S1: Code for CMV Example in Vitro Neutralization Experiment

S1: Code for CMV Example in Vitro Neutralization Experiment

<p>Supplemental Materials S1: code for CMV example in vitro neutralization experiment</p><p>;Dosing specifications STARTTIME = 0 ;simulation start time [d] STOPTIME = (1+3+24)/24 ;simulation stop time [d] DTMAX = 0.001 ;[d] TD1 = DTMAX ;[d] ?time first dose started?</p><p>Conc = 0 ;mAb concentration [ug/mL] Vpl = 50 /1e6 ;plate volume [L] Dose1 = Conc*Vpl ;[mg] Tau1 = 140 ;dosing interval [d] NDoses1 = STOPTIME/Tau1 ;number of doses at Dose1</p><p>;mAb properties ; molecular weight, IgG MWD = 150000/1e6 ;[mg/nmole] ; number of mAb binding affinities N = 5 ; dissociation constants (Kd = koff/kon), D-L complex Kd[1] = 0.001 ;[nM] Kd[2] = 0.03 ;[nM] Kd[3] = 0.1 ;[nM] Kd[4] = 0.5 ;[nM], A233 Kd[5] = 1 ;[nM] ; association rate constants, D-L complex kon = 100 ;[1/(nM d)] ; dissociation rate constants, D-L complex koff[1..N] = Kd[i]*kon ;[1/d]</p><p>;Virus (ligand, L) biology ; molecular weight, CMV g/mol = mg/mmol * mmol/1e6 nmol MWV = 1e8/1e6 ;[mg/nmol]</p><p>; endogenous virus concentration n_bs = 100 ;number of binding sites on virus surface Vn = 5000 /Vpl/1000 ;total initial number of CMV, [copies/mL] L0 = Vn*n_bs*Vpl/6e11 ; initial mol of CMV [nmol]</p><p>; viral load model parameters HL = 1 ;CMV half-life [d] kL = logn(2)/HL ;CMV elimination rate constant [1/d] HIC = 4 ;infected cell half-life [d] kIC = logn(2)/HIC ;infected cell elimination rate constant [1/d] HTC = 30 ;target cell half-life [d] (assume) kTC = logn(2)/HTC ;target cell elimination rate constant [1/d] TC0 = 0 *Vpl/6e11 ;target cell initial concentration [nM] sTC = 0 ;target cell synthesis rate constant [nmol/d] ki = 1.2e-6 *6e11 ;virus infection rate [1/(nM d)] pV = 100 ;virus production rate [/d]</p><p>; clearance of D-L complexes, assume D-L complexes are eliminated as fast as virus kDL = kL ;[1/d]</p><p>;Solver specifications METHOD STIFF DTMIN = 0.001 DTOUT = 0 TOLERANCE = 1e-3</p><p>;Input doses of antibody drug as pulse dose 1 IN1[1..N] = PULSE(Dose1/MWD,TD1,Tau1) TC1 = PULSE(1e4/6e14,1/24,Tau1) EmptyD[1..N] = PULSE(D[i]*4,4/24,Tau1) ; for washout EmptyL[1..N] = PULSE(L[i]*4,4/24,Tau1) EmptyDL[1..N] = PULSE(DL[i]*4,4/24,Tau1)</p><p>;Inital conditions ; [nmol] INIT(D[1..N]) = 0 INIT(L[1..N]) = L0 INIT(DL[1..N]) = 0 INIT(TC[1..N]) = TC0 INIT(IC[1..N]) = 0</p><p>;Mass balances d/dt(D[1..N]) = IN1[i] -kon/Vpl*D[i]*L[i]/n_bs +koff[i]*DL[i] -EmptyD[i] d/dt(L[1..N]) = -kL*L[i] -kon/Vpl*D[i]*L[i]/n_bs +koff[i]*DL[i] +pV*IC[i]*n_bs -EmptyL[i] d/dt(DL[1..N]) = -kDL*DL[i] +kon/Vpl*D[i]*L[i]/n_bs -koff[i]*DL[i] -EmptyDL[i] d/dt(TC[1..N]) = TC1 +sTC -kTC*TC[i] -(1-inhibition[i])*ki*L[i]*TC[i]/Vpl/n_bs d/dt(IC[1..N]) = (1-inhibition[i])*ki*L[i]*TC[i]/Vpl/n_bs -kIC*IC[i]</p><p>; Ligand occupancy rate affect the inhibition rate of infection X1 = 0.3 X2 = 0.9 a = 1/(X2-X1) b = -X1/(X2-X1) ;D-L/(D-L + L) occupancy rate occupancy[1..N] = DL[i]/(DL[i]+L[i]) inhibition[1..N] = IF occupancy[i]<=X1 THEN 0 ELSE IF occupancy[i]>X2 THEN 1 ELSE a*occupancy[i]+b</p><p>;Drug concentrations ;free mAb in plasma [µg/mL, mg/L] CFD[1..N] = MWD*D[i]/Vpl ;total mAb in plasma [µg/mL, mg/L] CTD[1..N] = MWD*(D[i]+DL[i])/Vpl ;free virus concentration in plasma CFV[1..N] = L[i]/Vpl*6e11/n_bs ;[copies/mL] ;uninfected cell concentration in plasma CTC[1..N] = TC[i]/Vpl*6e11 ;[copies/mL] ;infected cell concentration in plasma CIC[1..N] = IC[i]/Vpl*6e11 ;[copies/mL]</p><p>RI[1..N] = IF IC[i]+TC[i]=0 THEN 0 ELSE IC[i]/(IC[i]+TC[i])/0.453</p><p>2 S2: code for CMV example in human</p><p>;Dosing specifications STARTTIME = 0 ;simulation start time [d] STOPTIME = 100 ;simulation stop time [d] DTMAX = 0.001 ;[d] TD1 = DTMAX ;[d] Dose1 = 1 ;[mg/kg] Tau1 = 28 ;dosing interval [d] NDoses1 = STOPTIME/Tau1 ;number of doses at Dose1</p><p>;Pharmacokinetic parameters, human (70 kg) WT = 70 ;body weight [kg] CLD = 0.2 ;clearance of free mAb, IgG [L/d] Vpl = 2.5 ;plasma volume [L] Vti = 2.6 ;tissue interstitial volume [L] PS = 0.5 ; plasma-tissue exchange, IgG [L/d]</p><p>;mAb properties ; molecular weight, IgG MWD = 150000/1e6 ;[mg/nmole] ; number of mAb binding affinities N = 5 ; dissociation constants (Kd = koff/kon), D-L complex Kd[1] = 0.001 ;[nM] Kd[2] = 0.03 ;[nM] Kd[3] = 0.1 ;[nM] Kd[4] = 0.5 ;[nM] Kd[5] = 1 ;[nM] ; association rate constants, D-L complex kon = 100 ;[1/(nM d)] ; dissociation rate constants, D-L complex koff[1..N] = Kd[i]*kon ;[1/d]</p><p>;Virus (ligand, L) biology ; molecular weight, CMV g/mol = mg/mmol * mmol/1e6 nmol MWV = 1e8/1e6 ;[mg/nmol]</p><p>; virus parameters n_bs = 100 ;number of binding sites on virus surface Vn = 1 ;total initial number of CMV, [copies/mL] L0 = Vn*n_bs*Vpl/6e11 ; initial mol of CMV [nmol]</p><p>; viral load model parameters HL = 1 ;CMV half-life [d] kL = logn(2)/HL ;CMV elimination rate constant [1/d] HIC = 4 ;infected cell half-life [d] kIC = logn(2)/HIC ;infected cell elimination rate constant [1/d] HTC = 30 ;target cell half-life [d] kTC = logn(2)/HTC ;target cell elimination rate constant [1/d] TC0 = 1e5 *Vpl/6e11 ;target cell initial concentration [nM] sTC = TC0*kTC ;target cell synthesis rate constant [nmol/d] ki = 1.2e-6 *6e11 ;virus infection rate [1/(nM d)] pV = 100 ;virus production rate [/d]</p><p>; clearance of D-L complexes, assume D-L complexes are eliminated as fast as virus kDL = kL ;[1/d]</p><p>;Solver specifications METHOD STIFF DTMIN = 0.001 DTOUT = 0 TOLERANCE = 1e-3</p><p>3 ;Input doses of antibody drug as pulse dose. IN1[1..N] = PULSE(Dose1*WT/MWD,TD1,Tau1)</p><p>;Inital conditions ; [nmol] INIT(D[1..N]) = 0 INIT(Dti[1..N]) = 0 INIT(L[1..N]) = L0 INIT(DL[1..N]) = 0 INIT(TC[1..N]) = TC0 INIT(IC[1..N]) = 0</p><p>;Mass balances d/dt(D[1..N]) = IN1[i]-CLD/Vpl*D[i]+PS*(Dti[i]/Vti-D[i]/Vpl) -kon/Vpl*D[i]*L[i]/n_bs +koff[i]*DL[i] d/dt(Dti[1..N]) = PS*(D[i]/Vpl-Dti[i]/Vti)-CLD/Vti*Dti[i] d/dt(L[1..N]) = -kL*L[i] -kon/Vpl*D[i]*L[i]/n_bs +koff[i]*DL[i] +pV*IC[i]*n_bs d/dt(DL[1..N]) = -kDL*DL[i] +kon/Vpl*D[i]*L[i]/n_bs -koff[i]*DL[i] d/dt(TC[1..N]) = sTC -kTC*TC[i] -(1-inhibition[i])*ki*L[i]*TC[i]/Vpl/n_bs d/dt(IC[1..N]) = (1-inhibition[i])*ki*L[i]*TC[i]/Vpl/n_bs -kIC*IC[i]</p><p>; Ligand occupancy rate affect the inhibition rate of infection X1 = 0.3 X2 = 0.9 a = 1/(X2-X1) b = -X1/(X2-X1) ;D-L/(D-L + L) occupancy rate occupancy[1..N] = DL[i]/(DL[i]+L[i]) inhibition[1..N] = IF occupancy[i]<=X1 THEN 0 ELSE IF occupancy[i]>X2 THEN 1 ELSE a*occupancy[i]+b</p><p>;Drug concentrations ;free mAb in plasma [µg/mL, mg/L] CFD[1..N] = MWD*D[i]/Vpl ;total mAb in plasma [µg/mL, mg/L] CTD[1..N] = MWD*(D[i]+DL[i])/Vpl ;free virus concentration in plasma CFV[1..N] = L[i]/Vpl*6e11/n_bs ;[copies/mL] log10V[1..N] = log10(CFV[i]) ;uninfected cell concentration in plasma CTC[1..N] = TC[i]/Vpl*6e11 ;[copies/mL] ;infected cell concentration in plasma CIC[1..N] = IC[i]/Vpl*6e11 ;[copies/mL]</p><p>4 S3: code for target cell receptor example in monkey</p><p>;Trial specifications for Dose-Range Finding study in monkey (single intravenous dose) STARTTIME = -10 ;days STOPTIME = 70 ;days N=4 ;number of dose levels Dose[1]= xx ;mg/kg Dose[2]= xx ;mg/kg Dose[3] = xx ;mg/kg Dose[4] = xx ;mg/kg Tau = 14 ;days. dosing interval, not used here NDoses = 1 ;number of administered doses, here one for single dose</p><p>;Receptor target and cell turnover NRB = xx ;receptor number per cell NBC = xx ;target cell number per liter of blood in absence of drug Avog= 6.023e23 ;Avogadro's number R0 = NRB*NBC/Avog*1e9 ;nM. baseline receptor concentration in blood THR = xx ;day. receptor half-life kout = logn(2)/THR ;per day. Elimination rate of target cells without drug. kin = R0*Vbl*kout ;nmole/day. Constant target cell synthesis/entrance rate in blood R0[1..N] = kin[i]/kR IC50 = 0.25 ;receptor occupancy when drug-induced target cell death rate is 50% of its maximal value gamma = 1 ;Hill coefficient Emax = xx </p><p>;Binding constants between drug and receptor target Kd= xx ;nM. dissociation equilibrium constant Drug-Receptor complex kon = 10 ;per nM per day. Assume moderately fast association rate kon koff = Kd*kon ;per day. koff for Drug-Receptor complex dissociation (single binding)</p><p>;TMDD parameters Vmax = xx ; nanomoles per day Km = xx ; nanomoles per liter</p><p>;System physiology & basic parameter values centered on 70 kg person -> use body weight to estimate values for monkey WT = 3 ;kg. body weight MWD = 150000/1e6 ;mg/nmole. Molecular weight IgG CLD = 0.6*(3/70)^0.8 ;L/d. Clearance of free monoclonal antibody drug Vpl = 2.5*(3/70)^1 ;liters. plasma volume (for mAb) Vbl = 2*Vpl ;liters. blood volume (for target cells) Vti = 2.6*(3/70)^1 ;liters. tissue interstitial volume PS = 0.8*(3/70)^0.8 ;L/d. permeability*surface area IgG plasma to/from tissue fluid</p><p>;Integration