411. Differential Equations

411. Differential Equations

<p> 411. DIFFERENTIAL EQUATIONS.</p><p>1.1 Introduction.</p><p>Definition: An Ordinary Differential Equation (ODE) is an equation that contains one or several derivatives of an unknown function. dy Example: 1. dx = sinx + 3 2. y`` + 2y` - 6y = ex d 3 x d 2 y dy 3. 3 + 2 2 - - y = 0. dy dx dx</p><p>Notation: F(x, y, y`, y``, … ) = 0.</p><p>Standard Notations: If y(x) is a function of x , then the first order differential equation can be written as dy y'(x) y' dx or or Similarly the second order differential equation can be written as d 2 y y''(x) y'' 2 or or dx and in general for nth differential equation we have d n y y (n) (x) y (n) n or or dx</p><p>The order of an ordinary differential equation is the order of the highest derivative that appears in the differential equation.</p><p>1 dy Example: 1. dx + y tan x = sin 2x. (first order) 2 2 d y dy -1 2. x 2 - 4x + 6y = x . (second order) dx dx 3. y`` - 4y` + 4y = 5x2 + e-x. (second order) 4. y``` - 3y`` + 3y – y = 0. (third order)</p><p>1.2 How to form ODE.</p><p>A differential equation could be formed by eliminating an arbitrary constant from a given function.</p><p>Example 1. Form ODE from the function y = Ax + x2. (A constant) Solution: y = Ax + x2 … (i) y`= A + 2x … (ii) → x(ii) : xy` = Ax + 2x2 (i) : y = Ax + x2 ______xy` - y = x2 (iii) xy`- y = x2 . This is a first order differential equation which derived from y = Ax + x2.</p><p>2 A Example 2. Form ODE from the function y = x + x . 2 A Solution: y = x + x . Multiply with x, then yx = x3 + A. Differenciate with respect to x, dy 2 → y + x dx = 3x is the first order ODE.</p><p>2 Example 3. Form ODE from the function: y = Ax2 + Bx5.</p><p>Solution: y = Ax2 + Bx5 …. (i) y`= 2Ax + 5Bx4…. (ii) y``= 2A + 20Bx3…. (iii)</p><p> x(ii): xy`= 2Ax2 + 5Bx5 2(i) : 2y = 2Ax2 + 2Bx5 ______- xy`-2y = 3Bx5 …… (iv)</p><p> x(iii): xy`` = 2Ax + 20 Bx4 (ii): y` = 2Ax + 5Bx4 ______xy``- y`= 15 Bx4 ….. (v)</p><p> x(v): x2y``- xy` = 15Bx5 5(iv): 5xy` - 10y = 15Bx5 ______x2y``- 6 xy`+ 10y = 0 (second order ODE )</p><p>Example 4. Form ODE from the function y = Aex + Be-2x </p><p>Solution: y = Aex + Be-2x …. (i) e2x(i): ye2x = Ae3x + B. …. (ii)</p><p>Differentiating (ii): y`e2x + 2e2xy = 3Ae3x ….(iii)</p><p>Differentiating (iii): y``e2x + 2e2xy`+ 2e2xy`+4e2xy = 9Ae3x.</p><p>Or: y``e2x + 4e2x y` + 4e2xy = 9Ae3x …. (iv)</p><p>3 3(iii): 3y`e2x + 6e2xy = 9Ae3x ______y``e2x + y`e2x - 2e2xy = 0</p><p> e2x(y``+ y` - 2y) = 0. But e2x ≠ 0 </p><p>Thus the solution is: y`` + y` - 2y = 0 </p><p>1.3. Solution of a Differential Equation.</p><p>Definition: If y = F(x) is the solution of an ODE, hence a function F(x) satisfies the given differential equation. d 2 y dy Examp. 5. Given 2 + - 6y = 0. Show that: dx dx (a) y = e2x is the solution. (b) y = 5e2x + 4e-3x is the solution. (c) y = xe2x is not the solution.</p><p>Solution: 2 2x dy 2x d y 2x (a) y = e …(i) thus = 2e …(ii) and 2 = 4e …(iii) dx dx Substitute (i), (ii) dan (iii) into the given diff. eq. hence</p><p>2 d y dy 2x 2x 2x 2 + - 6y = 4e + 2e – 6e = 0. dx dx It is shown that y = e2x is the solution.</p><p>(b) y = 5e2x + 4e-3x dy 2x -3x dx = 10e – 12e</p><p>4 2 d y 2x -3x 2 = 20e + 36e dx 2 d y dy 2x -3x 2x -3x → 2 + - 6y = 20e + 36e + 10e – 12e dx dx -30e2x – 24e-3x = 0 y = 5e2x + 4e-3x is the solution.</p><p>(c) y = xe2x y` = 2xe2x + e2x y``= 2e2x + 4xe2x + 2e2x = 4xe2x + 4e2x. → y``+ y` - 6y = 4xe2x + 4e2x + 2xe2x + e2x – 6e2x = 5e2x ≠ 0. y = xe2x is not the solution.</p><p>Example 6. Find the value of m so that y = emx is the solution of the diffrential equation 2y`` + 5y` - 3y = 0.</p><p>Solution: Given y = emx …..(i), thus y`= memx …(ii) and y``= m2emx …(iii) Substitute (i), (ii) and (iii) into the ODE, hence</p><p>2y``+ 5y` - 3y = 2m2emx + 5memx – 3emx = emx(2m2 + 5m – 3) = 0. But emx ≠ 0 hence, 2m2 + 5m – 3 = 0 (2m -1)(m + 3) = 0 m = { ½ , -3}. </p><p>5 1.4 General & Particular Solution.</p><p>Example 7. Show that y = Aex + (x + 2)e2x is the general solution of the differential equation dy 2x dx - y = (x + 3)e , and hence determine the value of A given that y = 4 when x = 0. </p><p>Solution: y = Aex + (x + 2)e2x dy x 2x 2x dx = Ae + 2(x + 2)e + e = Aex + (2x + 5)e2x</p><p> dy x 2x x 2x → dx - y = Ae +(2x + 5)e – Ae – (x + 2)e = (2x + 5 – x – 2)e2x = (x + 3)e2x. (shown)</p><p>Given that y = 4 when x = 0 → y = Aex + (x + 2)e2x 4 = Ae0 + (0 + 2)e0 4 = A + 2 → A = 2 Particular solution: y = 2ex + (x + 2)e2x</p><p>6 The particular solution could be obtained by substituting the given condition (y = 4 when x = 0). The conditions are called the initial condition of the differential equation.