.02 0.003 -.907679 -.1933441 lpopau | 2.716679 1.010003 2.69 0.007 .7371084 4.696249 lpop | .5040758 .0870795 5.79 0.000 .3334031 .6747484 lxrate1 | -.208019 .0255026 -8.16 0.000 -.2580031 -.1580349 lremote | -.0466478 .0862935 -0.54 0.589 -.21578 .1224844 ldist | -1.704546 .3785474 -4.50 0.000 -2.446486 -.9626071 lopen | .0771781 .0337473 2.29 0.022 .0110346 .1433216 english | .6086579 .2090259 2.91 0.004 .1989748 1.018341 white | 9.643816 .7492735 12.87 0.000 8.175267 11.11236 lwhitemg | -.9524957 .0751496 -12.67 0.000 -1.099786 -.8052051 _cons | 6.526554 9.822983 0.66 0.506 -12.72614 25.77925 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------</p><p> limmig | .001582 lgdp | -.001665 .005422 lgdpau | .000278 .001308 .089765 lgdpdfrati~w | -.000306 .002032 .009475 .033208 lpopau | .00051 -.008845 -.28855 -.008377 1.02011 lpop | .000172 -.003748 -.003513 -.00186 .005251 .007583 lxrate1 | .000014 .000482 .00396 .001879 -.012685 -.000681 .00065 lremote | .00043 .000496 -.004137 -.002436 .008818 -.000356 -.00024 ldist | .002724 -.009841 .00119 -.003424 -.025874 .017254 .000282 lopen | -.000128 -.000275 -.003069 -.000115 .006751 .000668 -.000297 english | -.002139 .002262 .009497 .005039 -.041521 .004384 .001578 white | .007829 -.008416 .028523 .012309 -.107406 .013279 .004294 lwhitemg | -.000684 -.000105 -.00304 -.001629 .011661 -.000383 -.000491 _cons | -.020258 .142081 2.44947 -.116892 -8.99338 -.187012 .100325</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .007447 ldist | .007227 .143298 lopen | .000187 .000188 .001139 english | -.000504 .009595 -.000821 .043692 white | -.000636 -.024747 -.002249 .055697 .561411 lwhitemg | .000351 .005838 .000292 -.00328 -.05336 .005647 _cons | -.176166 -1.09704 -.035697 .206661 1.13463 -.153428 96.491</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 4006.61 Log likelihood = -591.9787 Prob > chi2 = 0.0000 52</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0968355 .0223026 4.34 0.000 .0531232 .1405478 lgdp | .1441149 .0382858 3.76 0.000 .0690761 .2191538 lgdpau | -.0560287 .0384821 -1.46 0.145 -.1314523 .0193948 lgdpdfrati~w | -.0789483 .0260692 -3.03 0.002 -.130043 -.0278536 lpopau | 2.157802 .17082 12.63 0.000 1.823001 2.492603 lpop | .866884 .0966456 8.97 0.000 .677462 1.056306 lxrate1 | -.0087579 .0049299 -1.78 0.076 -.0184203 .0009046 lremote | .0994862 .0210305 4.73 0.000 .0582673 .1407051 ldist | -3.273745 .3324093 -9.85 0.000 -3.925255 -2.622235 lopen | .0060072 .0194949 0.31 0.758 -.0322021 .0442165 english | 1.18584 .2866586 4.14 0.000 .6239998 1.747681 white | 23.82918 2.980861 7.99 0.000 17.9868 29.67156 lwhitemg | -2.183569 .2752865 -7.93 0.000 -2.723121 -1.644017 _cons | -15.66007 4.389389 -3.57 0.000 -24.26311 -7.057024 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000497 lgdp | -.000204 .001466 lgdpau | -.000365 -.00034 .001481 lgdpdfrati~w | .000159 -.000596 .000307 .00068 lpopau | .002527 .000416 -.005369 .000174 .029179 lpop | -.000258 -.001422 .001029 .000347 -.002973 .00934 lxrate1 | .000012 .000037 -.000027 .000012 .000288 -.000138 .000024 lremote | -.000148 .000616 -.000261 -.000432 .000028 -.000445 .000012 ldist | .001755 -.000056 -.001485 .000093 .013279 -.001228 -.000011 lopen | -.000213 -.000135 .00019 -.000151 -.002009 .00072 -.000067 english | -.000411 -.000438 .000408 .000247 -.005722 -.000921 .00002 white | .001138 -.003741 .001295 .001339 -.005142 .024829 -.000314 lwhitemg | -.000258 .000102 .000036 -.00004 -.0011 -.002896 .00003 _cons | -.042231 -.012207 .060147 -.00181 -.444112 -.075504 -.002928</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .000442 ldist | -.000031 .110496 lopen | .000066 -.000547 .00038 english | -.000282 .055314 .000044 .082173 white | -.001619 .013434 .001005 .039864 8.88553 lwhitemg | .000057 -.003256 -.000031 -.002677 -.808998 .075783 _cons | -.002688 -1.22995 .02662 -.436482 -.401515 .09361 19.2667</p><p>. . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 527.72 Log likelihood = -558.5398 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5214381 .0518647 10.05 0.000 .4197851 .6230911 lgdp | .0322439 .0864032 0.37 0.709 -.1371032 .201591 53</p><p> lgdpau | 2.30862 .8208576 2.81 0.005 .6997684 3.917471 lgdpdfrati~w | -.7304942 .3070547 -2.38 0.017 -1.33231 -.1286781 lpopau | -11.43099 2.822191 -4.05 0.000 -16.96238 -5.899593 lpop | .3228242 .1107236 2.92 0.004 .1058099 .5398384 lxrate1 | -.0929292 .027753 -3.35 0.001 -.1473242 -.0385343 lremote | -.0476003 .261086 -0.18 0.855 -.5593194 .4641188 ldist | -1.779939 .3347786 -5.32 0.000 -2.436093 -1.123785 lopen | .071421 .0547033 1.31 0.192 -.0357955 .1786374 english | .0925529 .2336526 0.40 0.692 -.3653979 .5505036 white | 9.510747 1.184586 8.03 0.000 7.189001 11.83249 lwhitemg | -.8674905 .1037603 -8.36 0.000 -1.070857 -.664124 _cons | 143.6483 26.77422 5.37 0.000 91.17179 196.1248 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00269 lgdp | -.0017 .007466 lgdpau | .000524 -.000302 .673807 lgdpdfrati~w | -.001711 .002144 -.021083 .094283 lpopau | -.005588 -.006547 -2.25118 .089967 7.96476 lpop | -.000354 -.005827 -.001254 -.000892 .002523 .01226 lxrate1 | .000138 -.000138 .000696 .000833 -.005636 -.000474 .00077 lremote | .001641 .004702 -.021366 -.01436 .054728 -.00253 .000327 ldist | .00572 .000379 -.010118 -.006552 -.01062 .004434 .000282 lopen | -.000282 .000801 .000685 -.000585 -.011758 .000393 .000028 english | -.002356 .003138 .005383 .00678 -.028567 -.000961 .001526 white | .012488 -.030152 .022602 -.004178 -.089703 .039348 .007178 lwhitemg | -.001247 .001408 -.003395 -.000488 .015168 -.002133 -.000575 _cons | .036932 .005898 19.9889 -.87802 -73.401 -.089514 .075762</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .068166 ldist | .033857 .112077 lopen | .001125 .001718 .002992 english | -.011866 .016799 .000394 .054594 white | .016033 -.002743 -.001709 .032757 1.40324 lwhitemg | .00095 .000961 .000064 -.002387 -.117938 .010766 _cons | -1.32199 -1.03098 .131168 .201571 .675241 -.163194 716.859</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1488.09 Log likelihood = -396.161 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0451795 .0196805 2.30 0.022 .0066063 .0837527 lgdp | .1705712 .0529194 3.22 0.001 .066851 .2742913 lgdpau | -.2917645 .3233423 -0.90 0.367 -.9255039 .3419748 lgdpdfrati~w | -.4782278 .2206239 -2.17 0.030 -.9106427 -.0458129 lpopau | 3.132248 1.157989 2.70 0.007 .8626319 5.401864 lpop | .0566452 .0666636 0.85 0.395 -.0740132 .1873035 lxrate1 | -.0949207 .0188967 -5.02 0.000 -.1319574 -.0578839 lremote | -.1703986 .1158766 -1.47 0.141 -.3975125 .0567152 ldist | -1.462528 .2281544 -6.41 0.000 -1.909702 -1.015354 54</p><p> lopen | .0280982 .0292877 0.96 0.337 -.0293047 .0855011 english | 1.851555 .2032767 9.11 0.000 1.45314 2.24997 white | 9.789214 1.764437 5.55 0.000 6.330981 13.24745 lwhitemg | -.7225267 .1820798 -3.97 0.000 -1.079397 -.3656569 _cons | -32.14702 11.81289 -2.72 0.007 -55.29986 -8.994182 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000387 lgdp | -.00041 .0028 lgdpau | .000405 -.001557 .10455 lgdpdfrati~w | -.000626 -.000316 -.00317 .048675 lpopau | -.001882 .007676 -.359359 .034949 1.34094 lpop | .000185 -.002761 .0009 .000833 -.007707 .004444 lxrate1 | -8.7e-06 .000172 .001305 .000649 -.00644 -.000181 .000357 lremote | .000249 .000847 -.007416 -.003718 .02632 -.000272 -.000425 ldist | .001116 .000367 -.002263 -.001206 -.002538 .002641 -.000316 lopen | .000033 -.000248 -.000594 .001176 -.000153 .000338 -2.7e-06 english | -.000403 -.001963 .002934 .003473 -.009624 .003661 .000216 white | .002001 -.020761 .014062 -.000821 -.077061 .022374 .000906 lwhitemg | -.0002 .001252 -.001208 .000356 .005661 -.001484 -.000069 _cons | .012806 -.113883 3.32087 -.511114 -13.0819 .072736 .076449</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .013427 ldist | .002808 .052054 lopen | -.000087 4.4e-06 .000858 english | -.003192 .016163 -7.7e-06 .041321 white | .013746 -.031962 .001267 .05553 3.11324 lwhitemg | -.000687 .002246 -.000072 -.005283 -.317097 .033153 _cons | -.395956 -.472638 .018431 -.063789 1.18456 -.081143 139.544</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1030.09 Log likelihood = -854.9093 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1569718 .0647439 2.42 0.015 .030076 .2838675 lgdp | .4804542 .1096566 4.38 0.000 .2655312 .6953772 lgdpau | -2.452851 1.131665 -2.17 0.030 -4.670872 -.2348288 lgdpdfrati~w | -1.138654 .4486308 -2.54 0.011 -2.017954 -.2593535 lpopau | 5.170641 3.880492 