= Missing, * = Article

= Missing, * = Article

<p> COMPUTER C O NCEPTU A L TOOLS ENGINEERING</p><p>QuickTime™ and a TIFFare (Uncompressed)needed to see this decompressor picture. by Neil E. Cotter Research Assistant Professor Last Updated: 4/7/2018</p><p>(† = MISSING, * = ARTICLE)</p><p>LAPLACE TRANSFORM DEFINITION STEP FUNCTIONS Piecewise function defs Example (pdf) TRANSFORM PAIRS: Table of basic transforms | (pdf) Impulse function Step function Sine Example (pdf) Example 2 (pdf) IDENTITIES: List | (pdf) Multiplication by constant Addition Differentiation Integration Delay Frequency shift Scaling time Multiplication by time (pdf) Example 1 (pdf) Example 2 (pdf) Example 3 (pdf) Example 4 (pdf) Example 5 (pdf) Example 6 (pdf) Example 7 (pdf) Example 8 | (pdf) Example 9 (pdf) INVERSE TRANSFORM †Definition Partial fractions COMPLEX ROOT IDENTITY (PDF) EXAMPLE 1 (PDF) EXAMPLE 2 (PDF) EXAMPLE 3 (PDF) EXAMPLE 4 (PDF) EXAMPLE 5 (PDF) EXAMPLE 6 (PDF) EXAMPLE 7 | (PDF) Matching forms EXAMPLE 1 (PDF) Complex roots EXAMPLE 1 (PDF) POLES AND ZEROS Impulse response vs pole location RC Filter Example 1 | (pdf) Example 2 (pdf) Example 3 | (pdf) Example 4 (pdf) INITIAL/FINAL VALUE THEOREMS †Initial value theorem (pdf) Example (pdf) Example 2 | (PDF) Example 3 (pdf) CIRCUITS s-domain circuit elements EXAMPLE (PDF) s-domain solutions EXAMPLE (PDF) EXAMPLE 2 (PDF) EXAMPLE 3 (PDF) EXAMPLE 4 (PDF) t-domain waveforms EXAMPLE (PDF) EXAMPLE 2 (PDF) EXAMPLE 3 (PDF) EXAMPLE 4 (PDF) EXAMPLE 5 (PDF) EXAMPLE 6 (PDF) Impulse function EXAMPLE (PDF) BASIS FUNCTIONS SINUSOIDS AS EIGENFUNCTIONS TRANSFER FUNCTIONS Magnitude and phase j encodes phase MATRIX DIFFERENTIAL EQUATIONS Transfer function stability Final value theorem State-space equations </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us