Filters: Section 14.3/Pg 428

Filters: Section 14.3/Pg 428

<p> Subband coding</p><p>Extension of Nyquist theorem: If a signal is band limited to a frequency range (f1 to f2) and if f1 and f2 satisfy certain criteria then the signal can be recovered from the sampled data provided fs >= 2(f2 – f1) samples/sec. Filters: Section 14.3/Pg 428</p><p>Xn Yn</p><p> input output </p><p>1,0,0,0,…. hn</p><p> hn = Impulse Response</p><p>N M </p><p>Yn = ai Xn-i + biYn-i ………Eq 14.8</p><p> i = 0 i = 0</p><p>Infinite Impulse Response, IIR filter.</p><p>FIR: Finite Impulse Response, FIR filter.</p><p>N</p><p>Yn = ai Xn-i</p><p> i = 0</p><p>FIR Filter</p><p>Yn = a0Xn + a1Xn-1 + a2Xn-2 + …….. + aNXn-N </p><p>Unit impulse 1,0,0,0,0,…….,0</p><p>Y0 = a0 , Y1 = a1 , Y2 = a2 ,……….., YN = aN , </p><p>(YN+1 = YN+2 = YN+3 =………= 0) Finite Impulse Response</p><p>Xn Yn</p><p>Digital filter</p><p>M</p><p>Yn = hk Xn-k Discrete convolution </p><p> k = 0 M is finite – FIR filter M is infinite – IIR filter</p><p>Yn = h0Xn + h1Xn-1 + h2Xn-2 +……+ hMXn-M</p><p> hi , 0<=i<=M are taps or weights</p><p>(h0, h1, h2, …… ,hM) </p><p>14.3.1 Some filters used in Subband Coding</p><p>QMF – Quadrature Mirror filters</p><p> n LPF -> { hn}, HPF -> { (-1) hN-1-n}, </p><p>Let N = 8, LPF (h0, h1, h2, h3, h4, h5, h6, h7)</p><p>HPF (h7, -h6, h5, -h4, h3, -h2, h1,-h0) </p><p>Symmetric filters</p><p>LPF hN-1-n = hn n = 0,1,…., N -1 2 </p><p>Let N = 8, LPF symmetric (h0, h1, h2, h3, h4, h5, h6, h7)</p><p>(h0, h1, h2, h3, h3, h2, h1, h0) </p><p>These are linear phase filters QMF – Quadrature Mirror filters</p><p> n For QMF, HPF -> {(-1) hN-1-n} n {(-1) hLP,n}</p><p>HPF antisymmetric (h0, -h1, h2, -h3, h3, -h2, h1,-h0)</p><p>When LPF is symmetric, HPF is antisymmetric</p><p>See Tables 14.1, 14.2 on Pg433 & 14.3 on Pg 434</p><p>Johnston LPF, # of taps 8, 16 & 32</p><p>From these you can get the taps for HPF.</p><p>FIF Filter</p><p> xn yn</p><p>M yn = hkXn-k</p><p>K=0</p><p> hk k = 0,1,…,M are filter taps, weights or coefficients</p><p>Yn = h0Xn + h1Xn-1 + h2Xn-2 +……+ hMXn-M</p><p>Y0 = h0Xn + h1X-1 + h2X-2 +……+ hMX-M</p><p>Y1 = h0X1 + h1X0 + h2X-1 +……+ hMX1-M</p><p>Original pixels -> X0 X1 X2 X3 X4 X5 X6 ……… XnXn+1</p><p>Reflected pixels at the boundary -> X-7 X-6 X-5 X-4 X-3 X-2 X-1</p><p>………. X6 X5 X4 X2 X1 X0 </p><p>7 </p><p>Johnston LPF (Table 14.1/ Pg 433) yn = hkXn-k </p><p> k=0</p><p>Y0 = h0X0 + h1X-1 + h2X-2 + h3X-3 + …… + h7X-7</p><p>Y1 = h0X1 + h1X0 + h2X-1 + h3X-2 + …… + h7X-6</p><p>Y2 = h0X2 + h1X1 + h2X0 + h3X-1 + …… + h7X-5 </p><p>Let N = 8, LPF symmetric (h0, h1, h2, h3, h4, h5, h6, h7)</p><p>(h0, h1, h2, h3, h3, h2, h1, h0)</p><p>HPF antisymmetric (h0, -h1, h2, -h3, h3, -h2, h1, -h0)</p><p>When LPF is symmetric, HPF is antisymmetric</p><p>Symmetric filter = hLP,n hn = hN-1-n LPF n = 0,1,…..,N/2 -1</p><p> n HPF Antisymmetric (-1) hN-1-n n hHP,n = (-1) hLP,n</p><p>Two channels Filter Banks</p><p>LP DECIMATION INTERPOLATION LP</p><p>X(n) X(n)</p><p>HP HP</p><p>Decimation filters h0(n) = hLP(n)</p><p> h1(n) = hHP(n)</p><p>Interpolation filters g0(n) = gLP(n)</p><p> g1(n) = gHP(n)</p><p>QMF – Quadrature Mirror filters</p><p>H0(w) H1(w)</p><p>GAIN LPF HPF QMF</p><p>0 90 180 w</p><p>H1(w) = H0(w+180) n h1(n) = (-1) h0(n)</p><p>X(w) = A + B</p><p>= 0.5 [ G0(w)H0(w) + G1(w)H1(w)]X(w) + 0.5 [ G0(w)H0(w+180) + G1(w)H1(w+180)]X(w+180) </p><p>For X(w) = X(w) part B of the above equation should be zero.</p><p>PR : Perfect Reconstruction Ref 1. B.Porat, “A course in DSP”, Wiley, pages 465 – 469 and 488 – 492, 1997. 2. H.M.Hang and J.W.Woods (Eds), “Handbook of visual Communications” Academic press, Ch.8, 1995.</p><p>G0(z) = CH0(z), G1(z) =- CH1(z), G0(z) = CH1(-z), G1(z) = -CH1(z) , c = constant</p><p>G0(w) = C H1(w+180), G1(w) = -C H0(w+180) implies </p><p> g0(n) = n C(-1) h1(n) </p><p> g1(n) = n C(-1) h0(n)</p><p> h1(n) = (- n 1) h0(n)</p><p>OR</p><p> g0(n) = Ch0(n) = gLP(n) = ChLP(n)</p><p> g1(n) = -Ch1(n) = gHP(n) = -ChHP(n)</p><p>Linear phase QMF</p><p> hLP(n) = h0(n) = h0(N-1-n), n=0,1,…, N - 1 (symmetric) 2</p><p> n 2 2 hHP(n) = h1(n) = (-1) h0(N-1-n), n=0,1,…....,N-1 (antisymmetric) X(z) = C/2 [H0 (z) – H1 (z)]X(z) 2 X(z) = A + B</p><p>= C [G0(z) H0(z) + G1(z)H1(z)]X(z) + C [G0(z) H0(-z) + G1(z)H1(-z)]X(-z) 2 2 For PR the part B of the above equation should be zero</p><p>1:2 Interpolation</p><p>{X0 X1 X2 X3 X4…………} {X0 i0 X1 i1 X2 i2 X3 i3……….} </p><p>{X0 0 X1 0 X2 0 X3 0 X4…………}</p><p>Note that the original pels (samples) {X0 X1 X2 X3 X4…………} stay the same after interpolation. Interpolated pels are {i0 i1 i2 i3……} inserted between adjacent original pels.</p><p>2:1 Decimation</p><p>{X0 X2 </p><p>X4 X6 …………} {X0 X1 X2 X3 X4 X5 …………} {X0 X1 X2 X3 X4 X5 …………} </p><p>After applying the filter to the original samples {X0 X1 X2 X3 X4 X5 …………} just delete every other sample to get {X0 X2 X4 X6 </p><p>…………}</p><p>PCM, VQ, DPCM, ADPCM, transform etc. adaptive to the specific subband</p><p>Inverse operations based on the encoder</p><p>Quantization and Coding bit allocation among the M subbands based on the information content. Follow steps similar to SQ. M 2 2 Rk = R + 0.5 log2(theta0l ) – 0.5 M log2(theta0l )</p><p> l=1 M </p><p>Where R = (1/M) Rk is the average # of bits/sample </p><p> k=1 </p><p>Rk is # of bits assigned to sample k M:1 decimation or subsampling keep only every Mth sample. Delete the other samples.</p><p>1:M Interpolation or unsampling</p><p>Interpolate (Fill up) between adjacent two original samples by (M-1) zeros.</p><p>Original samples: X0 X1 X2 X3 X4……. </p><p>1:2 interpolation: X0 i0 X1 i1 X2 i2 X3 i3 X4………………..