settings METHOD STIFF ;STIFF is Rosenbrock integrator DTMIN = 0.01 ;days. minimum time step DTOUT = 0 ;output all time points if 0 TOLERANCE = 1e-6 DTMAX = 45/(60*24) ;days. maximum time step(45 minutes). Use this for drug input time TD1 = DTMAX ;time when first dose started</p><p>;Input doses of antibody drug as pulses. Note use of DTMAX to ensure correct mass input ;Pulse actually occurs over the timeframe of DTMAX, it is not instantaneous. IN[1..N] = IF TIME<=ndoses*tau THEN PULSE(Dose[i]*WT/MWD,TD1,Tau) ELSE 0</p><p>5 ;Differential equations written as amounts in nmoles. ; D=drug (available data to be fitted), Dti=drug in tissue interstitial, R=receptor ;(available data to be fitted), DR=drug-receptor complex, Cell= target cell ; (available data to be fitted)</p><p>D'[1..N] = IN[i] -CLD/Vpl*D[i] +PS*(Dti[i]/Vti-D[i]/Vpl) -kon/Vpl*D[i]*R[i] +koff*DR[i] - Vmax*D[i]/(Km + D[i])</p><p>Dti'[1..N]= -PS*(Dti[i]/Vti-D[i]/Vpl) </p><p>R'[1..N] = kin -kout*R[i] *( 1 + Emax*(DR[i]/(DR[i]+R[i]))^gamma/(IC50^gamma+ (DR[i]/(DR[i]+R[i]))^gamma)) -kon/Vpl*D[i]*R[i] +koff*DR[i]</p><p>DR'[1..N] = -kout*DR[i]*( 1 + Emax*(DR[i]/(DR[i]+R[i]))^gamma/(IC50^gamma+ (DR[i]/(DR[i]+R[i]))^gamma)) +kon/Vpl*D[i]*R[i] -koff*DR[i] </p><p>;Initialization of differential equations INIT D[1..N] = 0 INIT Dti[1..N] = 0 INIT R[1..N] = R0*Vbl ;does not take account of interaction with natural ligand init DR[1..N] = 0</p><p>;Derived variables Cell[1..N]= (R[i]+DR[i])/NRB ;Target cell count RecOcc[1..N] = 100*DR[i]/(DR[i]+R[i]) ;%. receptor occupancy Perc_R[1..N] = 100*R[i]/(DR[i]+R[i]) ;%. free receptor target</p><p>;Derived concentrations CFD[1..N] = MWD*D[i]/Vpl ;µg/mL=mg/L. free antibody in plasma CFR[1..N] = R[i]/Vbl ;free (unoccupied) receptor in blood CDR[1..N] = DR[i]/Vbl ;drug-receptor complexes in blood CTR[1..N] = (R[i]+DR[i])/Vbl ;total receptor : free + occupied in blood</p><p>6 S4: code for target cell receptor example in human</p><p>Code for HUMAN simulations:</p><p>; Trial specifications for dose escalation study in human (single intravenous dose) STARTTIME = -10 ;days STOPTIME = 70 ;days N=3 ; number of dose levels Dose[1]= 0.02 ;mg/kg Dose[2]= 0.8 ;mg/kg Dose[3]= 16 ;mg/kg Tau = 14 ;days. dosing interval, not used here NDoses = 1 ;number of administered doses, here one for single dose</p><p>;Receptor target and cell turnover NRB = xx ;receptor number per cell NBC = xx ;target cell number per liter of blood in absence of drug Avog= 6.023e23 ;Avogadro's number R0 = NRB*NBC/Avog*1e9 ;nM. baseline receptor concentration in blood THR = xx ;day. receptor half-life kout = logn(2)/THR ;per day. Elimination rate of target cells without drug. kin = R0*Vbl*kout ;nmole/day. Constant target cell synthesis/entrance rate in blood R0[1..N] = kin[i]/kR IC50 = 0.25 ;receptor occupancy when drug-induced target cell death rate is 50% of its maximal value gamma = 1 ;Hill coefficient Emax = xx </p><p>;Binding constants