</p><p>Definition: (i) Initial Value Problem (IVP) is a differential equation with initial conditions. (Ex. y = 1 and y`= 2 when x = 0)</p><p>(ii) Boundary Value Problem (BVP) is a diff. equation with boundary conditions. (Ex. y = 0 when x = 0 and y`= 2 when x = 1)</p><p>Akos3x  Bsin 3x Example 8. Show that y = x is the general d 2 y dy solution for x 2 + 2 + 9xy = 0. dx dx And hence obtain the particular solution with condition y() = -3 and y`() = 0.</p><p>Solution:</p><p>The conditions above are an initial condition (IVP) y = -3 and y`= 0 when x = .</p><p>Given: yx = A kos3x + B sin 3x … (i) dy x dx + y = -3A sin3x + 3B kos3x … (ii) d 2 y dy dy x 2 + + = -9A kos3x – 9B sin3x. dx dx dx d 2 y dy x 2 + 2 = -9(A kos3x + B sin3x) … (iii) dx dx Substitute (i) into (iii), thus:</p><p>7 d 2 y dy x 2 + 2 + 9xy = 0. (shown) dx dx</p><p>Substitute y() = -3 into (i) → -3 = -A or A = 3 y`() = 0 into (ii) → y = -3B -3 = -3B or B = 1. 3kos3x  sin3x The particular solution: y = x . </p><p>3 B Example 9. Show that y = Ax + x3 is the general solution for x2y`` + xy` - 9y = 0 and hence obtain the particular solution with conditions y(2) = 1 and y`(1) = 0. </p><p>Solution: The condition above are a boundary condition (BVP), y(2) = 1 and y`(1) = 0.</p><p>3 B 3 6 y = Ax + x3 or x y = Ax + B … (i). Differentiating (i), thus 3x2y + x3y`= 6Ax5 → xy` = 6Ax3 – 3y … (ii). Differentiating (ii), thus xy``+ y`= 18Ax2 – 3y` → xy``= 18Ax2 – 4y` …(iii) Substitute (ii) and (iii) into given diff. equation,</p><p> x2y``+ xy`- 9y = 18Ax3- 4y`x + xy`- 9y = 18Ax3 -3(6Ax3- 3y) – 9y = 18Ax3 – 18Ax3 + 9y – 9y = 0 3 B Thus: y = Ax + x3 is the general solution.</p><p>8 Substituting y(2) = 1 or y = 1 when x = 2 3 B into diff. equation y = Ax + x3 we get 1 1 = 8A + 8 B or 8 = 64A + B…(iv) Substituting y`(1) = 0 or y`= 0 when x = 1 into xy`= 6Ax3 – 3y we get 3 3 B xy`= 6Ax – 3(Ax + x3 ) 3 3B xy` = 3Ax - x3 0 = 3A – 3B → A = B … (v) Fron simuntaneous equation (iv) dan (v), thus </p><p>8 64A + A = 8 → A = B = 65 8 3 1 Particular equation: y = 65 (x + x3 ).</p><p>9 2. First Order Ordinary Differential Equation (ODE)</p><p> dy General Form: dx = f(x,y)</p><p> dy Example: a) dx = 2y + sin x. 2 b) dy = x  (1 x)y . dx 2x</p><p>There are four types of a first order ODE, i) Separable differentiel equation. ii) Homogeneous differential equation. iii) Linear differential equation. iv) Exact differential equation.</p><p>2.1. Separable Differential Equation.</p><p>The differential equation: y` = f(x,y) is said to be separable if the equation can be written as the product of a function of x, u(x) and the function of y, v(y). The equation can be wtitten in the form</p><p> dy dy dy = u(x).v(y) or v(y) = u(x).dx hence, integration both sides:</p><p> dy ∫ v(y) = ∫ u(x) dx.</p><p>10 dy Example 1. Solve the equation: (x + 2) dx = y. dy Solution: (x + 2) dx = y dy dx ∫ y = ∫ x  2 ln|y| = ln|x+2| + C y c ln| x  2 | = e = A y = A(x+2).</p><p> x dy 2 Example 2. Solve the equation: e dx + xy = 0. Solution: </p><p> x dy 2 e dx + xy = 0. dy -x ∫ y 2 = - ∫ xe dx.</p><p>1 -x -x d(x) - y = -[x ∫e dx - ∫{e dx} dx dx. 1 -x -x y = -xe -∫-e dx 1 -x -x y = -xe – e + C. 1 -x y = -(x+1) e + C. </p><p>11 Example 3. Solve the following differential equation: x2y dx + (x + 1) dy = 0 which satisfied condition y = 2 when x = 0.</p><p>Solution:</p><p> x2y dx + (x + 1) dy = 0 dy 2 - = x dx. y x 1 dy 1 - y = {(x – 1) + x 1 }dx. dy dx -∫ y = ∫(x – 1)dx + ∫ x 1 2 -ln|y| = x - x + ln|x + 1| + C. 2 ln|y(x + 1)| = x – ½ x2 – C.</p><p> y(x + 1) = ex-1/2 x 2 -C</p><p> y(x + 1) = A.ex-1/2 x 2 , where A = e-C</p><p> y = 2 when x = 0, thus: 2 = A.</p><p>The solution is:</p><p>2 x- ½ x 2 y = x 1 . e</p><p>12 2.1.1. Substitution Method.</p><p> dy x  y 1 Example 4. Solve the equation: dx = x  y  5 which satisfied the condition y(1) = 1.</p><p>Solution : Subsitute z = x + y dz dy dy dz  dx 1 + dx thus dx = dx - 1 dz z 1 → dx - 1 = z  5 dz z 1 2z  6 2(z  3) dx = z  5 + 1 = z  5 = z  5</p><p> z  5 z  3 dz = 2 dx. 2 ∫(1 + z  3 ) dz = ∫2 dx. z + 2ln|z+3| = 2x + C.</p><p>2ln|z+3| = 2x – x – y + C</p><p>(z + 3)2 = A.ex-y, where A = eC.</p><p> y(1) = 1 → (1+1+3)2 = A.e1-1 25 = A</p><p>The solution is: (x + y + 3)2 = 25 ex-y .</p><p>Example 5. Solve the equation:</p><p> dy 2 2 x dx + y = 2x((1 + x y ).</p><p>13 Solution: Substitute z = xy, hence dz dy  x  y dx dx </p><p> dz 2 → dx = 2x(1 + z ) dz ∫ 1 z 2 = ∫ 2xdx. tan-1 z = x2 + C. z = tan(x2 + C) xy = tan(x2 + C).