</p><p>M Band QMF filter bank Apply the above filter at every stage Aliasing between the bands 2 4 A(z) = HL(z) HL(z ) HL(z )</p><p>If HL(z) corresponds to 4 – tap filter A(z) corresponds to 3x6x12 = 216 tap filters See discussion on bottom of pg 434. </p><p>Application to Speech Coding – G.722 (64, 48, 56 Kbps)</p><p>Wideband coding of speech</p><p>Audio signal </p><p>6 bp sample</p><p>(can drop 1 or 2 LSB) </p><p> fs = 8KHz</p><p>2 bp sample</p><p> fs = 8KHz</p><p> fs = 16KHz 6 bp sample </p><p>Audio Signal out</p><p> fs = 16KHz 2 bp sample Quantizer in ADPCM : Variation of Jayant Quantizer</p><p>QMF , LPF symmetric hn = hN-1-n , n = 0, 1,2,…..,[(N/2) – 1] </p><p> n hHP,n = (-1) hLP,n </p><p>HPF is antisymmetric LPF</p><p>1] W.C.Chu, “Speech Coding Algorithms”, Hoboken, NJ: Wiley, 2003. 2] R.Goldberg, “A practical handbook of speech coders”, Boca Ratan, FL: CRC Press, 1999.</p><p>Application to audio coding (MPEG audio)</p><p>MPEG-1 audio Layer 1,2,3 Layer 1,2 bank of 32 filters (32 subbands) Psychoacoustic model assigns # of bits to code each subband (Masking properties of human ear) MP3 is MPEG-1 Layer-3 audio (www.mpeg.org) 3] M.Bosi and R.E.Goldberg, “Introduction to digital audio coding standards”, Norwell, MA, Kluwer, 2002.</p><p>Application to image compression</p><p>2-D filters implemented by 1-D separable [N x (N/2)] 3 IN 4 All at (N/2 X N/2) resolution </p><p>(NXN) </p><p>[N x (N/2)] 5</p><p>6 </p><p>Subband Encoder</p><p> fy fy</p><p>4 6 1 2 3 5</p><p> fx fx</p><p>R = Rows C = Columns</p><p>(NXN/2)</p><p>(NXN/2) </p><p>(NXN) </p><p>All at (N/2 X N/2) resolution </p><p>OUT (NXN) </p><p>(NXN/2) </p><p>(NXN)</p><p>(NXN/2) </p><p>SUBBAND DECODER</p><p>Use reflection at borders</p><p>LPF yn = (Xn + Xn-1)/0.5 HPF = (Xn - Xn-1)/0.5</p><p>Application to image compression</p><p>LPF = {h0 h1 h2 h3 h3 h2 h1 h0}</p><p>HPF = {h0 -h1 h2 -h3 h3 -h2 h1 -h0}</p><p>N-1 yn = hk Xn-k ; hN-1-n = hn n = 0,1,2….,N -1 Symmetric LPF</p><p>K=0 2</p><p>N = 8</p><p> y0 = [h0x0+ h1x-1 + h2x-2 + h3x-3 + ….. + h7x-7] y1 = [h0x1+ h1x-0 + h2x-1 + h3x-2 + ….. + h7x-6] y2 = [h0x2+ h1x1 + h2x0 + h3x-1 + ….. + h7x-5] </p><p> wx</p><p>(0,0) LOW HIGH</p><p>LOW LL LH </p><p>DPCM DISCARD wy</p><p>HL HH</p><p>HIGH </p><p>SQ DISCARD</p><p>8 - Tap Johnson filter (Table 14.1/ p433)</p><p>16 - Tap Johnson filter (Table 14.2/ p433) Decomposition of Sinan Image 8 - Tap Smith Barnwell filter (Table 14.4/ p434)</p><p>Decomposition of Sinan Image Sinan Image coded at 0.5bpp using 8 tap Johnston filter</p><p>DPCM (1bpp)</p><p> wx</p><p> wy LH LL</p><p>Discard HL HH</p><p>SQ (1bpp)</p><p>Sinan Image coded at 0.5bpp using 8 tap Smith - Barnwell filter 2bpp(DPCM)</p><p> wx </p><p> wy LL LH</p><p>HL HH</p><p>Discard Apply VQ to some of the bands.