between drug and receptor target Kd= xx ;nM. dissociation equilibrium constant Drug-Receptor complex kon = 10 ;per nM per day. Assume moderately fast association rate kon koff = Kd*kon ;per day. koff for Drug-Receptor complex dissociation (single binding)</p><p>;TMDD parameters Vmax = xx ; nanomoles per day Km = xx ; nanomoles per liter</p><p>;System physiology & basic parameter values centered on 70 kg person WT = 70 ;kg. body weight MWD = 150000/1e6 ;mg/nmole. Molecular weight IgG CLD = 0.6 ;L/d. Clearance of free monoclonal antibody drug Vpl = 2.5 ;liters plasma volume (for mAb) for 70 kg person Vbl = 2*Vpl ;liters. blood volume (for target cells) Vti = 2.6 ;liters. tissue interstitial volume (for mAb) PS = 0.8 ;L/d. permeability*surface area IgG plasma to/from tissue fluid</p><p>;Integration settings METHOD STIFF ;STIFF is Rosenbrock integrator DTMIN = 0.01 ;days. minimum time step DTOUT = 0 ;output all time points if 0 TOLERANCE = 1e-6 DTMAX = 45/(60*24) ;days. maximum time step(45 minutes). Use this for drug input time TD1 = DTMAX ;time when first dose would start</p><p>;Input doses of antibody drug as pulses. Note use of DTMAX to ensure correct mass input ;Pulse actually occurs over the timeframe of DTMAX so is not instantaneous anyway IN[1..N] = IF TIME<=ndoses*tau THEN PULSE(Dose[i]*WT/MWD,TD1,Tau) ELSE 0 ;Infusion input (infusion dosing) to assess steady-state suppression without pulsation</p><p>7 ;IN[1..N] = IF TIME>0 AND TIME<=(DTMAX+TD1+TAU*(NDoses)) THEN Dose*WT/MWD/Tau ELSE 0</p><p>;Differential equations written as amounts in nmoles. ; D=drug (available data to be fitted), Dti=drug in tissue interstitial, R=receptor ;(available data to be fitted), DR=drug-receptor complex, Cell= target cell ; (available data to be fitted)</p><p>D'[1..N] = IN[i] -CLD/Vpl*D[i] +PS*(Dti[i]/Vti-D[i]/Vpl) -kon/Vpl*D[i]*R[i] +koff*DR[i] - Vmax*D[i]/(Km + D[i])</p><p>Dti'[1..N]= -PS*(Dti[i]/Vti-D[i]/Vpl) </p><p>R'[1..N] = kin -kout*R[i] *( 1 + Emax*(DR[i]/(DR[i]+R[i]))^gamma/(IC50^gamma+ (DR[i]/(DR[i]+R[i]))^gamma)) -kon/Vpl*D[i]*R[i] +koff*DR[i]</p><p>DR'[1..N] = -kout*DR[i]*( 1 + Emax*(DR[i]/(DR[i]+R[i]))^gamma/(IC50^gamma+ (DR[i]/(DR[i]+R[i]))^gamma)) +kon/Vpl*D[i]*R[i] -koff*DR[i] </p><p>;Initialization of differential equations INIT D[1..N] = 0 INIT Dti[1..N] = 0 INIT R[1..N] = R0*Vbl ;does not take account of interaction with natural ligand init DR[1..N] = 0</p><p>;Derived variables Cell[1..N]= (R[i]+DR[i])/NRB ;Target cell count RecOcc[1..N] = 100*DR[i]/(DR[i]+R[i]) ;%. receptor occupancy Perc_R[1..N] = 100*R[i]/(DR[i]+R[i]) ;%. free receptor target</p><p>;Derived concentrations CFD[1..N] = MWD*D[i]/Vpl ;µg/mL=mg/L. free antibody in plasma CFR[1..N] = R[i]/Vbl ;free (unoccupied) receptor in blood CDR[1..N] = DR[i]/Vbl ;drug-receptor complexes in blood CTR[1..N] = (R[i]+DR[i])/Vbl ;total receptor : free + occupied in blood</p><p>8</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us