1.33 0.183 -2.434984 12.77627 lpop | .2366786 .1232333 1.92 0.055 -.0048544 .4782115 lxrate1 | -.1658214 .0417319 -3.97 0.000 -.2476145 -.0840282 lremote | 1.821793 .2738816 6.65 0.000 1.284995 2.358591 ldist | -1.679792 .4897643 -3.43 0.001 -2.639712 -.7198717 lopen | -.002079 .0776952 -0.03 0.979 -.1543588 .1502007 english | .2945389 .2602547 1.13 0.258 -.2155509 .8046287 white | 11.08193 1.448979 7.65 0.000 8.241985 13.92188 lwhitemg | -.8335773 .1398237 -5.96 0.000 -1.107627 -.5595278 _cons | -31.98039 36.43603 -0.88 0.380 -103.3937 39.43291 ------55</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004192 lgdp | -.004389 .012025 lgdpau | -.00208 .005133 1.28066 lgdpdfrati~w | -.001867 .004017 -.006257 .20127 lpopau | .00283 -.025833 -4.28199 .071922 15.0582 lpop | .001601 -.010117 -.002194 -.002304 .010212 .015186 lxrate1 | .000103 .001679 .000863 .001377 -.010559 -.001592 .001742 lremote | .001559 -.001762 -.030395 -.01925 .074098 .002149 .000934 ldist | .012331 -.010881 -.010735 -.011314 -.006963 .01549 -.002687 lopen | .000332 -.000864 .006708 .001096 -.034519 .002219 -.000386 english | -.005797 .011026 .007638 .001812 -.029111 -.008962 -.000596 white | .026942 -.048489 -.034508 -.03507 .030909 .046348 .005944 lwhitemg | -.003018 .002901 -.000221 .001093 .012604 -.00228 -.000888 _cons | -.069687 .313862 37.7426 -1.00742 -137.786 -.287845 .149772</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .075011 ldist | .024534 .239869 lopen | .002969 .004427 .006037 english | -.00427 .026544 -.00067 .067733 white | .114348 .137177 .002396 .030139 2.09954 lwhitemg | -.004698 -.017299 -.000086 -.005054 -.193067 .019551 _cons | -1.31174 -2.14703 .316959 -.025076 -1.71409 -.007166 1327.58</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100</p><p>Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 551.06 Log likelihood = -159.6335 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .03089 .0308152 1.00 0.316 -.0295067 .0912868 lgdp | .1710803 .0653523 2.62 0.009 .0429921 .2991685 lgdpau | .5183105 .4629533 1.12 0.263 -.3890613 1.425682 lgdpdfrati~w | .3685359 .2005396 1.84 0.066 -.0245145 .7615864 lpopau | 2.754279 1.648476 1.67 0.095 -.4766748 5.985233 lpop | .2983737 .0856321 3.48 0.000 .1305378 .4662096 lxrate1 | -.0312634 .0197864 -1.58 0.114 -.070044 .0075173 lremote | -.0287943 .1448256 -0.20 0.842 -.3126472 .2550587 ldist | -2.169167 .4248357 -5.11 0.000 -3.00183 -1.336504 lopen | .0618375 .0432379 1.43 0.153 -.0229072 .1465822 english | .9142913 .1952453 4.68 0.000 .5316175 1.296965 white | 15.70965 1.203847 13.05 0.000 13.35015 18.06915 lwhitemg | -1.339147 .1106917 -12.10 0.000 -1.556099 -1.122196 _cons | -46.86431 17.04653 -2.75 0.006 -80.2749 -13.45373 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00095 56</p><p> lgdp | -.000781 .004271 lgdpau | -.000553 -.000588 .214326 lgdpdfrati~w | -.000823 .00062 -.000448 .040216 lpopau | .000874 .003475 -.723534 .017477 2.71747 lpop | -.000112 -.003017 .000959 .00078 -.006384 .007333 lxrate1 | .000075 .000111 .000379 .000765 -.003847 -.000134 .000392 lremote | .000909 .003015 -.009777 -.005021 .030307 -.002068 .000051 ldist | .002765 -.003267 -.011427 -.009137 .004961 .00931 .000305 lopen | -6.9e-06 -.000105 .000468 .000073 -.006612 .000623 -.000054 english | -.001601 -.000614 .0044 .003653 -.018691 .005068 .000394 white | .004917 -.020082 .044085 .000224 -.372295 .028552 .005231 lwhitemg | -.000569 .001134 -.004362 -.000161 .036936 -.002198 -.000555 _cons | -.01919 -.082043 6.573 -.21377 -26.3986 -.038305 .04772</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .020974 ldist | .01932 .180485 lopen | .000166 .000366 .00187 english | -.005588 .004179 .000038 .038121 white | -.008455 -.024148 -.000353 .052228 1.44925 lwhitemg | .000875 .002845 .000092 -.004505 -.130078 .012253 _cons | -.645758 -1.75737 .086397 .13137 5.26754 -.518376 290.584</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 237.28 Log likelihood = 189.1243 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0072205 .0186602 0.39 0.699 -.0293528 .0437937 lgdp | .2404367 .0503815 4.77 0.000 .1416907 .3391827 lgdpau | -.2421561 .3390402 -0.71 0.475 -.9066627 .4223506 lgdpdfrati~w | -.1026149 .1382634 -0.74 0.458 -.3736062 .1683763 lpopau | 3.988339 1.244519 3.20 0.001 1.549126 6.427551 lpop | -.0585405 .0603023 -0.97 0.332 -.1767309 .0596499 lxrate1 | -.0845236 .0148497 -5.69 0.000 -.1136284 -.0554188 lremote | .2590063 .125488 2.06 0.039 .0130543 .5049583 ldist | -1.324052 .2773294 -4.77 0.000 -1.867608 -.7804961 lopen | .0320977 .028096 1.14 0.253 -.0229695 .0871648 english | .2651403 .165037 1.61 0.108 -.0583262 .5886068 white | 9.563504 2.049991 4.67 0.000 5.545596 13.58141 lwhitemg | -.801855 .1955694 -4.10 0.000 -1.185164 -.4185461 _cons | -53.09676 13.34342 -3.98 0.000 -79.24939 -26.94413 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000348 lgdp | -.000331 .002538 lgdpau | .000271 -.00057 .114948 lgdpdfrati~w | -.000394 .000303 -.005524 .019117 lpopau | -.002471 .004159 -.39609 .025125 1.54883 lpop | .00003 -.002145 -.000156 -5.1e-06 .000566 .003636 lxrate1 | 2.5e-06 -3.3e-06 .000492 .000471 -.004485 -.000104 .000221 lremote | .000243 .001663 -.007539 -.001278 .02684 -.001425 -.000088 57</p><p> ldist | .001548 -.001597 -.001835 -.001324 .002019 .004566 .000048 lopen | -7.1e-06 .000019 .000014 .00013 -.001241 .000163 -.000029 english | -.00047 -.0017 -.00036 .000874 .020888 .004794 .000136 white | .002275 -.015249 .015582 -.003768 -.137221 .015903 .001758 lwhitemg | -.000277 .000953 -.001949 .0004 .013749 -.00128 -.000129 _cons | .022876 -.074278 3.65599 -.27493 -15.6585 -.046062 .06206</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .015747 ldist | .005976 .076912 lopen | .000093 -.000537 .000789 english | -.001067 .016194 -.00028 .027237 white | -.00076 .017119 -.000775 .034663 4.20246 lwhitemg | .000705 -.002761 .000094 -.003328 -.394226 .038247 _cons | -.455754 -.817706 .022061 -.524104 1.77784 -.156082 178.047</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 474.85 Log likelihood = -674.1886 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1783945 .0535215 3.33 0.001 .0734943 .2832947 lgdp | .7215629 .1049987 6.87 0.000 .5157691 .9273567 lgdpau | -.6495234 .6711086 -0.97 0.333 -1.964872 .6658253 lgdpdfrati~w | -.3550858 .2811822 -1.26 0.207 -.9061928 .1960211 lpopau | 3.57805 2.314394 1.55 0.122 -.958079 8.114179 lpop | -.2862868 .1489346 -1.92 0.055 -.5781933 .0056197 lxrate1 | -.1473387 .0330567 -4.46 0.000 -.2121287 -.0825488 lremote | .0764217 .2357478 0.32 0.746 -.3856355 .5384788 ldist | -3.234183 .6949335 -4.65 0.000 -4.596227 -1.872138 lopen | .0495064 .066293 0.75 0.455 -.0804254 .1794382 english | -.3521774 .4406803 -0.80 0.424 -1.215895 .5115401 white | 20.32036 4.151958 4.89 0.000 12.18268 28.45805 lwhitemg | -1.829631 .3815685 -4.80 0.000 -2.577492 -1.081771 _cons | -21.04283 22.79743 -0.92 0.356 -65.72498 23.63931 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002865 lgdp | -.002346 .011025 lgdpau | .001267 -.001409 .450387 lgdpdfrati~w | -.0019 .003399 -.010703 .079063 lpopau | -.008621 -.001431 -1.49974 .062286 5.35642 lpop | -.000076 -.008077 -.001718 -.001778 -.005525 .022182 lxrate1 | .00015 .000533 .002285 .001283 -.011751 -.000905 .001093 lremote | .001002 .004647 -.020666 -.012562 .04046 -.002953 .000455 ldist | .011681 .012067 -.005679 -.004568 -.061324 .004919 .000465 lopen | .000444 -.001069 -.000842 .000013 -.011092 .001975 -.000182 english | -.006286 .00233 .001989 .005829 -.021402 .018982 .000759 white | .007275 -.035456 .125009 .021565 -.354763 .076035 .005503 lwhitemg | -.001306 .001498 -.013083 -.003152 .041385 -.005896 -.000625 _cons | .032408 -.209686 13.3518 -.724856 -49.1615 -.051059 .122449 58</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .055577 ldist | .032146 .482933 lopen | .000635 .003446 .004395 english | -.004057 .136972 -.001401 .194199 white | .026014 .262304 .005654 .304937 17.2388 lwhitemg | -.000053 -.040333 -.000394 -.032986 -1.5569 .145594 _cons | -.974764 -4.14761 .162528 -1.34028 -.701835 .121154 519.723</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1127.63 Log likelihood = -565.2828 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1900617 .0451619 4.21 0.000 .1015461 .2785773 lgdp | .5555698 .1009714 5.50 0.000 .3576694 .7534701 lgdpau | .7913349 .6457329 1.23 0.220 -.4742783 2.056948 lgdpdfrati~w | .0014067 .2773915 0.01 0.996 -.5422707 .5450841 lpopau | -3.47761 2.236274 -1.56 0.120 -7.860627 .9054069 