</p><p>Bit allocation among subbands: Given M equal bands (M subbands), assume filter outputs are scalar quantized.</p><p>M</p><p>R = 1 Rk = Avarage # of bits/sample ……………. Eq 13.51</p><p>M k=1</p><p>(Rk = # of bits/sample at the output of the kth filter)</p><p>Reconstruction error variance for kth Quantizer.</p><p>2 -2 Rk 2 tau Rk = tau k 2 tau yk ……………. Eq 13.52</p><p>Lagrange Variable technique is very powerful. Total error in reconstruction M M 2 2 -2 Rk 2 tau Rk = tau Rk = alpha 2 tau yk ……………. Eq 13.53</p><p> k=1 k=1</p><p>(Assume alphak = alpha, a constant for all k)</p><p>M</p><p>Minimize Eq 13.53 subject to ( R – 1 Rk ) = 0</p><p>M k=1 </p><p>Lagrange Variable</p><p>Minimize WRT Rk constraint</p><p>M -2 Rk 2 J = alpha 2 tau yk - ( R – 1 Rk) ……………. Eq 13.54</p><p> k=1 M k=1</p><p>Set dJ = 0 to get</p><p> dRl</p><p>2 -2 Rl alpha dj (tau yl 2 ) + = 0</p><p> dRl M</p><p>2 2Rl alpha tauyl d (1) + = 0</p><p> dRl 2 M</p><p> u u d(a ) = a (logea)du</p><p>Hence, 2 2Rl alpha tauyl (0.5) [loge0.5] 2 + = 0 M</p><p>2 -2Rl (ln 2)* (2 alpha tauyl ) * 2 = …………………Eq 13.58 M</p><p>2 log2[(2 * alpha * tauyl ) ln 2 ] – 2Rl = log2 ( ) …………………Eq 12.55 M</p><p>M M 2 R = 1 Rk = 1 log2[ 2 alpha tauyk ln2] - 1 log2( ) K=1 M K=1 2M 2 M</p><p>M 2 log2 ( ) = 1 log2 [2 * alpha * tauyk ln2]</p><p>M M K=1 </p><p>M 2 1/M -2R = (2 alpha tauyk ln2) 2 …………………Eq 13.56</p><p>M K=1</p><p>Substitute 11.38 in 11.37</p><p>M 2 2 1/M -2R Rk = 1 log2 [2 alpha tauyk ln2] - 1 log2[ (2 alpha tauyl ln2) 2 ] 2 2 l=1</p><p>M 2 2 Rk = 0.5 log2[2 alpha tauyk ln2] – 1 log2(2 alpha tauyl ln2) + R 2M l=1</p><p>LPF : 8 – tap Johnston LPF</p><p>Let N = 8, LPF symmetric (h0, h1, h2, h3, h4, h5, h6, h7)</p><p>(h0, h1, h2, h3, h3, h2, h1, h0) 7</p><p>-jnw Symmetric filter frequency response is hn e n=0</p><p>(h0 = hN-1-n) (Assume T = 1)</p><p>HPF = (h0, -h1, h2, -h3, h3, -h2, h1, -h0) jw -j7w -jw -j6w -j2w -j5w -j3w -j4w For Symmetric filter H(e ) is [ h0 + h7e + h1e + h6e + h2e + h5e + h3e + h4e ] j(7/2)w -j(7/2)w j(5/2)w -j(5/2)w j(3/2)w -j(3/2)w -j(1/2)w -j(1/2)w = [ (h0)(e + e ) + (h1)(e + e ) + (h2)(e + e ) + (h3)(e + e )</p><p>For symmetric filter h0 = h7, h1 = h6, h2 = h5, h3 = h4</p><p> jw -j(7w/2) LPF H(e ) = 2[h0 cos(7w/2) + h1 cos(5w/2) + h2 cos(3w/2) + h3 cos(w/2)]e</p><p>Linear Phase Filter: FIR filter</p><p> jw -j(7w/2) HPF(antisymmetric): H(e ) = 2[h0sin(7w/2) – h1sin(5w/2) – h2sin(3w/2) – h3sin(w/2) ]je</p><p> hn = impulse response</p><p>N-1 jwt -jwnT H(e ) = hn e</p><p> n= 0 T = Sampling interval, normalize this to one</p><p>N = 0 jwT jwnT H(e ) = hn e = H(w)</p><p> n= 0</p><p>Frequency Response H(ejw) = H(ejw+2 ) , periodic with a period of 2 </p><p> jw when hn is real, |H(e )| vs w magnitude response is an even function at w=0 and phase response is an odd function at w = 0</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us