</p><p>2 y = tan(x  C) x</p><p>2.2 HOMOGENEOUS EQUATION.</p><p> dy Consider the differential equation dx = f(x, y). If: f(λx, λy) = f(x, y) for each  , hence dy dx = f(x, y) is called a homogeneous equation.</p><p> dy xy Example: i). dx = x 2  y 2 = f(x, y) (x)(y) 2 (xy) f(λx, λy) = (x)2  (y)2 = 2 (x 2  y 2 ) xy = x 2  y 2 = f(x, y) [homogeneous].</p><p> dy ii). dx = x – y = f(x, y). f(λx, λy) = λx – λy = λ(x – y) ≠ f(x, y). f(x, y) non-homogeneous.</p><p>14 The method of solving a homogenous diff. equation is by using the following substitution.</p><p> dy dv y = x.v, hence dx = x dx + v </p><p>Example 6. Solve the differential equation dy xy dx = x 2  y 2 with condition y(0) = 2.</p><p> dy dv Solution: By using substitution y = xv and dx = x dx + v. dv x(xv) v Thus: x dx + v = x 2  (xv)2 = 1 v 2 dv v v  v(1 v 2 ) v3 x = 2 - v = 2 = - 2 dx 1 v 1 v 1 v</p><p>1 v 2 dx ∫ 3 dv = - dx. ( v ) ∫ x 1  2v 2 + ln |v| = -ln|x| + C. 1 y ln |xv| = 2v 2 + C. [v = x ] y = A.ex 2 /2y 2 , where A = eC</p><p>Then y(0) = 2 , hence A = 2.</p><p>The solution is: y = 2ex 2 /2y 2</p><p>15 Example 7. Solve the differential equation dy 2x  y dx = x  2y with condition y(3) = 1. Solution: 2x  y (2x  y) 2x  y f(λx, λy) = x  2y = (x  2y) = x  2y = f(x, y). dy dv  x v Substitute y = xv and dx dx , hence dv 2x  xv 2  v x dx + v = x  2xv = 1 2v . 2 x dv = 2  v - v =  2(v 1) . dx 1 2v 2v 1</p><p>2v 1 dx ∫( v 2 1 )dv = ∫-2 x 1 3 dx ∫{ 2(v 1) + 2(v 1) }dv = -∫ 2 x .</p><p>1 3 2 ln|v + 1| + 2 ln|v – 1| = -2ln|x| + C ln|v + 1| + 3ln|v – 1| = -4ln|x| + 2C</p><p>(v + 1)(v – 1)3.x4 = A , where A = e2C y  x y  x 3 4 ( x )( x ) .x = A (y + x)(y – x)3 = A </p><p>The condition y(3) = 1 → A = -32.</p><p>The solution is: (y + x)(y – x)3 + 32 = 0.</p><p>16 dy 2 2 Example 8. Solve: x dx - y = x – y , with condition y = 1 when x = 1. </p><p>Solution: Substitute y = xv, hence: dv 2 x(x dx + v) – xv = x√ 1 - v . dv 2 x dx = √ 1 – v dv dx ∫ 1 v 2 = ∫ x</p><p> sin-1 v = ln|x| + C -1 y sin ( x ) = ln|x| + C The condition y = 1 when x = 1, thus</p><p>-1  sin (1) = 0 + C → C = 2 .</p><p>-1 y  Solution: sin ( x ) = ln|x| + 2</p><p>17 2.3 Linier differential Equations.</p><p> dy Note: a(x) dx + b(x).y = c(x). dy b(x) c(x) dx + a(x) .y = a(x) dy b(x) or: dx + p(x).y = q(x) where p(x) = a(x) c(x) and q(x) = a(x) This is the general form of a linier differential equations.</p><p>The Method of Solution.</p><p> dy i) Write to the general form : dx + p(x).y = q(x) ii) Determine p(x) and evaluate : ∫ p(x) dx.</p><p> iii) Obtain the integrating factor : u(x) = e∫ p(x)dx.</p><p> dy iv) u(x) dx + u(x).p(x).y = u(x).q(x). d v) Write dx {u(x).y} = u(x).q(x). vi) ∫ d(u(x).y = ∫ u(x).q(x)dx.</p><p> vii) u(x).y = ∫ u(x).q(x)dx. </p><p> dy 3 Example: i). x dx + y = x dy x ii). dx - y = 2e 2 dy 2 iii). (1 + x ) dx - xy = x(1 + x )</p><p>18 dy 3 Solution i). x dx + y = x dy y 2 dx + x = x 1 1 p(x) = x → ∫p(x)dx = ∫ x dx = ln x. Integrating factor: u(x) = e∫p(x)dx = eln x = x.</p><p> y.x = ∫x.x2 dx = ∫x3dx 1 4 = 4 x + C 1 3 C → y = 4 x + x .</p><p> dy x Example ii). dx - y = 2e . p(x) = -1 → ∫p(x) dx = ∫(-1) dx = -x. Integrating factor: u(x) = e∫p(x) dx = e-x. e-x.y = ∫e-x.2ex dx = 2x + C → y = 2xex + Cex.</p><p>2 dy 2 Example iii): (1 + x ) dx - xy = x(1 + x ) dy x dx - (1 x 2 ).y = x x 2 -x/2 ∫p(x)dx = ∫-(1 x 2 ) )dx = ln(1 + x ) u(x) = e∫p(x)dx = eln(1+x 2 ) 1/ 2 = (1+x2)-1/2 2 -1/2 x 2 (1+x ) .y = ∫( (1 x 2 )1/ 2 )dx. Substitute z = (1+x )</p><p> x 2 1/2 hence ∫( (1 x 2 )1/ 2 )dx = (1 + x ) + C (1+x2)-1/2.y = (1 + x2)1/2 + C.</p><p>→ y = (1 + x2) + C(1 + x2)1/2</p><p>19 2.4. Exact Equations.</p><p>General form: M(x,y) dx + N(x,y) dy = 0.</p><p>M N  Condition of an Exact Equation: y x</p><p>Example: i) (2x + 3y2) dx + (6xy + 2y) dy = 0 ii) (3x2y + ey) dx + (x3 + xey – 2y) dy = 0 iii) (2x + y – kos y) dx + (4y + x + sin x) dy = 0.</p><p>The method of solution.</p><p>M N  a) M dx + N dy = 0. Test for exactness: y x u b) Write x = M …….. (i) u y = N ………(ii) c) Inregrate with renpect to x: ∫ du = ∫ M dx u = ∫ Mdx + Q(y) ….. (iii) d) Differentiate (iii) with respect to y.</p><p> e) Equate: u(x,y) = A.</p><p>Example: Solve the following differential equation.</p><p>(6x2 – 10 xy + 3y2) dx + (6xy – 5x2 – 3y2) dy = 0 </p><p>20 Exercises.</p><p>1. Solve the differential equations: dy 2x 1 2x -3x i) dx + 3y = e [ y = 5 e + Ce ] dy 2 2 -x ii) dx + y = x [ y = x - 2x + 2 + Ce ] dy 2 1 iii) sin x dx + 2y kos x = kos x [ysin x = A- 4 kos2x] dy 1 iv) sin x dx - y kos x = cot x. [y = - 2 kosek x+Csin x]</p><p>2. Show that these equations is exact and solve.