lpop | .5116208 .1304963 3.92 0.000 .2558528 .7673888 lxrate1 | -.0807213 .0296621 -2.72 0.007 -.138858 -.0225847 lremote | -.3249329 .2359001 -1.38 0.168 -.7872885 .1374227 ldist | -2.397304 .4427249 -5.41 0.000 -3.265029 -1.52958 lopen | -.0551216 .0674799 -0.82 0.414 -.1873797 .0771365 english | 1.212358 .3262706 3.72 0.000 .572879 1.851836 white | 22.84366 3.226074 7.08 0.000 16.52067 29.16665 lwhitemg | -2.177105 .2855925 -7.62 0.000 -2.736856 -1.617354 _cons | 44.9609 21.5084 2.09 0.037 2.805212 87.11659 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00204 lgdp | -.001775 .010195 lgdpau | -.002178 .005538 .416971 lgdpdfrati~w | -.001812 .003413 -.017577 .076946 lpopau | .006318 -.036726 -1.39604 .056129 5.00092 lpop | .000325 -.00857 -.004129 -.002859 .018263 .017029 lxrate1 | .000051 .000673 .000597 .001421 -.006893 -.000883 .00088 lremote | .000377 .00432 -.013742 -.017207 .02958 -.003076 .000371 ldist | .007282 -.002683 -.009466 -.002527 -.004483 .017448 .000157 lopen | .00021 -.000018 .000024 .002471 -.00908 .001138 -.000024 english | -.003253 .002014 .005868 .006276 -.025793 -.000749 .000687 white | .006407 -.035332 .027609 -.013659 -.06158 .060903 .003307 lwhitemg | -.000919 .001187 -.004008 -.000369 .01541 -.004337 -.000342 _cons | -.093738 .362332 12.3959 -.39705 -46.0969 -.406675 .088346</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .055649 ldist | .006149 .196005 lopen | .00116 .001717 .004554 english | -.009986 .058786 -.001535 .106453 59</p><p> white | .021912 .063385 .004698 .015779 10.4076 lwhitemg | .000761 -.010277 -.000512 .00008 -.905429 .081563 _cons | -.708236 -1.85559 .105278 -.251196 -.723394 -.010805 462.611</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100</p><p>Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1653.87 Log likelihood = -753.6071 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0506985 .0310801 1.63 0.103 -.0102174 .1116143 lgdp | 1.02293 .0940213 10.88 0.000 .838652 1.207209 lgdpau | .9987403 .6731527 1.48 0.138 -.3206148 2.318095 lgdpdfrati~w | -.0382828 .2606955 -0.15 0.883 -.5492365 .472671 lpopau | 3.051735 2.346451 1.30 0.193 -1.547225 7.650694 lpop | -.4766871 .1375531 -3.47 0.001 -.7462863 -.2070879 lxrate1 | -.1418511 .0223176 -6.36 0.000 -.1855928 -.0981094 lremote | -.4941997 .187456 -2.64 0.008 -.8616066 -.1267927 ldist | -2.194643 .7065325 -3.11 0.002 -3.579421 -.8098645 lopen | -.031975 .0692615 -0.46 0.644 -.1677251 .103775 english | .2174131 .3389429 0.64 0.521 -.4469028 .8817289 white | 28.17106 2.741298 10.28 0.000 22.79822 33.5439 lwhitemg | -2.623387 .2664181 -9.85 0.000 -3.145557 -2.101217 _cons | -64.45412 23.54532 -2.74 0.006 -110.6021 -18.30613 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000966 lgdp | -.001636 .00884 lgdpau | -.000024 .000704 .453135 lgdpdfrati~w | -.00167 .00363 -.012718 .067962 lpopau | -.005997 -.008924 -1.51155 .044577 5.50583 lpop | .001475 -.01067 -.00325 -.003197 .025577 .018921 lxrate1 | .000052 .000289 .00049 .000763 -.008815 -.000639 .000498 lremote | .001047 .004042 -.017673 -.003611 .020074 -.003576 .000286 ldist | .005227 .015014 -.020786 -.000801 -.055743 .004393 .001199 lopen | .000278 -.00074 -.00066 .004609 -.005765 .001145 -.000301 english | -.000824 .002535 .001181 .002479 -.008558 .001238 .000938 white | .014236 -.052976 .021817 -.025197 -.300805 .066452 .007587 lwhitemg | -.001272 .003536 -.003538 .001794 .035655 -.00487 -.000733 _cons | .051606 -.077103 13.5856 -.458857 -51.5321 -.407998 .119769</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .03514 ldist | .058738 .499188 lopen | .000923 .002052 .004797 english | .002379 .076688 -.001546 .114882 white | .030152 .061107 -.005606 .204671 7.51471 lwhitemg | -.001909 -.013495 .000715 -.02281 -.719351 .070979 _cons | -.775237 -4.26058 .08276 -.731808 3.62495 -.347519 554.382</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr 60</p><p>> emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 526.05 Log likelihood = -576.9765 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3900469 .0580403 6.72 0.000 .27629 .5038039 lgdp | .2104455 .0968577 2.17 0.030 .020608 .400283 lgdpau | 1.112981 .7336377 1.52 0.129 -.3249223 2.550885 lgdpdfrati~w | -.4207132 .3119715 -1.35 0.177 -1.032166 .1907397 lpopau | -4.536055 2.53173 -1.79 0.073 -9.498154 .4260448 lpop | .3057661 .1050498 2.91 0.004 .0998722 .5116599 lxrate1 | -.0791068 .0358469 -2.21 0.027 -.1493653 -.0088482 lremote | -.2086243 .2325389 -0.90 0.370 -.6643922 .2471437 ldist | -1.57188 .5912799 -2.66 0.008 -2.730768 -.4129932 lopen | .1068875 .0673858 1.59 0.113 -.0251862 .2389613 english | .0316311 .2875001 0.11 0.912 -.5318588 .595121 white | 20.16305 2.062426 9.78 0.000 16.12077 24.20533 lwhitemg | -1.887005 .1984065 -9.51 0.000 -2.275874 -1.498135 _cons | 56.02295 24.01485 2.33 0.020 8.954711 103.0912 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003369 lgdp | -.00278 .009381 lgdpau | -.002031 .00662 .538224 lgdpdfrati~w | -.002562 .006091 -.006703 .097326 lpopau | .003462 -.035701 -1.79832 .03715 6.40966 lpop | .001012 -.006093 -.004773 -.003993 .013612 .011035 lxrate1 | .000253 .000414 -.000105 .000994 -.004438 -.000695 .001285 lremote | .000559 .003071 -.010721 -.017027 .004112 .00102 .001243 ldist | .012126 .000937 -.005282 -.01008 -.072213 .008181 .000039 lopen | -.000443 .001267 .001888 -.000011 -.020659 .001144 -.000067 english | -.003778 .00564 .0058 .003099 -.022943 -.000794 -.001204 white | .019213 -.038382 -.005402 -.069052 .09512 .011521 -.00018 lwhitemg | -.002379 .002086 -.001698 .00399 .00401 -.00013 -.000266 _cons | -.096128 .277301 15.8017 -.354999 -58.0005 -.225548 .061744</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054074 ldist | .03709 .349612 lopen | .002079 .002963 .004541 english | .004317 .088205 .000351 .082656 white | .104153 .18642 -.009017 .154854 4.2536 lwhitemg | -.007065 -.028956 .000697 -.017588 -.399717 .039365 _cons | -.692388 -2.53349 .206598 -.757153 -3.55732 .287144 576.713</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) 61</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1466.73 Log likelihood = -238.9903 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0053588 .0235757 0.23 0.820 -.0408487 .0515663 lgdp | .4341813 .0832435 5.22 0.000 .271027 .5973355 lgdpau | -.3420987 .487735 -0.70 0.483 -1.298042 .6138442 lgdpdfrati~w | .1575776 .2199147 0.72 0.474 -.2734473 .5886024 lpopau | 1.318546 1.681895 0.78 0.433 -1.977909 4.615 lpop | -.2446215 .121147 -2.02 0.043 -.4820652 -.0071778 lxrate1 | -.0374014 .0226653 -1.65 0.099 -.0818245 .0070217 lremote | -.0205358 .1699572 -0.12 0.904 -.3536457 .3125742 ldist | -4.072042 .5256251 -7.75 0.000 -5.102249 -3.041836 lopen | .0087833 .0486493 0.18 0.857 -.0865675 .1041342 english | -.0190324 .3014296 -0.06 0.950 -.6098236 .5717588 white | 16.34935 2.569678 6.36 0.000 11.31287 21.38583 lwhitemg | -1.195081 .2753303 -4.34 0.000 -1.734719 -.6554438 _cons | 21.50396 16.88691 1.27 0.203 -11.59378 54.6017 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000556 lgdp | -.000679 .006929 lgdpau | .000165 -.002295 .237885 lgdpdfrati~w | -.000877 .00251 -.009485 .048362 lpopau | -.001305 .001568 -.793465 .048689 2.82877 lpop | .000193 -.006601 .000396 -.001082 -.005197 .014677 lxrate1 | -.000028 .000174 .001223 .001005 -.006105 -.000499 .000514 lremote | .000118 .002289 -.017125 -.003602 .050145 -.002706 -.000073 ldist | .002277 .003557 -.010779 -.000713 -.014734 .019253 -.000368 lopen | .000053 -.000136 -.001837 .001268 .001714 .000778 -.000022 english | -.001166 .001097 .001362 .002019 -.003559 .003594 .00058 white | .003949 -.038492 .042587 -.012579 -.279285 .067317 .002267 lwhitemg | -.000438 .001655 -.005136 .000487 .033802 -.005354 -.000048 _cons | .00518 -.068954 7.22204 -.609624 -26.3936 -.165527 .074057</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .028885 ldist | .01335 .276282 lopen | .000063 .000802 .002367 english | .000254 .060985 .00007 .09086 white | -.000688 .161519 -.001086 .111822 6.60325 lwhitemg | .002612 -.020825 .000157 -.011562 -.697299 .075807 _cons | -.769165 -2.63795 .002201 -.65504 1.74754 -.200897 285.168 62</p><p>. . . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping China . drop if ccode==331520 (10 observations deleted)</p><p>. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist op > en english gdpdfrationew white whitemg, stat(n mean sd median min max) col(sta > t) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 458823.6 1535558 7348 0 1.39e+07 immig | 1000 32411.46 116845.9 2790 0 1137050 gdp | 1000 2.71e+11 9.68e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.6778 16.90859 102.8924 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 3.75e+07 1.01e+08 1.02e+07 41000 1.02e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1043.063 10901.71 16.2185 .0068 270182.6 remote | 1000 6735.145 4145.995 6764 1293 39620 dist | 1000 13413.53 3504.725 14305 2409 17972 open | 1000 .7101113 .3894175 .63885 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.052233 .1808002 1.017907 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1</p><p> whitemg | 1000 20501.65 116468.1 0 0 1137050 ------63</p><p>. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" cou</p><p>> ntries)--RHS Variables: . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remo > te dist phone open english gdpdfrationew white whitemg, stat(n mean sd median > min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 367735.3 1566659 2944.5 0 1.39e+07 immig | 870 13689.43 25276.66 1403.5 0 158613 gdp | 870 2.29e+11 1.00e+12 1.00e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.8021 17.26477 101.7385 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 3.96e+07 1.07e+08 1.03e+07 41000 1.02e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1182.929 11681.74 22.9426 .0068 270182.6 remote | 870 7160.889 4116.735 6935.5 1293 39620 dist | 870 13250.49 3391.555 14051 2410 17972 phone | 870 158.6855 242.1138 49.13 .54 1449.75 open | 870 .7178078 .4108407 .63875 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.043755 .1856371 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------64</p><p>. . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8503.02 Log likelihood = -551.5371 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3009236 .0304778 9.87 0.000 .2411881 .3606591 lgdp | 1.258485 .0362056 34.76 0.000 1.187524 1.329447 lgdpau | .3129244 .5961125 0.52 0.600 -.8554347 1.481283 lgdpdfrati~w | -.899496 .2433124 -3.70 0.000 -1.37638 -.4226125 lpopau | -2.954412 2.053723 -1.44 0.150 -6.979635 1.070812 lpop | -.0663154 .0465894 -1.42 0.155 -.157629 .0249982 lxrate1 | -.1208819 .0163549 -7.39 0.000 -.152937 -.0888268 lremote | -.4530894 .0765452 -5.92 0.000 -.6031153 -.3030635 ldist | -2.089104 .154211 -13.55 0.000 -2.391352 -1.786856 lopen | .2440567 .0548695 4.45 0.000 .1365144 .3515991 english | 1.11635 .1412637 7.90 0.000 .8394786 1.393222 white | 4.158475 .5843665 7.12 0.000 3.013138 5.303812 lwhitemg | -.3825582 .0518142 -7.38 0.000 -.4841122 -.2810041 _cons | 43.00773 18.90574 2.27 0.023 5.953166 80.06229 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000929 lgdp | -.00038 .001311 lgdpau | -.001069 .001507 .35535 lgdpdfrati~w | -.000889 .000232 -.008574 .059201 lpopau | .00222 -.008244 -1.19929 .045989 4.21778 lpop | -.000015 -.001053 -.000083 .000123 .000096 .002171 lxrate1 | .000077 .000195 .000376 .000227 -.002589 -.000166 .000267 lremote | .000481 -.000029 -.000844 -.001858 -.001762 -.000124 .000039 ldist | .00156 .00123 .000591 -.001269 -.015381 -.000493 .001492 lopen | -.000102 .000411 .002002 .000745 -.014601 .00064 .000162 english | -.001547 .003666 .003841 .002627 -.012854 -.002583 .000768 white | .004692 -.003368 .0018 -.010728 -.02323 .007386 .000092 lwhitemg | -.000574 .000317 -.000134 .00101 .002478 -.000628 -.000033 _cons | -.024608 .071827 10.5549 -.57401 -38.2225 -.001821 .014945</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .005859 ldist | .004776 .023781 lopen | .001383 .001327 .003011 english | -.003677 .003341 -.001342 .019955 white | .000297 -.003865 .001013 -.005584 .341484 65</p><p> lwhitemg | .000095 -.00022 -.000176 .000722 -.029793 .002685 _cons | -.040744 -.061445 .147123 .062934 .298283 -.029724 357.427</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 62286.86 Log likelihood = -975.1741 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0444149 .0134334 3.31 0.001 .0180859 .0707438 lgdp | 1.710634 .0482333 35.47 0.000 1.616098 1.805169 lgdpau | .89427 .3489646 2.56 0.010 .2103119 1.578228 lgdpdfrati~w | -.4601134 .1441119 -3.19 0.001 -.7425675 -.1776592 lpopau | -6.520976 1.178136 -5.53 0.000 -8.83008 -4.211871 lpop | -.5277791 .0782672 -6.74 0.000 -.68118 -.3743782 lxrate1 | -.0995151 .0203183 -4.90 0.000 -.1393384 -.0596919 lremote | -.8903187 .0986475 -9.03 0.000 -1.083664 -.6969731 ldist | -2.901653 .1381609 -21.00 0.000 -3.172444 -2.630863 lopen | -.0724382 .026775 -2.71 0.007 -.1249162 -.0199602 english | 1.047941 .0796937 13.15 0.000 .8917438 1.204137 white | 3.353383 .760627 4.41 0.000 1.862582 4.844185 lwhitemg | -.3402286 .0726238 -4.68 0.000 -.4825685 -.1978886 _cons | 94.24926 11.07188 8.51 0.000 72.54878 115.9498 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00018 lgdp | -.00023 .002326 lgdpau | -.001116 .001811 .121776 lgdpdfrati~w | -.000537 .0007 -.011046 .020768 lpopau | .004398 -.007806 -.402591 .022258 1.38801 lpop | .000127 -.003533 -.001688 -6.8e-06 .005768 .006126 lxrate1 | -.000023 .000297 -.000069 .000407 -.003034 -.000352 .000413 lremote | .000359 -.000278 -.006828 -.003194 .023677 .000045 .000031 ldist | .000634 -.002605 -.00628 -.001211 .015411 .004618 .000419 lopen | .000039 -.000098 -.000997 .000903 .003722 .00026 -.000081 english | -.000398 .000569 .002763 .002346 -.019234 -.000152 .001121 white | .000603 -.007538 -.01189 -.006445 .048433 .009648 -.000578 lwhitemg | -.000046 .000125 .000462 .000398 -.002857 .000065 .000082 _cons | -.049924 .11196 3.60511 -.073758 -12.7668 -.111897 .044966</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .009731 ldist | .003476 .019088 lopen | .000712 .000354 .000717 english | -.002188 .002122 -.00042 .006351 white | .016833 -.015312 .001454 -.00428 .578553 lwhitemg | -.000725 .002652 -.000086 .000548 -.053506 .005274 _cons | -.325342 -.322697 -.047708 .230045 -.466978 .011662 122.587 66</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8134.57 Log likelihood = -934.681 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0927471 .0217776 4.26 0.000 .0500637 .1354304 lgdp | 1.754094 .069305 25.31 0.000 1.618259 1.889929 lgdpau | .2442193 .5412866 0.45 0.652 -.8166831 1.305122 lgdpdfrati~w | -.4590086 .2113536 -2.17 0.030 -.8732541 -.0447631 lpopau | -3.152578 1.876069 -1.68 0.093 -6.829606 .5244509 lpop | -.6528599 .0794337 -8.22 0.000 -.808547 -.4971727 lxrate1 | -.1529159 .0271723 -5.63 0.000 -.2061726 -.0996592 lremote | -.4088683 .1273173 -3.21 0.001 -.6584056 -.159331 ldist | -4.177883 .34224 -12.21 0.000 -4.848661 -3.507105 lopen | .0493332 .04133 1.19 0.233 -.0316721 .1303385 english | 1.114558 .1438239 7.75 0.000 .8326681 1.396447 white | 9.971391 1.922736 5.19 0.000 6.202897 13.73988 lwhitemg | -.8499996 .1918582 -4.43 0.000 -1.226035 -.4739644 _cons | 64.26126 17.71156 3.63 0.000 29.54723 98.97528 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000474 lgdp | -.000766 .004803 lgdpau | -.001982 .005096 .292991 lgdpdfrati~w | -.000779 .001747 -.018512 .04467 lpopau | .005775 -.024019 -.987804 .058519 3.51964 lpop | .000545 -.004004 -.002923 -.000835 .011504 .00631 lxrate1 | 7.1e-06 .000521 .000262 .000867 -.005694 -.000733 .000738 lremote | -.000061 -.000986 -.007364 -.001909 .024512 -.001455 .00018 ldist | .002052 .008267 -.009037 -.002985 -.01743 -.002176 .001394 lopen | .000098 -.000575 -.00037 .001694 .001843 .000938 -.000189 english | -.000926 .00276 .00706 .003199 -.040972 .002105 .00196 white | .000936 -.030145 .00096 .002241 .016723 .024037 .004172 lwhitemg | -.000082 .001557 -.001627 -.000633 .005811 -.001556 -.000436 _cons | -.055418 .151251 8.81067 -.509719 -32.2491 -.090492 .068505</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .01621 ldist | .006393 .117128 lopen | .000564 -.000622 .001708 english | -.006083 .004486 -.001425 .020685 white | .01231 -.15185 .002302 .019983 3.69692 lwhitemg | .001026 .011853 -.000106 -.002727 -.361465 .03681 _cons | -.371983 -.810016 -.02212 .39889 1.29387 -.182962 313.699</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l 67</p><p>> remote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2100.24 Log likelihood = -1096.358 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0896354 .0408567 2.19 0.028 .0095578 .169713 lgdp | .9385221 .0809313 11.60 0.000 .7798996 1.097145 lgdpau | -.4898539 .8527417 -0.57 0.566 -2.161197 1.181489 lgdpdfrati~w | -.3353722 .350313 -0.96 0.338 -1.021973 .3512286 lpopau | .254947 2.922043 0.09 0.930 -5.472151 5.982045 lpop | -.0119147 .1003021 -0.12 0.905 -.2085033 .1846738 