</p><p>3 1 y i) (y - x ) dy + x 2 dx = 0 ii) (3x2 – y sin xy) dx – x sin xy = 0 iii) (2x + 3 kos y) dx + (2y – 3x sin y) dy = 0. </p><p>21 3. Second Order Linier Differential Equation (LDE)</p><p>General Form: d n y d n1 y dy an(x) n + an-1(x) n1 + …+ a1(x) + a0(x)y = f(x) …(1) dx dx dx where the coefficients a0(x), a1(x),…, an(x), f(x) is the function of x and an(x) ≠ 0.</p><p>If one of the coefficients is not constant, hence (1) is called a Linear Differential Equation with variable coefficient.</p><p>If all of the coefficients are constants, hence (1) could be written as: </p><p> d n y d n1 y dy an n + an-1 n1 + … + a1 + a0y = f(x) … (2) dx dx dx</p><p>(2) is called a Linier Differential Equation with constant coefficient.</p><p>If f(x) in (1) and (2) equal to zero, is called a Homogeneous Differential Equation (HDE). If f(x) ≠ 0, is called Non Homogeneous Diff. Equation.</p><p>Examples: d 2 y a) 2 + 20y = 0 HDE with constant coeffficient. dx b) y``- 5y` + 3y = ex Non HDE with constant coefficient. c) x2y``+xy`+(x2-2)y = 0 HDE with variable coefficient.</p><p>22 d 2 y 2 dy d) 2 + = ln x Non HDE with variable coefficient. dx x dx</p><p>3.1 The Method of Solution for A Homogeneous Differentiel Equation.</p><p>Consider a second order linier differential equation:</p><p> d 2 y dy a 2 + b + cy = 0 where a, b, c constant. …… (3) dx dx</p><p>If y = emx is the solution, hence 2 dy mx d y 2 mx = me and 2 = m e dx dx Substitute into (3), hence d 2 y dy a 2 + b + cy = 0 can be written as: dx dx am2emx + bmemx + cemx = 0. (am2 + bm + c) emx = 0. But emx ≠ 0, hence</p><p> am2 + bm + c = 0 ……. (4).</p><p>(4) is the quadratic equation and called characteristic equation. The roots of (4) are called the characteristic roots.</p><p>Equation (4) has three forms of roots. .</p><p>(i) Real and different roots, if b2 – 4ac > 0. (ii) Real and equal roots, if b2 - 4ac = 0. (iii) Two complex roots, if b2 - 4ac < 0.</p><p>23 Let m1 and m2 are the characteristic roots of equation (4).</p><p>2 m x a) If b – 4ac > 0 hence m1 ≠ m2. Then y1 = e 1 and y2 m x = e 2 are the solutions of the homogeneous equation. Then the general solution written as:</p><p> m x m x y = A e 1 + B e 2 { A, B constants}.</p><p>2 b) If b – 4ac = 0 hence m1 = m2. The characteristic b equation has only one root, m = - 2a . Then the general solution written as: </p><p> y = (A + Bx) emx. {A, B constants} c) If b2 – 4ac < 0 the characteristic equation has two complex roots, m1 = α + βi dan m2 = α – βi . Then the general solution written as :</p><p> y = C.e(α + βi)x + D.e(α – βi)x {C, D constans}.</p><p>By using Euler formula:</p><p> eiθ = kosθ + i sinθ and e-iθ = kosθ – i sinθ, then</p><p> y = C.e(α + βi)x + D.e(α – βi)x = eαx { C.eiβx + D.e-iβx } = eαx { C(kos βx + i sin βx) + D(kos βx – i sin βx)} = eαx {(C + D) kos βx + i(C – D) sin βx} = eαx { A kos βx + B sin βx } where A = C + D and B = (C – D)i.</p><p>24 Conclution: If characteristic equation has two complex roots, m1 = α + βi and m2 = α – βi , then the general solution could be written as:</p><p> y = eαx ( A kos βx + B sin βx )</p><p>αx αx Hence y1 = e kos βx and y2 = e sin βx</p><p>Exercises: Determine the general solution from the folowing equations:</p><p>1). y`` - y` - 6y = 0 2). y`` - 4y = 0 3). y`` - 2y` - 3y =0 with conditions y(0) = 2 and y`(0) = 1 4). y`` - 4y`+ 13y = 0, y(0) = -1, y`(0) = 2.</p><p>25 3.2 Non Homogeneous Linier Equations.</p><p> d 2 y dy a 2 + b + cy = f(x) dx dx</p><p>2 d y dy -2x Example: Solve the equation: 2 - 4 + 3y = 10 e . dx dx Solution: f(x) = 10 e-2x has ex expression.</p><p>Let Ce-2x is the solution.</p><p>2 -2x dy -2x d y -2x Thus: y = Ce ; = -2Ce ; 2 = 4Ce . dx dx 2 d y dy -2x 2 - 4 + 3y = 10e . Substitute : dx dx 4Ce-2x -4(-2Ce-2x) + 3Ce-2x = 10e-2x. 15Ce-2x = 10e-2x. C = 2/3. 2 -2x Hence y = 3 e satisfied the given equation and is called the particular integral.</p><p>The other solution which could be obtain from d 2 y dy homogenous equation 2 - 4 + 3y = 0. dx dx Characteristic equation: m2 – 4m + 3 = 0. → m = {1, 3}. x 3x The solution of HDE: yc = Ae + Be .</p><p> x 3x 2 -2x General Solution: y = Ae +Be + 3 e (A, B constants).</p><p>26 Definition: d 2 y dy i) The general solution of equation: a 2 + b + cy = 0 dx dx is yc , called complementary function.. d 2 y dy ii) The solution of : a 2 + b + cy = f(x) is y , called dx dx p pacticular integral. </p><p>Teorem: If yc is the complementary function for diff. equation d 2 y dy a 2 + b + cy = 0 and yp is the particular integral for dx dx d 2 y dy non homogenous equation a 2 +b + cy = f(x), hence dx dx the general sulution of the non homogenous equation is given by: y = yc + yp.</p><p>3.2.1. Method of Undertemined Coefficients.</p><p>Consider : ay``+ by` + c = f(x), a ≠ 0. ………. (i).</p><p>The basic idea behind this approach is as follows. a) f(x) a polynomial of degree n. b) f(x) an exponential form Ceαx , (α, C constants). c) f(x) = C kosβx or C sin βx, (C, β constants).</p><p> n n-1 Case a: f(x) = Anx + An-1x + … + A1x + Ao . (An , An-1 , … , A1 , Ao constants).</p><p>27 n n-1 Suppose: yp = Bnx + Bn-1x + … + B1x + B0. ……(ii). (Bn , Bn-1 , … , B1 , Bo constants). (n) Differentiate (ii) for yp`, yp``, … , yp and substituting into (i). Equate the coefficients of corresponding powers of x, and solve the resulting equations for undertemined coefficients, then we get: B1 , B2 , … , B1, Bo .</p><p>Example: Solve the diff. equation: y`` + 3y` + 2y = 5x2. Solution: f(x) = 5x2 2 . Suppose: yp = ax + bx + c</p><p> yp` = 2ax + b yp`` = 2a</p><p>→ y``+ 3y`+ 2y = 5x2. 2a + 3(2ax + b) + 2(ax2+ bx + c) = 5x2. 2ax2 + (6a + 2b)x + (2a + 3b + 2c) = 5x2.</p><p>5 Hence: 2a = 5 → a = 2 . 15 6a + 2b = 0 → b = - 2 . 35 2a + 3b + 2c = 0 → c = 4 . 5 2 15 35 → yp = 2 x - 2 x + 4 .</p><p>Consider: y``+ 3y`+ 2 = 0. (HDE). Characteristic eq. : m2 + 3m + 2 = 0. (m + 1)(m + 2) = 0. m = {-1, -2}. -x -2x → yc = Ae + Be .</p><p>28 -x -2x 5 2 15 35 y = yc + yp. or: y = Ae + Be + 2 x - 2 x + 4 . Example: Solve the equation: y`` - 2y` + y = x2 – 3x.</p><p>Solution: f(x) = x2 – 3x. 2 Suppose: yp = ax + bx + c then yp`= 2ax + b and yp``= 2a </p><p> y``- 2y`+ y = x2 – 3x. 2a – 2(2ax + b) + ax2 + bx + c = x2 – 3x Hence: a = 1; b = 1; c = 0. 2 → yp = x + x. </p><p>Consider: y`` - 2y`+ y = 0 (HDE) Characteristic equation: m2 – 2m + 1 = 0 m = 1 x → yh = (A + Bx).e . General solution: y = (A+Bx)ex + x2 + x.</p><p>Case b: f(x) = Ceαx , (C, α constants). Then: ay``+ by`+ cy = Ceαx. ….. (iii)</p><p>αx Suppose : yp = k.e , then, αx yp`= αke . 2 αx yp``= α ke . = By substituting yp , yp`, and yp`` into (iii), then</p><p>[a(α2k) + b(αk) + ck].eαx = Ceαx.</p><p>29 or: aα2k+ bαk + ck = C .</p><p>Example: Solve y`` - y` - 2y = 2e3x.</p><p>Solution : f(x) = 2e3x 3x Suppose yp = ke . 3x yp`= 3ke 3x yp``= 9ke </p><p> y`` - y` - 2y = 2e3x 9ke3x – 3ke3x – 2ke3x = 2e3x 4ke3x = 2e3x 1 k = 2 1 3x Then: yp = 2 e .</p><p>Consider: y``- y`- 2y = 0. Charac.eq: m2 – m – 2 = 0 m = {2, -1} 2x -x Thus : yc = Ae + Be</p><p>2x -x 1 3x The genenal solution is: y = Ae + Be + 2 e . </p><p>Case c: f(x) = C cos αx or C sin αx. (C, α constants) Then ay``+ by` + cy = C cos αx or ay``+ by` + cy = C sinαx For the two expressions, suppose </p><p> yp = P cos αx + Q sin αx yp` = -αP sin αx + αQ cos αx</p><p>30 2 2 yp``= -α P cos αx – α Q sin αx.</p><p>Substituting yp , yp` dan yp`` into the given equation, then equate the coefficient of corresponding sinαx or kosαx.</p><p>Example. Find the general sulution of the equation y``+ 9y = cos 2x. Solution. The characteristic equation of the homogeneous equation is m2+ 9 = 0 and its roots are m = ± 3i. The complementary fuction is yc = A cos 3x + B sin 3x.</p><p>We choose the particular integral is yp = p cos 2x + q sin 2x yp`= -2p sin 2x + 2q cos 2x. yp``= -4p cos 2x – 4q sin 2x. Substituting in the given equation we get</p><p> y``+ 9y = -4p cos 2x – 4q sin 2x + 9(p cos 2x + q sin 2x) = 5p cos 2x + 5q sin 2x = cos 2x.</p><p>1 → 5p = 1 → p = 5 5q = 0 → q = 0 1 Then yp = 5 cos 2x.</p><p>1 The general solution: y = A cos 3x + B sin 3x + 5 cos 2x.</p><p>Exercises: Solve the equation.</p><p>31 a) y``+ y` - 6y = 52 cos2x. b) y``- y`- 2y = cos x+ 3 sin x.</p><p>Case d: f(x) = f1(x) ± f2(x) ± f3(x) ± … ± fn(x).</p><p>For this case, suppose: yp = yp1 + yp2 + yp3 + … + ypn , where yp1 is the particular integral for ay``+ by`+ cy = f1(x) yp2 is the particular integral for ay``+ by`+ cy = f2(x) . Ypn is the particular integral for ay``+ by` + cy = fn(x)</p><p>General Solution: y = yc + yp .</p><p>Example: Solve the differential equation y``+ 2y`+ 2y = x2 + sin x.</p><p>Solution: Characteristic equation: m2 + 2m + 2 = 0 m = -1 ± i. -x yc = e (A cos x + B sin x).</p><p>2 (i) Suppose yp1 is particular integral for y``+ 2y`+ 2y = x . 2 Then yp1 = ax + bx + c yp1` = 2ax + b and yp1``= 2a .</p><p>2a + 2(2ax + b) + 2(ax2 + bx + c) = x2. → a = ½ , b = -1 , c = ½ . 2 2 yp1 = ½ x – x + ½ = ½ (x – 1) . </p><p>32 (ii) yp2 is particular integral for y``+ 2y`+ 2y = sin x . Then yp2 = p cos x + q sin x. yp2`= -p sin x + q cos x. yk2``= -p cos x – q sin x.