lxrate1 | -.1214161 .0333385 -3.64 0.000 -.1867583 -.0560739 lremote | .5025283 .2359443 2.13 0.033 .040086 .9649706 ldist | -1.594668 .3432501 -4.65 0.000 -2.267426 -.9219105 lopen | .3128152 .0798548 3.92 0.000 .1563026 .4693278 english | 1.800445 .245244 7.34 0.000 1.319776 2.281114 white | 1.586647 2.231569 0.71 0.477 -2.787148 5.960441 lwhitemg | .1813989 .1969353 0.92 0.357 -.2045873 .567385 _cons | 1.131385 27.74669 0.04 0.967 -53.25113 55.5139 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001669 lgdp | -.001582 .00655 lgdpau | -.001442 .001057 .727168 lgdpdfrati~w | -.00027 .001665 -.012597 .122719 lpopau | .001637 -.007666 -2.43396 .042712 8.53833 lpop | .000365 -.005793 -.00004 -.001243 -.001793 .010061 lxrate1 | .000124 .000869 .000584 .00216 -.007801 -.001162 .001111 lremote | .001398 .000729 -.02902 -.014051 .088879 .000605 -.000743 ldist | .004268 -.007197 -.01912 -.005939 .056511 .011426 -.000177 lopen | .000278 -.00112 .004547 .002203 -.025915 .003019 -.0002 english | -.003513 .001057 .008797 .005695 -.013441 -.001626 .001512 white | .00386 -.024197 .097383 .002802 -.398584 .020347 .000873 lwhitemg | -.000524 .000885 -.010486 -.001615 .043826 -.000195 -.000216 _cons | -.019271 .110654 21.7324 -.346057 -78.9905 -.108536 .11432</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .05567 ldist | .020774 .117821 lopen | .002035 -.000896 .006377 english | -.014644 .014565 -.002233 .060145 white | .042815 -.030415 .006724 .036915 4.9799 lwhitemg | -.000921 .006585 -.000405 -.002542 -.428345 .038784 _cons | -1.41109 -1.78309 .280893 -.026733 4.16514 -.519954 769.879</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog 68</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 58599.31 Log likelihood = -902.8966 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0234512 .0136014 1.72 0.085 -.0032071 .0501095 lgdp | 1.61367 .0527911 30.57 0.000 1.510202 1.717139 lgdpau | .7103971 .3704967 1.92 0.055 -.0157631 1.436557 lgdpdfrati~w | -.2475358 .1378728 -1.80 0.073 -.5177614 .0226899 lpopau | -6.698916 1.252251 -5.35 0.000 -9.153284 -4.244549 lpop | -.2781317 .0914068 -3.04 0.002 -.4572857 -.0989776 lxrate1 | -.0401154 .0185587 -2.16 0.031 -.0764898 -.0037409 lremote | -.6414414 .1502885 -4.27 0.000 -.9360014 -.3468814 ldist | -2.603725 .1682161 -15.48 0.000 -2.933422 -2.274028 lopen | -.0477102 .0281023 -1.70 0.090 -.1027897 .0073693 english | 1.195772 .1026757 11.65 0.000 .9945317 1.397013 white | 3.170141 .9199891 3.45 0.001 1.366995 4.973287</p><p> lwhitemg | -.2408803 .0860646 -2.80 0.005 -.4095637 -.0721968 _cons | 94.96341 11.80479 8.04 0.000 71.82645 118.1004 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000185 lgdp | -.000206 .002787 lgdpau | -.000808 .001874 .137268 lgdpdfrati~w | -.000337 .000773 -.007474 .019009 lpopau | .002819 -.00644 -.454935 .01227 1.56813 lpop | .000137 -.00456 -.00155 -.00011 .003029 .008355 lxrate1 | 4.7e-06 .000223 -.000116 .000427 -.002283 -.000263 .000344 lremote | -7.2e-06 -.000727 -.01438 -.004076 .051203 -.000215 -.000099 ldist | .000849 -.00515 -.003873 .001023 .002171 .009333 .000611 lopen | .000017 -.000076 -.000947 .00098 .003369 .000254 -.000068 english | -.0003 -3.5e-07 .003507 .002401 -.018321 -.00006 .000916 white | .000656 -.015993 -.016568 -.001367 .028646 .028095 .002174 lwhitemg | -.000099 .000788 .000015 -.000316 .002518 -.00155 -.000232 _cons | -.031641 .121904 4.10214 -.014933 -14.4716 -.125239 .033373</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .022587 ldist | -.002759 .028297 lopen | .00109 .000213 .00079 english | -.004227 .004908 -.000482 .010542 white | .016012 .031515 .000924 .007226 .84638 lwhitemg | .000962 -.002045 .000013 -.000658 -.076064 .007407 _cons | -.620081 -.220786 -.045495 .196666 -.574135 -.023005 139.353</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares 69</p><p>Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 9183.91 Log likelihood = -965.4305 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2026021 .0302513 6.70 0.000 .1433105 .2618936 lgdp | 1.65904 .071875 23.08 0.000 1.518168 1.799913 lgdpau | -.0820392 .6287854 -0.13 0.896 -1.314436 1.150358 lgdpdfrati~w | -.2167693 .2568132 -0.84 0.399 -.7201139 .2865754 lpopau | -1.592251 2.195489 -0.73 0.468 -5.89533 2.710828 lpop | -.5997309 .0804951 -7.45 0.000 -.7574984 -.4419635 lxrate1 | -.130131 .0282252 -4.61 0.000 -.1854514 -.0748106 lremote | -.3353942 .1207713 -2.78 0.005 -.5721015 -.0986869 ldist | -3.169824 .3340453 -9.49 0.000 -3.824541 -2.515107 lopen | .106769 .0490349 2.18 0.029 .0106623 .2028756 english | .8452789 .1321576 6.40 0.000 .5862549 1.104303 white | 10.10365 1.891989 5.34 0.000 6.395423 13.81188</p><p> lwhitemg | -.8960496 .1886029 -4.75 0.000 -1.265704 -.5263947 _cons | 37.17543 20.7402 1.79 0.073 -3.474609 77.82546 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000915 lgdp | -.001415 .005166 lgdpau | -.002046 .004574 .395371 lgdpdfrati~w | -.001133 .002522 -.024454 .065953 lpopau | .005354 -.020432 -1.34464 .092829 4.82017 lpop | .000911 -.004368 -.002517 -.001521 .010154 .006479 lxrate1 | .000067 .000395 .000182 .001052 -.005604 -.000693 .000797 lremote | -5.5e-07 -.000757 -.004468 -.001031 .01036 -.001316 .000256 ldist | .004044 .002429 -.01051 -.003047 -.013948 .000454 .001535 lopen | .000135 -.000738 .001175 .001643 -.005505 .001409 -.000251 english | -.001467 .003771 .004265 .004205 -.024925 -.000345 .001964 white | .000784 -.027319 .011546 .001728 .001855 .01879 .004254 lwhitemg | -.000019 .001584 -.002205 -.000606 .004559 -.001221 -.000404 _cons | -.059494 .158515 12.0477 -.959273 -44.4805 -.098936 .068557</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .014586 ldist | .008262 .111586 lopen | .000286 -.001057 .002404 english | -.004737 -.000053 -.001487 .017466 white | .012489 -.162249 .003635 .009995 3.57962 lwhitemg | .000765 .014724 -.000257 -.001695 -.35068 .035571 _cons | -.225586 -.714492 .062784 .255804 1.38805 -.178831 430.156</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 l > remote ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) 70</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7887.34 Log likelihood = -1101.117 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0187487 .015558 1.21 0.228 -.0117443 .0492417 lgdp | 1.366442 .0504274 27.10 0.000 1.267606 1.465278 lgdpau | .4992118 .4946897 1.01 0.313 -.4703622 1.468786 lgdpdfrati~w | -.0378588 .1602273 -0.24 0.813 -.3518984 .2761809 lpopau | -5.306318 1.681914 -3.15 0.002 -8.602809 -2.009826 lpop | .0464244 .0742739 0.63 0.532 -.0991497 .1919986 lxrate1 | -.0611328 .0195863 -3.12 0.002 -.0995212 -.0227445 lremote | -.8063548 .1609511 -5.01 0.000 -1.121813 -.4908964 ldist | -3.270022 .2179495 -15.00 0.000 -3.697195 -2.842849 lopen | .0759124 .0417408 1.82 0.069 -.0058981 .1577229 english | 2.40162 .1418155 16.93 0.000 2.123666 2.679573 white | 3.820727 1.165457 3.28 0.001 1.536474 6.10498 lwhitemg | -.1759238 .0978431 -1.80 0.072 -.3676928 .0158451 _cons | 84.4765 16.12806 5.24 0.000 52.86608 116.0869 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000242 lgdp | -.000395 .002543 lgdpau | -.000073 -.000025 .244718 lgdpdfrati~w | -.000439 .000614 .001947 .025673 lpopau | -.001287 .001812 -.812189 -.004951 2.82884 lpop | .000187 -.002896 -.000148 -.000017 -.00307 .005517 lxrate1 | -.000017 .00022 .000289 .000616 -.002153 -.000412 .000384 lremote | .000187 .000743 -.017791 -.001324 .05591 -.001146 -.000143 ldist | .000588 .000312 -.011539 -.001351 .025895 .00031 .000297 lopen | .000065 -.000307 -4.3e-06 .001835 .000287 .0007 -.000131 english | -.000747 .000308 .002296 .001541 -.009005 .001948 .000953 white | .000349 -.01412 -.00372 -.001392 .003205 .02573 -.00028 lwhitemg | -8.4e-06 .000729 -.000963 .000196 .003474 -.001673 .000088 _cons | .021716 -.049057 7.3201 .016022 -26.346 .038992 .025722</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .025905 ldist | .016804 .047502 lopen | .000878 .000054 .001742 english | -.003903 .003442 -.001299 .020112 white | .003623 -.007464 .000809 .035733 1.35829 lwhitemg | .001382 .002844 -7.0e-06 -.003127 -.110235 .009573 _cons | -.846169 -.74561 -.017425 .044979 -.021962 -.061388 260.114</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremo > te ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 647.47 71</p><p>Log likelihood = -596.1406 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3701501 .0451682 8.19 0.000 .281622 .4586782 lgdp | .2198115 .0709504 3.10 0.002 .0807512 .3588717 lgdpau | .0754711 .5957142 0.13 0.899 -1.092107 1.24305 lgdpdfrati~w | -.5087659 .209498 -2.43 0.015 -.9193745 -.0981573 lpopau | -2.371609 2.032149 -1.17 0.243 -6.354548 1.611329 lpop | .3934901 .0901672 4.36 0.000 .2167658 .5702145 lxrate1 | -.1350211 .0241 -5.60 0.000 -.1822563 -.087786 lremote | .1364151 .1996343 0.68 0.494 -.2548609 .527691 ldist | -1.372845 .4065008 -3.38 0.001 -2.169572 -.576118 lopen | .1083192 .038455 2.82 0.005 .0329487 .1836897 english | .6776742 .2062805 3.29 0.001 .2733718 1.081977 white | 10.36831 .7137487 14.53 0.000 8.969383 11.76723 lwhitemg | -1.018885 .0708284 -14.39 0.000 -1.157706 -.8800634 _cons | 43.12892 19.37836 2.23 0.026 5.148044 81.1098 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00204 lgdp | -.001126 .005034 lgdpau | .000638 -.002881 .354875 lgdpdfrati~w | -.001058 .00072 -.009684 .043889 lpopau | -.007994 .010604 -1.17388 .034036 4.12963 lpop | -.000383 -.003839 .001042 -.000459 -.007893 .00813 lxrate1 | .000132 .00025 .000648 .001073 -.005067 -.000534 .000581 lremote | .003484 .003413 -.017054 -.0067 .037494 -.004366 .000135 ldist | .005956 -.006352 -.012356 -.002658 -.027385 .013337 .001223 lopen | .000236 -.000282 -.001627 -.000917 .000262 .000472 -.000144 english | -.002172 .001076 .000052 .003732 -.006252 .005097 .001089 white | .009965 -.008793 .015393 -.000547 -.102812 .013245 .004098 lwhitemg | -.000897 .000081 -.002136 -.000231 .011316 -.000512 -.00043 _cons | .048091 -.120639 10.4801 -.278799 -37.8715 -.021297 .052605</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .039854 ldist | .033635 .165243 lopen | .000793 .001082 .001479 english | -.002333 .010087 -.000997 .042552 white | .013298 -.005823 .000442 .047752 .509437 lwhitemg | -.000076 .004193 4.0e-06 -.00244 -.047531 .005017 _cons | -.868073 -1.19577 .021441 -.098337 1.11705 -.155113 375.521</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremot > e ldist lopen english white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2869.31 Log likelihood = -614.6592 Prob > chi2 = 0.0000</p><p>------72</p><p> lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1163283 .0322254 3.61 0.000 .0531678 .1794889 lgdp | .2581178 .0574143 4.50 0.000 .1455878 .3706478 lgdpau | -.1200933 .0666258 -1.80 0.071 -.2506774 .0104908 lgdpdfrati~w | -.1223602 .0443988 -2.76 0.006 -.2093802 -.0353402 lpopau | 2.177206 .2712064 8.03 0.000 1.645651 2.708761 lpop | .7083675 .1059801 6.68 0.000 .5006504 .9160847 lxrate1 | -.007332 .0090099 -0.81 0.416 -.0249911 .010327 lremote | .1376469 .0347624 3.96 0.000 .0695138 .20578 ldist | -3.149097 .3510575 -8.97 0.000 -3.837157 -2.461037 lopen | -.0208108 .0327777 -0.63 0.525 -.0850539 .0434322 english | 1.036803 .2832616 3.66 0.000 .4816201 1.591985 white | 23.45514 2.910262 8.06 0.000 17.75113 29.15915 lwhitemg | -2.1822 .2700738 -8.08 0.000 -2.711535 -1.652865 _cons | -15.97756 5.223766 -3.06 0.002 -26.21595 -5.739163 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001038 lgdp | -.000611 .003296 lgdpau | -.000708 -.000609 .004439 lgdpdfrati~w | .000381 -.001253 .000934 .001971 lpopau | .004929 .000322 -.015089 .000475 .073553 lpop | -.000297 -.002368 .001405 .000496 -.005501 .011232 lxrate1 | .000015 .000115 -.000056 .000046 .000847 -.000256 .000081 lremote | -.000376 .001387 -.000775 -.001138 .000055 -.00077 .000038 ldist | .003506 .000076 -.00333 -.000074 .020847 -.003008 -.000083 lopen | -.00039 -.000349 .000273 -.000507 -.004916 .001173 -.000209 english | -.000921 -.001265 .001334 .000673 -.007704 .001543 .00002 white | .002865 -.006173 .001316 .002195 -.00276 .031429 -.000575 lwhitemg | -.000532 .000058 .000199 -.000068 -.001981 -.003357 .000044 _cons | -.081428 -.036635 .167761 -.005599 -.975407 -.031798 -.01127</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .001208 ldist | .000026 .123241 lopen | .00022 -.000889 .001074 english | -.000659 .058966 .000182 .080237 white | -.002714 .012293 .001367 .037387 8.46963 lwhitemg | .000097 -.003844 .000046 -.002195 -.774155 .07294 _cons | -.007541 -1.41481 .074879 -.476959 -.48312 .119832 27.2877</p><p>. . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 504.78</p><p>Log likelihood = -571.8361 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5320964 .0503269 10.57 0.000 .4334574 .6307354 lgdp | .0042832 .0781931 0.05 0.956 -.1489724 .1575388 73</p><p> lgdpau | 2.170211 .806741 2.69 0.007 .5890279 3.751395 lgdpdfrati~w | -.685599 .2836498 -2.42 0.016 -1.241542 -.1296557 lpopau | -10.36304 2.765664 -3.75 0.000 -15.78364 -4.942437 lpop | .320605 .0966643 3.32 0.001 .1311465 .5100635 lxrate1 | -.1117859 .026319 -4.25 0.000 -.1633702 -.0602015 lremote | .0088012 .2557274 0.03 0.973 -.4924153 .5100177 ldist | -1.515418 .3145398 -4.82 0.000 -2.131904 -.8989311 lopen | .0335465 .0542731 0.62 0.537 -.0728268 .1399199 english | -.0737541 .2334579 -0.32 0.752 -.5313231 .3838149 white | 9.240847 1.074031 8.60 0.000 7.135785 11.34591 lwhitemg | -.8328864 .0956994 -8.70 0.000 -1.020454 -.645319 _cons | 127.1649 26.18766 4.86 0.000 75.838 178.4917 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002533 lgdp | -.001532 .006114 lgdpau | .00006 -.000258 .650831 lgdpdfrati~w | -.001412 .001604 -.01759 .080457 lpopau | -.004946 -.004688 -2.16917 .067743 7.6489 lpop | -.000155 -.004258 -.000667 -.000646 -.001333 .009344 lxrate1 | .000158 -.000122 .000442 .000844 -.004472 -.000533 .000693 lremote | .001853 .004487 -.024113 -.012711 .067507 -.003528 .00037 ldist | .004706 .001905 -.010672 -.002884 -.006973 .002988 .001105 lopen | -.000267 .000694 -.000469 -.000441 -.007059 .000695 -.000015 english | -.002485 .001718 .005149 .005422 -.022273 -.000413 .001271 white | .01383 -.025359 .014133 -.006908 -.079274 .028616 .00527 lwhitemg | -.001384 .001332 -.002741 -.000135 .014359 -.001726 -.000435 _cons | .040141 -.034371 19.2497 -.627765 -70.4192 -.008037 .055972</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .065397 ldist | .030749 .098935 lopen | .00132 .00216 .002946 english | -.011641 .022183 -.000186 .054503 white | .01563 .002804 -.001499 .02049 1.15354 lwhitemg | .000876 -.000085 .000085 -.000863 -.098464 .009158 _cons | -1.39101 -.935073 .074903 .078234 .750279 -.162013 685.793</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1440.15 Log likelihood = -341.8415 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0431455 .0186342 2.32 0.021 .0066232 .0796678 lgdp | .2421201 .0566671 4.27 0.000 .1310546 .3531857 lgdpau | -.2038179 .3197992 -0.64 0.524 -.8306129 .4229771 lgdpdfrati~w | -.3738305 .2006081 -1.86 0.062 -.7670151 .0193541 lpopau | 2.178835 1.13585 1.92 0.055 -.0473904 4.405061 lpop | .0391753 .0752013 0.52 0.602 -.1082165 .1865672 lxrate1 | -.0656738 .0182763 -3.59 0.000 -.1014946 -.029853 lremote | -.1896313 .1094551 -1.73 0.083 -.4041593 .0248967 ldist | -1.455753 .1766631 -8.24 0.000 -1.802006 -1.1095 74</p><p> lopen | -.0097694 .0261121 -0.37 0.708 -.0609482 .0414095 english | 1.980704 .2101035 9.43 0.000 1.568909 2.3925 white | 9.69222 1.772436 5.47 0.000 6.218309 13.16613 lwhitemg | -.7397517 .1811666 -4.08 0.000 -1.094832 -.3846716 _cons | -19.97117 11.42062 -1.75 0.080 -42.35517 2.412824 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000347 lgdp | -.00036 .003211 lgdpau | .000275 -.001834 .102272 lgdpdfrati~w | -.000618 .000125 -.001576 .040244 lpopau | -.001136 .007227 -.349468 .024703 1.29016 lpop | .000089 -.003119 .001187 .000568 -.009185 .005655 lxrate1 | -.000015 .00017 .001262 .000744 -.00583 -.00017 .000334 lremote | .000176 .001041 -.007606 -.003502 .02741 -.00069 -.00038 ldist | .000776 .00099 -.001291 -.001977 .000163 .001933 -.000333 lopen | .000023 -.000277 -.00024 .001114 -.00049 .000351 -.000015 english | -.000405 -.003818 .006224 .00295 -.024092 .00546 .000398 white | .001685 -.026044 .017964 -.000864 -.096097 .029407 .001105 lwhitemg | -.000175 .001657 -.001522 .000245 .007973 -.002109 -.000095 _cons | .008287 -.110973 3.2097 -.374324 -12.4944 .08994 .06712</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .01198 ldist | -.000394 .03121 lopen | -.00014 -.000123 .000682 english | -.0056 .008092 -.000316 .044143 white | .008524 -.029537 .000946 .081397 3.14153 lwhitemg | -.000336 .001498 -.00002 -.007208 -.316705 .032821 _cons | -.363065 -.313835 .016764 .199599 1.42286 -.10576 130.43</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 961.42 Log likelihood = -859.3556 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1314308 .0652084 2.02 0.044 .0036247 .259237 lgdp | .5746729 .1131853 5.08 0.000 .3528337 .7965121 lgdpau | -2.215686 1.128766 -1.96 0.050 -4.428025 -.0033457 lgdpdfrati~w | -1.061831 .446206 -2.38 0.017 -1.936378 -.1872831 lpopau | 4.555544 3.868621 1.18 0.239 -3.026814 12.1379 lpop | .1286072 .1311975 0.98 0.327 -.1285351 .3857496 lxrate1 | -.1491693 .0398467 -3.74 0.000 -.2272674 -.0710712 lremote | 1.758053 .2739409 6.42 0.000 1.221138 2.294967 ldist | -1.598336 .5018526 -3.18 0.001 -2.581949 -.6147224 lopen | -.0391906 .0780765 -0.50 0.616 -.1922177 .1138364 english | .4941011 .2686274 1.84 0.066 -.0323989 1.020601 white | 10.99527 1.494663 7.36 0.000 8.065782 13.92475 lwhitemg | -.8487058 .1428954 -5.94 0.000 -1.128776 -.5686359 _cons | -28.72077 36.33852 -0.79 0.429 -99.94296 42.50143 ------75</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .004252 lgdp | -.004643 .012811 lgdpau | -.002516 .006285 1.27411 lgdpdfrati~w | -.001817 .004367 -.002552 .1991 lpopau | .004595 -.029207 -4.25843 .057404 14.9662 lpop | .00191 -.011225 -.00295 -.002518 .011993 .017213 lxrate1 | .000062 .001643 .00084 .001458 -.009701 -.001534 .001588 lremote | .001683 -.002868 -.031592 -.019609 .079137 .002891 .000862 ldist | .012798 -.011446 -.012002 -.010317 -.000666 .016106 -.002392 lopen | .000361 -.000905 .006738 .00122 -.034518 .002382 -.00039 english | -.005961 .012221 .00849 .002029 -.031694 -.010584 -.000579 white | .028221 -.053554 -.04248 -.03773 .06501 .053752 .005148 lwhitemg | -.003091 .00321 .000287 .001143 .009856 -.002765 -.000808 _cons | -.092389 .354864 37.5308 -.872353 -136.931 -.317823 .134478</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .075044 ldist | .023553 .251856 lopen | .003046 .004054 .006096 english | -.005398 .02758 -.001172 .072161 white | .122652 .144109 .002081 .031593 2.23402 lwhitemg | -.005139 -.018279 -.000039 -.005734 -.203686 .020419 _cons | -1.34219 -2.3258 .317249 -.006026 -2.21419 .03927 1320.49</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 551.52 Log likelihood = -80.48529 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0206897 .0274681 0.75 0.451 -.0331468 .0745262 lgdp | .1550936 .0578407 2.68 0.007 .0417279 .2684593 lgdpau | .4123087 .3938321 1.05 0.295 -.359588 1.184205 lgdpdfrati~w | .3928156 .1798607 2.18 0.029 .0402952 .7453361 lpopau | 2.06711 1.394247 1.48 0.138 -.6655642 4.799784 lpop | .2691138 .0815298 3.30 0.001 .1093184 .4289092 lxrate1 | -.017098 .0153005 -1.12 0.264 -.0470864 .0128904 lremote | -.0706034 .1272472 -0.55 0.579 -.3200032 .1787965 ldist | -1.956855 .4277135 -4.58 0.000 -2.795158 -1.118552 lopen | .0234547 .032819 0.71 0.475 -.0408693 .0877788 english | 1.184134 .1897784 6.24 0.000 .8121755 1.556093 white | 15.80639 1.211831 13.04 0.000 13.43125 18.18154 lwhitemg | -1.322878 .112863 -11.72 0.000 -1.544086 -1.101671 _cons | -33.64056 14.42154 -2.33 0.020 -61.90626 -5.374865 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000754 76</p><p> lgdp | -.000551 .003346 lgdpau | -.000478 -8.7e-06 .155104 lgdpdfrati~w | -.000639 .000701 -.000198 .03235 lpopau | .001048 .000163 -.522109 .016216 1.94393 lpop | -.0001 -.002649 .000414 .000589 -.004463 .006647 lxrate1 | .000049 .000077 .000216 .000521 -.002492 -.000083 .000234 lremote | .000745 .001782 -.007891 -.003437 .023643 -.001372 .000027 ldist | .002832 -.004041 -.011001 -.008746 .002436 .008626 .000249 lopen | -.00006 3.0e-06 .000614 .000224 -.00479 .000426 -.000041 english | -.00106 -.000883 .00259 .002682 -.00277 .003576 .000122 white | .003638 -.016746 .029074 -.003927 -.253582 .027048 .003018 lwhitemg | -.000447 .000934 -.003118 .000222 .026042 -.002094 -.000335 _cons | -.027908 -.010349 4.76115 -.207457 -18.729 -.052583 .031215</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .016192 ldist | .01789 .182939 lopen | .000083 .000038 .001077 english | -.004057 .004243 -.000098 .036016 white | -.004895 -.013388 -.000503 .040572 1.46853 lwhitemg | .000766 .001848 .000091 -.003475 -.133606 .012738 _cons | -.514533 -1.70973 .056331 -.068309 3.52818 -.358835 207.981</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 236.05</p><p>Log likelihood = 161.4715 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .002144 .0181251 0.12 0.906 -.0333805 .0376685 lgdp | .2539975 .0490269 5.18 0.000 .1579066 .3500885 lgdpau | -.2935432 .3539342 -0.83 0.407 -.9872415 .4001551 lgdpdfrati~w | -.097179 .1377093 -0.71 0.480 -.3670843 .1727264 lpopau | 4.136554 1.281792 3.23 0.001 1.624287 6.648821 lpop | -.1450449 .0622541 -2.33 0.020 -.2670606 -.0230292 lxrate1 | -.0859645 .0148016 -5.81 0.000 -.114975 -.0569539 lremote | .2971044 .1297307 2.29 0.022 .0428369 .5513719 ldist | -1.334522 .2708482 -4.93 0.000 -1.865375 -.8036695 lopen | .0041506 .0283135 0.15 0.883 -.0513427 .059644 english | .3022001 .1692592 1.79 0.074 -.0295419 .6339421 white | 9.60008 2.194585 4.37 0.000 5.298773 13.90139 lwhitemg | -.7919 .2129487 -3.72 0.000 -1.209272 -.3745281 _cons | -53.39735 13.50412 -3.95 0.000 -79.86494 -26.92975 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000329 lgdp | -.00029 .002404 lgdpau | .000181 -.000888 .125269 lgdpdfrati~w | -.000391 .000457 -.006077 .018964 lpopau | -.002293 .007065 -.429219 .02623 1.64299 lpop | .000028 -.002282 -.00003 -.000217 -.001878 .003876 lxrate1 | -8.7e-07 -.000022 .000457 .000446 -.004366 -.000081 .000219 77</p><p> lremote | .000292 .001807 -.00857 -.001099 .029001 -.001191 -.000066 ldist | .001607 -.001236 -.002756 -.001322 .000898 .004472 .000087 lopen | 3.8e-06 -.000018 .00018 .000202 -.001736 .000129 -.000022 english | -.000461 -.001579 .000378 .000624 .019873 .00362 .000194 white | .002249 -.015812 .019534 -.004431 -.160928 .016094 .002175 lwhitemg | -.000266 .001028 -.002264 .000439 .01549 -.001195 -.000158 _cons | .020408 -.113791 3.95866 -.28011 -16.3891 -.010676 .060536</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .01683 ldist | .007245 .073359 lopen | .000088 -.000269 .000802 english | -.001736 .012769 -.000561 .028649 white | -.001046 .011559 -.0012 .030426 4.8162 lwhitemg | .000722 -.002063 .000147 -.002791 -.460444 .045347 _cons | -.493436 -.759263 .024627 -.472813 2.13203 -.186505 182.361</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 443.52 Log likelihood = -691.6555 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1567877 .0540348 2.90 0.004 .0508815 .2626939 lgdp | .8935452 .1104243 8.09 0.000 .6771176 1.109973 lgdpau | -.1634072 .7087413 -0.23 0.818 -1.552515 1.2257 lgdpdfrati~w | -.261134 .292706 -0.89 0.372 -.8348273 .3125592 lpopau | 1.795953 2.432942 0.74 0.460 -2.972525 6.564432 lpop | -.4174763 .152964 -2.73 0.006 -.7172803 -.1176723 lxrate1 | -.1267762 .0318088 -3.99 0.000 -.1891204 -.064432 lremote | .1314299 .2383792 0.55 0.581 -.3357848 .5986446 ldist | -2.524553 .6485265 -3.89 0.000 -3.795642 -1.253465 lopen | .0044613 .0773271 0.06 0.954 -.1470971 .1560196 english | -.0357812 .4311383 -0.08 0.934 -.8807967 .8092344 white | 20.08104 4.190711 4.79 0.000 11.86739 28.29468 lwhitemg | -1.85644 .3842633 -4.83 0.000 -2.609583 -1.103298 _cons | -13.52107 23.77497 -0.57 0.570 -60.11915 33.07702 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .00292 lgdp | -.0028 .012194 lgdpau | .00024 .000855 .502314 lgdpdfrati~w | -.002091 .004106 -.009524 .085677 lpopau | -.004415 -.006222 -1.66708 .058605 5.91921 lpop | .000206 -.00942 -.003004 -.001877 -.002839 .023398 lxrate1 | .000141 .000523 .002248 .001212 -.01132 -.000833 .001012 lremote | .001055 .003448 -.022936 -.01346 .046822 -.002436 .000379 ldist | .010514 .00586 -.006384 -.002901 -.029442 .006075 .000434 lopen | .000349 -.000948 -.002109 .001142 -.009828 .002378 -.000174 english | -.006744 .000955 .00585 .007191 -.021828 .017299 .000728 white | .007707 -.043614 .132782 .027551 -.338765 .081333 .004905 lwhitemg | -.001218 .00207 -.014224 -.003918 .039807 -.005982 -.000578 _cons | .005926 -.121891 14.7639 -.721878 -54.4233 -.068242 .116799 78</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .056825 ldist | .024121 .420587 lopen | .00095 .002883 .005979 english | -.008946 .107131 -.001836 .18588 white | .017425 .220725 .007649 .280084 17.5621 lwhitemg | .001313 -.033633 -.000505 -.030301 -1.58146 .147658 _cons | -.933751 -3.85869 .168719 -1.04349 -.598485 .089005 565.249</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 949.50 Log likelihood = -596.3461 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1945751 .0468861 4.15 0.000 .10268 .2864702 lgdp | .5522242 .0962124 5.74 0.000 .3636513 .7407971 lgdpau | .9788009 .680708 1.44 0.150 -.3553623 2.312964 lgdpdfrati~w | -.0877012 .2901319 -0.30 0.762 -.6563492 .4809468 lpopau | -3.991961 2.349609 -1.70 0.089 -8.59711 .6131888 lpop | .5675594 .1229778 4.62 0.000 .3265273 .8085915 lxrate1 | -.0808365 .029741 -2.72 0.007 -.1391277 -.0225453 lremote | -.2672937 .2400018 -1.11 0.265 -.7376885 .2031012 ldist | -2.394391 .4417941 -5.42 0.000 -3.260292 -1.528491 lopen | -.1267485 .0751734 -1.69 0.092 -.2740856 .0205886 english | 1.152388 .3248099 3.55 0.000 .5157726 1.789004 white | 23.16495 3.266911 7.09 0.000 16.76192 29.56798 lwhitemg | -2.213617 .2877011 -7.69 0.000 -2.777501 -1.649733 _cons | 47.22496 22.48111 2.10 0.036 3.162799 91.28712 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .002198 lgdp | -.001979 .009257 lgdpau | -.002393 .005327 .463363 lgdpdfrati~w | -.001922 .002865 -.019264 .084177 lpopau | .007086 -.03348 -1.5479 .064694 5.52066 lpop | .000437 -.007196 -.003588 -.001793 .013561 .015124 lxrate1 | .000046 .000667 .000638 .001363 -.006848 -.000842 .000885 lremote | .000571 .003917 -.014977 -.01854 .03158 -.003095 .000409 ldist | .007823 .000168 -.008521 -.000995 -.004129 .009545 .000331 lopen | .000287 -.000538 -.000989 .002635 -.007489 .002183 -.000086 english | -.003087 -.00034 .004831 .004487 -.016691 .003029 .00054 white | .007053 -.031459 .036255 -.012014 -.081653 .054246 .004084 lwhitemg | -.00097 .001206 -.0047 -.000465 .016012 -.004235 -.000415 _cons | -.105512 .290393 13.6977 -.509051 -50.7674 -.268411 .084027</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .057601 ldist | .00648 .195182 lopen | .001411 .002094 .005651 79</p><p> english | -.009862 .054593 -.002354 .105501 white | .02908 .012245 .008327 .024056 10.6727 lwhitemg | .000384 -.005974 -.000755 -.000236 -.924775 .082772 _cons | -.719729 -1.82545 .095243 -.340396 -.174966 -.042173 505.4</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1741.92 Log likelihood = -755.8081 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0761027 .0351822 2.16 0.031 .0071468 .1450586 lgdp | 1.050285 .0977194 10.75 0.000 .8587585 1.241811 lgdpau | 1.096502 .6937875 1.58 0.114 -.2632967 2.4563 lgdpdfrati~w | -.098043 .2773678 -0.35 0.724 -.6416739 .4455879 lpopau | 2.348774 2.412666 0.97 0.330 -2.379965 7.077513 lpop | -.5459289 .1434497 -3.81 0.000 -.8270852 -.2647727 lxrate1 | -.1439734 .0220276 -6.54 0.000 -.1871467 -.1008 lremote | -.3531701 .1870561 -1.89 0.059 -.7197932 .013453 ldist | -1.365118 .7292576 -1.87 0.061 -2.794436 .0642008 lopen | -.0858798 .0738272 -1.16 0.245 -.2305784 .0588189 english | .1399102 .3455959 0.40 0.686 -.5374453 .8172657 white | 27.5809 2.726449 10.12 0.000 22.23716 32.92464 lwhitemg | -2.573226 .264302 -9.74 0.000 -3.091248 -2.055203 _cons | -64.14936 24.08465 -2.66 0.008 -111.3544 -16.94431 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .001238 lgdp | -.002033 .009549 lgdpau | -.000872 .002796 .481341 lgdpdfrati~w | -.002145 .004483 -.014898 .076933 lpopau | -.004312 -.012393 -1.60369 .057163 5.82096 lpop | .001898 -.011856 -.005838 -.004377 .029237 .020578 lxrate1 | .000049 .000302 .000387 .000728 -.008443 -.000648 .000485 lremote | .00151 .003282 -.016377 -.00486 .014064 -.002433 .000282 ldist | .007339 .010241 -.025293 -.005002 -.059535 .011733 .001371 lopen | .000327 -.000928 -.000465 .004467 -.007808 .00129 -.000342 english | -.001476 .004699 .003699 .003412 -.006842 -.002737 .000746 white | .017404 -.055841 .016427 -.032743 -.306239 .068294 .00731 lwhitemg | -.00154 .00373 -.003107 .002364 .036348 -.004824 -.000716 _cons | .022935 -.018526 14.4065 -.566647 -54.2599 -.480535 .114654</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .03499 ldist | .064507 .531817 lopen | .001119 .001409 .00545 english | .001036 .067016 -.001613 .119437 white | .034461 .103144 -.005481 .1899 7.43353 lwhitemg | -.002367 -.016791 .00076 -.021847 -.709614 .069856 _cons | -.765275 -4.45818 .118632 -.705261 3.44775 -.33935 580.07 80</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 453.23</p><p>Log likelihood = -599.7668 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3439262 .0566712 6.07 0.000 .2328526 .4549997 lgdp | .2432789 .0944545 2.58 0.010 .0581515 .4284064 lgdpau | 1.285355 .7725292 1.66 0.096 -.2287741 2.799485 lgdpdfrati~w | -.6761342 .3207121 -2.11 0.035 -1.304718 -.0475501 lpopau | -5.105458 2.66463 -1.92 0.055 -10.32804 .1171206 lpop | .2480497 .1012742 2.45 0.014 .049556 .4465434 lxrate1 | -.0783973 .0337842 -2.32 0.020 -.1446131 -.0121814 lremote | -.0198089 .2326684 -0.09 0.932 -.4758305 .4362128 ldist | -.867798 .5463329 -1.59 0.112 -1.938591 .2029948 lopen | .0342647 .0747095 0.46 0.646 -.1121633 .1806927 english | .4964351 .2521541 1.97 0.049 .0022221 .990648 white | 21.45588 2.265634 9.47 0.000 17.01532 25.89645 lwhitemg | -2.003462 .2190765 -9.15 0.000 -2.432844 -1.57408 _cons | 53.09238 25.05679 2.12 0.034 3.98197 102.2028 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .003212 lgdp | -.002902 .008922 lgdpau | -.002358 .006181 .596801 lgdpdfrati~w | -.002565 .005105 -.012926 .102856 lpopau | .005276 -.033259 -1.99397 .060138 7.10025 lpop | .00095 -.004913 -.003477 -.002761 .005178 .010256 lxrate1 | .000157 .000263 -.000136 .000872 -.003292 -.000578 .001141 lremote | .000186 .003654 -.009279 -.017256 -.001255 .000879 .000762 ldist | .010588 .003819 -.004433 -.007266 -.086109 .009367 .000593 lopen | -.00032 .000706 .001586 .000593 -.021697 .002041 -.000203 english | -.003744 .005244 .004337 .003272 -.023223 .001971 -.000068 white | .018383 -.036751 .016129 -.05733 .02749 .019814 .000767 lwhitemg | -.002144 .002069 -.003527 .003026 .009745 -.001444 -.000272 _cons | -.094954 .20864 17.4869 -.600197 -64.104 -.143777 .044555</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .054135 ldist | .036008 .29848 lopen | .002501 .005611 .005582 english | .005428 .061763 .000076 .063582 white | .091923 .107036 -.002956 .095938 5.1331 lwhitemg | -.005694 -.020097 .000205 -.010895 -.486219 .047994 _cons | -.638926 -1.90492 .201056 -.509817 -2.30777 .16392 627.843</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lr > emote ldist lopen english white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares 81</p><p>Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1475.85 Log likelihood = -261.5178 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0002448 .0232973 -0.01 0.992 -.0459067 .045417 lgdp | .4552445 .0820751 5.55 0.000 .2943802 .6161088 lgdpau | -.3031349 .4988006 -0.61 0.543 -1.280766 .6744962 lgdpdfrati~w | .1090158 .229233 0.48 0.634 -.3402726 .5583041 lpopau | 1.172501 1.720264 0.68 0.496 -2.199154 4.544156 lpop | -.2661756 .1135901 -2.34 0.019 -.488808 -.0435431 lxrate1 | -.0407659 .0229251 -1.78 0.075 -.0856982 .0041663 lremote | -.0177213 .1678211 -0.11 0.916 -.3466447 .3112021 ldist | -3.566922 .5140525 -6.94 0.000 -4.574447 -2.559398 lopen | .0074912 .05166 0.15 0.885 -.0937606 .1087429 english | -.1110954 .3289126 -0.34 0.736 -.7557523 .5335615 white | 15.64878 2.603621 6.01 0.000 10.54577 20.75178 lwhitemg | -1.121965 .2784393 -4.03 0.000 -1.667696 -.5762336 _cons | 17.90001 17.16763 1.04 0.297 -15.74792 51.54794 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 ------+------limmig | .000543 lgdp | -.000724 .006736 lgdpau | .000028 -.001747 .248802 lgdpdfrati~w | -.000995 .002273 -.007416 .052548 lpopau | -.001016 -.000522 -.830368 .042624 2.95931 lpop | .000259 -.006103 .000154 -.000898 -.001817 .012903 lxrate1 | -.00002 .000152 .001403 .001126 -.006722 -.000535 .000526 lremote | .000189 .002243 -.016574 -.004776 .047625 -.002975 -.000194 ldist | .002476 .001442 -.007637 -.002459 -.01682 .01902 -.000115 lopen | .000052 -.000138 -.001928 .001029 .001599 .00081 -.000063 english | -.000974 -.001573 .00496 .002414 -.007211 .006707 .000934 white | .004888 -.040474 .056753 -.008633 -.332402 .062878 .003388 lwhitemg | -.000498 .001936 -.006715 .000134 .039742 -.005107 -.000171 _cons | .001549 -.03043 7.50184 -.538307 -27.5481 -.195105 .07897</p><p>| lremote ldist lopen english white lwhitemg _cons ------+------lremote | .028164 ldist | .011362 .26425 lopen | .000229 .0001 .002669 english | -.00171 .066956 -.00087 .108184 white | -.00469 .172959 -.00353 .143599 6.77884 lwhitemg | .002926 -.021203 .000433 -.014104 -.715033 .077528 _cons | -.70962 -2.50393 .011964 -.722699 2.27951 -.265841 294.727</p><p>. end of do-file</p><p>. log close log: K:\Argentian_to_China.log log type: text closed on: 25 Jul 2006, 22:05:07 ------</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    81 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us