</p><p> y``+ 2y` + 2y = sin x. (-p cos x – q sin x) + 2(-p sin x + q cos x) + 2(p cos x + q sin x) = sin x. (-2p + q)sin x + (p + 2q)cos x = sin x. → -2p + q = 1 p + 2q = 0 p = -2/5 dan q = 1/5 2 1 1 yp2 = - 5 cos x + 5 sin x = 5 (sin x – 2kos x).</p><p>-x 1 2 1 Hence: y = e (Acos x + Bsin x)+ 2 (x-1) + 5 (sin x – 2cosx)</p><p>Case e: f(x) = g(x).v(x)</p><p> f(x) Yp</p><p>αx r n n-1 αx Pn(x).e x (Bnx + Bn-1x + … + B1x + Bo).e r n n-1 Pn(x).cosβx x (Bnx + Bn-1x + … + B1x + B0).cos βx r n n-1 Pn(x).sin βx x (Bnx + Bn-1x + … + B1x + B0).sin βx Ceαx.cos βx or xr.eαx(p cos βx + q sin βx) Ceαx sin βx αx r n n-1 αx Pn(x)e sin βx x (Bnx + Bn-1x + … + B0).e sin βx αx r n n-1 αx Pn(x)e cos βx x (Bnx + Bn-1x + … + B0).e cos βx</p><p>33 r is the smallest non negative interger.</p><p>Example: Find the general solution of the equation y`` - 2y` + 3y = ex sin 2x. </p><p>Solution.: Characteristic equation: m2 – 2m + 3 = 0 m = 1 ± i 2 . x yc = e (A cos √2 x + B sin √2 x)</p><p> f(x) = ex sin 2x. x yp = e (p cos 2x + q sin 2x). x yp` = e {(p + 2q)cos 2x + (-2p + q)sin 2x}. x yp``= e {(-3p + 4q)cos 2x – (4p + 3q) sin 2x}.</p><p> y``- 2y`+ 3y = ex{-2p cos 2x – 2q sin 2x).</p><p>→ ex{-2p cos 2x – 2q sin 2x} = ex sin 2x.</p><p>Then: p = 0 dan q = - ½ . x Hence: yk = - ½ e sin 2x.</p><p>General solution: y = yc + yp or:</p><p> y = ex(A kos 2 x + B sin 2 x – ½ sin 2x).</p><p>34 3.3 The Method of Variation of Parameters.</p><p>This method can be used in solving non homogeneous differential equation: d 2 y dy a 2 + b + cy = f(x), (a, b, c constans) and dx dx 1 f(x) = tan x, cot x, sec x, cosec x, x n , ln x. In this method , the general solution is in the form: y = uy1 + vy2 where u = u(x) and v = v(x) and y1 , y2 are independent solution respectively.</p><p>The method of solution as follows.</p><p>Given: ay``+ by` + cy = f(x). i) Determine a and f(x). ii) Determine y1 and y2, the independent solution for homogeneous linier equation. </p><p> y1 y2 iii) Find Wronskian: W = ' ' . y1 y2</p><p> y2 f (x) y1 f (x) iv) Obtain: u = - ∫ aW dx + A and v = ∫ aW dx + B.</p><p> v) Hence the general solution is: y = uy1 + vy2.</p><p>Example: Solve the following differential equations: (i) y``+ y = cot x. (ii) y`` + 6y`+ 8y = e-2x.</p><p>35 Soluton (i): y`` + y` = cotx.</p><p> i) a = 1, f(x) = cot x. ii) The characteristic equation is m2 + 1 = 0. thus m = ± i and yc = Acos x + Bsin x hence y1 = cos x and y1` = - sin x. y2 = sin x and y2` = cos x. </p><p> cos x sin x 2 2 iii) W =  sin x cos x = cos x + sin x = 1.</p><p> y2 f (x) sin x.cot x iv) u = - ∫ aW dx = -∫ 1 dx = - sin x + A.</p><p> y f (x) cos 2 x v = 1 dx = cos x.cot x dx = dx ∫ aW ∫ ∫ sin x = ∫(cosec x – sin x)dx = ln[cosec x – cot x] + cos x + B.</p><p> v) General solution: y = uy1 + vy2.</p><p> y = (-sinx+A)kosx+(ln[cosecx–cotx]+cosx+B)sinx.</p><p>3.4 Euler’s Equation.</p><p>36 A differential equation in the form of</p><p> d n y d n1 y dy n n n-1 n1 anx dx + an-1x dx + … + a1x dx + a0x = f(x) where a0, a1, … , an are constans, is known as Euler’s equation of nth order.</p><p>A second order Euler’s equation can be written as :</p><p> d 2 y dy ax2 dx 2 + bx dx + cy = f(x) [a, b and c constants] … (1)</p><p>The method of solution.</p><p> dt 1 t  Substitute x = e , or, equivalent t = ln x and dx x dy dy dt dy 1 dy dy  .  . dx dt dx dt x or x dx = dt . … (2)</p><p> d dy d dy (x ) ( ) dx dx = dx dt d 2 y dy d dy dt d 2 y 1 dt 1 ( )  x 2 + = = 2 . [ ] dx dx dt dt dx dt x dx x d 2 y d 2 y dy dy dy 2 2 x dx = dx 2 - x dx [ x dx = dt ] d 2 y d 2 y dy 2 2 → x dx = dx 2 - dt … (3) Substitute (2) and (3) into (1) and then</p><p>2 d y dy dy t a( 2  ) + b + cy = f(e ) or dt dt dt 2 d y dy t a 2 + (b – a) + cy = f(e ) … (4) dt dt</p><p>37 (4) is the Euler’s equation with constant coefficients.</p><p> d 2 y dy Example: Solve the equation x2 dx 2 - 2x dx - 4y = x2.</p><p>Solution: a = 1, b = -2, c = -4.</p><p> t dy 1 Substitute x = e , then t= ln x and dt = x 2 d y dy t a 2 + (b - a) + cy = f(e ). dt dt 2 d y dy 2t → 2 - 3 - 4y = e . dt dt 4t -t yc = Ae + Be</p><p>2t 2t 2t yp = ke , yp` = 2ke , yp``= 4te</p><p>4ke2t – 6ke2t – 4ke2t = e2t. 1 k = - 6 1 2t yp = - 6 e 4t -t 1 2t t → y = Ae + Be - 6 e and substitute e =x then 4 B 1 2 y = Ax + x - 6 x .</p><p>38 4.0 LAPLACE TRANSFORMS.</p><p>Definition: Let f(t) be a fuuction defined in [0 , ∞).  est f (t)dt The integral 0 ….. (1) , is called Laplace Transforms for f(x), if that integral convergent.</p><p>Notation: £{f(x)} where £ is an operator. </p><p> est f (t)dt 0 is improper integral.  T est f (t)dt est f (t)dt Then 0 = lim 0 . T → ∞ (1) depends on parameter S, then  est f (t)dt £{f(t)} = 0 = F(S).</p><p>Generally: £{f(t)} = F(S) £{g(t)} = G(S) £{y(t)} = Y(S)</p><p>1 Example: Show that £{1} = S .  T st T est1dt lim est dt lim e Solution. : £{1} =  = T   = T  ] 0 0 0  S 1 1 lim e sT  = T  [- s s ] = ∞ … (2) a) If S < 0, then 2) → £{1} = ∞ b) If S = 0, then 2) → £{1} = ∞ 1 -sT 1 1 c) If S > 0, then 2) → £(1) = - S e + S = 0 + S</p><p>39 1 Ł(1) = S . Example: Using the definition, determine the Laplace Transforms for the following functions: a) f(t) = a. b) f(t) = t. c) f(t) = tn. d) f(t) = eat. Let a be constant and n – non negative interger. </p><p>  st  1 a est .a dt est dt e Sulution: a) £{a} =  = a = a[ ] 0 = a[ ] = 0 0  s s s</p><p> a £{a} = S , s > 0 </p><p>1 Substitute: a = 1 → £{1} = S 5 a = 5 → £{5} = S 1 1 1 a = 3 → £{ 3 } = 3S</p><p> d(t) b) £{t} =  est t dt = t∫e-stdt - ∫{∫e-stdt} dt 0 dt st st = t. e ]  - ∫ e  s 0  s 1 est  1 1 1 ( ) = 0 + [ ] = = 2 s  s 0 s s s</p><p>1 £{t} = S 2 , S>0 </p><p> n c) £{tn} =  est t n dt = tn ∫e-stdt - ∫{ ∫e-stdt} d(t ) dt 0 dt st st = tn. e ]  - ∫ e .n.tn-1dt  s 0  s n -st n-1 n n-1 = 0 + S ∫e t dt = S £{t }.</p><p>40 n n n-1 → £{t } = S £{t }.  £{tn-1} =  est .t n1dt 0 n1 = tn-1 e-stdt - { e-stdt} d(t ) dt. ∫ ∫ ∫ dt n1 st st = t e ]  - ∫ e (n-1)tn-2dt.  s 0  s n 1 n-2 = 0 + s £{t } n-1 n 1 n-2 Then: £{t } = s £{t } n-2 n  2 n-3 Thus: £{t } = s £{t } . . 2 2 £{t } = s £{t} 1 £{t} = s £{1} 1 £{1} = s n n n-1 → £{t } = ( s ) £{t } n n 1 n-2 = ( s )( s ) £{t } n n 1 n  2 n-3 = ( s )( s )( s ) £{t } . . . n n 1 n  2 1 = ( s )( s )( s ) …( s ) £{1} n! 1 = ( s n )( s )</p><p> n n! £{t } = s n1 n = 0, 1, 2, … </p><p>41 0 1 3 6 n = 0 → £{t } = £{1} = S ; n = 3 → £{t } = s 4</p><p> (sa)t e  1 at est eat dt -t(s-a) d) £{e } =  = ∫e dt = ] 0 = , s>0. 0  (s  a) S  a</p><p> at 1 £{e } = s  a , s > 0 </p><p>1 If: a = 0, then £{1} = S . 3t 1 a = 3, then £{e } = S  3 . -2t 1 a = -2, then £{e } = S  2 . e) Let f(t) = cos at. Then:  £{cos at} =  est kos at dt 0 -st -st d = cos at ∫e dt - ∫{∫e dt} dt (cos at)dt. st st = kos at e ]  - ∫ e (-asin at)dt  s 0  s 1 a -st -st d = s - s [sin at ∫e dt - ∫{∫e dt} dt (sin at)dt] 1 a st  st = - {sin at. e ] - ∫ e (a cos at)dt} s s  s 0  s 1 a a -st = s - s { 0 + s ∫e cos at dt} 1 a 2 = - 2 £{cos at} s s a 2 1 (1+ 2 )Ł{cos at} = s s</p><p> s Ł{cos at} = s 2  a 2 , s > 0 </p><p>42 s s 4s Ł{cos 2t} = s 2  22 = s 2  4 ; Ł{cos ½ t} = 4s 2 1</p><p> f) £{sin at) =  e-stsin at dt 0 -st -st d = sin at ∫e dt - ∫{∫e dt} dt (sin at) dt st st = sin at.e ]  - ∫ e .a cos at dt  s 0  s a st  st = 0 + {cos at. e ] - ∫ e (-a sin at)dt} s  s 0  s a 1 a -st = s { s - s ∫e sin at dt a a 2 = 2 - 2 £{sin at} s s</p><p> a → £{sin at} = 2 2 s > 0 s  a</p><p> d d Notice: dt (sinh t) = cosh t and dt (cosh t) = sinh t. By the same calculation we get:</p><p> a , s  0 Ł{sinh at} = s 2  a 2 s , s  0 Ł{kosh at} = s 2  a 2</p><p>Example: Using the definition of the Laplace transformation, determine £{f(t)}, if:</p><p>1 5 t, 0 ≤ t < 5</p><p>43 f(t) = 1, t ≥ 5 </p><p>Solution:</p><p>5 1  £{f(t)} =  est . t dt +  est .1dt 0 5 5 1 d st  = [t ∫e-stdt - ∫{∫e-stdt} (t)dt] + e ] 5 dt  s 5 1 est 5 est e5s = { t. ] - ∫ dt } + 5  s 0  s s 1 5e5s 1 est 5 e5s = - 2 ] + 5  s 5 s 0 s e5s 1 e5s 1 e5s = - - { 2 - 2 } + s 5 s s s 1 -5s = 5s 2 ( 1 - e ).</p><p>Theorem: If £{f1(t)} and £{f2(t)} exist, α and β are constants, then:</p><p>£{αf1(t) + βf2(t)} = α £{f1(t)}+ β £{f2(t)}</p><p>Theorem: £{a1f1(t) + a2f2(t) + … + anfn(t)} = a1£{f1(t)} + a2£{f2(t)} + … + an£{fn(t)},</p><p> where f1(t), f2(t), …, fn(t) exist and a1, a2, …, an are constants.</p><p>Example: Determine £{f(t)} if f(t) = 2t4 – e- 4t. Solution : £{f(t)} = £{2t4 – e- 4t} = 2 £{t4} – £{e- 4t}</p><p>44 4! 1 = 2 ( s 5 ) - s  (4) 48 1 = s 5 - s  4</p><p>1 at -at Example: If cosh at = 2 (e + e ), determine £{cosh at}. 1 at -at Solution: £{cosh at} = £{ 2 (e + e )} 1 at 1 -at = 2 £{e } + 2 £{e } 1 1 1 1 = 2 ( s  a ) + 2 ( s  a ) s = s 2  a 2 .</p><p>1 at -at Exercise: If sinh at = 2 (e – e ) shows that a ₤{sinh at} = s 2  a 2 .</p><p>Example: Find the Laplace transform of f(t) = sin 3t.kos 5t.</p><p>Solution: f(t) = sin 3t.kos 5t 1 = 2 {sin(3t + 5t) + sin(3t – 5t)} 1 = 2 {sin 8t – sin(-2t)} 1 = 2 {sin 8t – sin 2t} 1 ₤{f(t)} = ₤{ 2 (sin 8t – sin 2t)} 1 1 = 2 ₤{sin 8t} - 2 ₤{sin 2t} 1 8 1 2 = 2 ( s 2  64 ) - 2 ( s 2  4 ) 3s 2  48 = (s 2  64)(s 2  4) .</p><p>45 First-Shift Theorem.</p><p>Theorem: If ₤{f(t)} = F(s) and a constant, then ₤{eat.f(t)} = F(s – a).</p><p> Proof: ₤{f(t)} = est . f (t)dt = F(s). [definition]. 0  ₤{eat.f(t)} =  e-st.eatf(t) dt 0  =  e-(s-a)t.f(t) dt. [suppose p = s – a] 0  =  e-p.f(t) dt = F(p) = F(s – a). 0 → ₤{eat f(t)} = F(s – a). </p><p>Examples. a) Find the Laplace transform for f(t) = t4e3t.</p><p>4 4! 24 ₤{t } = s 41 = s 5 = F(s) 4 3t 24 ₤{t e } = F(s – 3) = (s  3)5 . b) Find the Laplace transform for f(t) = 2e4tsin 4t.</p><p>4 ₤{sin 4t} = s 2 16 = F(s). ₤{2e4tsin 4t}= 2 ₤{e4tsin 4t} = 2 F(s – 2) </p><p>46 4 = 2[ (s  4)2 16 ] 8 = s 2  8s  32 .</p><p>Theorem. If ₤{f(t)} = F(s), then for n = 1, 2, 3, … n n n d ₤{t .f(t)} = (-1) n [F(s)]. ds</p><p>Example: Find the Laplace transform for f(t) = t2sin 2t . 2 Solution : ₤{sin 2t) = s 2  4 = F(s). 2 2 2 2 d 2 d 2 -1 ₤{t sin 2t} = (-1) 2 [ 2 ] = 2 [2(s + 4) ] ds s  4 ds d 2 -2 = ds [-2(s + 4) (2s)] = -4(s2 + 4)-2 – 4s(-2)(s2 + 4)-3(2s)  4(s 2  4) 16s 2 = (s 2  4) 3 12s 2 16 = (s 2  4)3</p><p>47 Invers Laplace Transforms (ILT)</p><p>Definition: If ₤{f(t)} = F(s), then Invers Laplace Transforms for F(s) as written as: ₤-1{F(s)} = f(t).</p><p>₤-1 is known as operator for invers Laplace transforms.</p><p>Notice: ₤{f(t)} = F(s) a If f(t) = a, then ₤{a} = s -1 a → ₤ { s } = a. Examples: -1 4 4 a) ₤ { s } = 4, because ₤{4} = s . -1 1 4t 4t 1 b) ₤ { s  4 } = e , because ₤{e } = s  4 . -1 2 -1 2 c) ₤ { s 2  4 }= ₤ { s 2  22 } = sin 2t. -1 3 -1 1 5/3 t d) ₤ { 3s  5 } = ₤ { s  5/ 3 } = e s 4s 7 -1 -1 49 e) ₤ { 4s 2  49 } = ₤ { s 2  } = cos 2 t. 4 -1 6 -1 6/ 4 3 f) ₤ { 4s 2  9 } = ₤ { s 2  9/ 4 } = sin 2 t.</p><p>48 Properties of Invers Laplace Transforms.</p><p>Theorem: If ₤-1{F(s)} = f(t) and ₤-1{G(s)} = g(t) and if α and β are constants then:</p><p>₤-1{α.F(s) + β.G(s)} = α ₤-1{F(s)} + β ₤-1{G(s)}.</p><p>Examples:</p><p>-1 12 -1 2 -1 2! 2 a) ₤ { s 3 } = ₤ {6( s 3 )} = 6 ₤ { s 3 } = 6 t .</p><p>-1 2 -1 1 -1 1 -3t b) ₤ { s  3 }= ₤ {2( s  3 } = 2 ₤ { s  3 } = 2 e .</p><p>-1 4 -1 4 3 4 -1 3 4 c) ₤ { s 2  9 } = ₤ { 3 ( s 2  9 )} = 3 ₤ { s 2  9 } = 3 sin 3t.</p><p>-1 2s 2 -1 s 1 3 d) ₤ {16s 2  9 } = 16 ₤ { s 2  9/16 } = 8 cos 4 t.</p><p>-1 2s  5 -1 2s -1 5 e) ₤ { s 2  25 } = ₤ { s 2  25 } + ₤ { s 2  25 } -1 s -1 5 = 2 ₤ { s 2  25 } + ₤ { s 2  25 } = 2 cosh 5t + sinh 5t.</p><p>-1 3s  5 -1 3s -1 5 f) ₤ {16s 2  9 } = ₤ {16s 2  9 } + ₤ {16s 2  9 } 3 -1 s 5 -1 1 = 16 ₤ { s 2  9/16 } + 16 ₤ { s 2  9/16 }</p><p>49 3 3 5 4 -1 3/ 4 = 16 kosh 4 t + 16 . 3 ₤ { s 2  9/16 } 3 3 5 3 = 16 cosh 4 t + 12 sinh 4 t.</p><p>First-Shift Theorem (Invers).</p><p>If ₤-1{F(s)} = f(t) and a is constant, then:</p><p>₤-1{F(s – a)} = eat f(t) 0r ₤-1{F(s – a)} = eat ₤-1{F(s)}.</p><p>Examples: -1 1 4t -1 1 4t 4t a) ₤ { s  4 } = e ₤ { s } = e .1 = e .</p><p>-1 3s -1 3(s 1)  3 b) ₤ { (s 1)4 } = ₤ { (s 1)4 } </p><p>-1 3 -1 3 = ₤ { (s 1)3 } - ₤ { (s 1)4 }</p><p>3 -1 2 1 -1 6 = 2 ₤ { (s 1)3 } - 2 ₤ { (s 1)4 } 3 -t -1 2 1 -t -1 6 = 2 e ₤ { s 2 } - 2 e ₤ { s 3 } 3 -t 2 1 -t 3 = 2 e t - 2 e t 1 -t 2 3 = 2 e (3t – t ).</p><p>-1 8s 13 -1 8(s  2)  3 c) ₤ { s 2  4s  5 } = ₤ { (s  2)2  9 } -1 8(s  2) -1 3 = ₤ { (s  2)2  9 } - ₤ { (s  3)2  9 } -2t -1 s -2t -1 3 = 8e ₤ { s 2  9 } - e ₤ { s 2  9 }</p><p>50 = 8e-2tcosh 3t – e-2tsinh 3t 3t 3t 3t 3t = 8e-2t( e  e ) – e-2t( e  e ) 2 2 1 t -5t = 2 (7e + 9e ). -1 1 -1 1 -1 1 d) ₤ { s(s  2) } = ₤ {- 2s } + ₤ { 2(s  2) } 1 -1 1 1 -1 1 = - 2 ₤ { s } + 2 ₤ { s  2 } 1 1 2t = - 2 + 2 e 1 2t = 2 (e – 1).</p><p>-1 3s 1 -1 1 -1  s  3 e) ₤ { s(s 2 1) } = ₤ { s }+ ₤ { s 2 1 } -1 1 -1 s -1 1 = ₤ { s } - ₤ { s 2 1 }+ 3₤ { s 2 1 } = 1 – cos t + 3sin t.</p><p>Applications of Laplace transforms.</p><p>Theorem: </p><p>If ₤{y(t)} = Y(s), then: ₤{y`(t)} = sY(s) – y(0) ₤{y``(t)} = s2Y(s) – sy(0) – y`(0) ₤{y```(t)}= s3Y(s) – s2y(0) – sy`(0) – y``(0) : . ₤{y(n)(t) = snY(s) – sn-1y(0) – sn-2y`(0) – …- y(n-1)(0). </p><p>51 Exercises: By using Laplace transform determine the following equations.</p><p>1. y` + y = kos t, if y(0) = 0 2. y` + 3y = 13 sin 2t , y(0) = 6. 3. y` + y = te-2t , y(0) = 0 4. y`` - 4y = 4e2t , y(0) = 0 and y`(0) = 5. 5. y`` + 2y` - 3y = t , y(0) = 2 and y`(0) = 1. </p><p>52 SIRI</p><p>Definsi : Siri ialah suatu baris susunan nombor yang mem- punyai sifat yang tetap.</p><p>Contoh: a) 1, 2, 3, … , n-1 an = n – 1. 1 1 1 1 1 b) 2 , 3 , 4 , … , n an = n . n+1 c) 1, -2, 3, -4 , … an = (-1) n 1 2 3 n d) 2 , 3 , 4 , … an = n 1 .</p><p>Siri Kuasa (Power Siries).</p><p>Definisi: Siri kuasa ialah siri yang berbentuk:</p><p> n 2 n (1) cn x = c0 + c1x + c2x + … + cnx + … atau n0</p><p> c (x  a)n 2 n (2)  n = c0 + c1(x-a) + c2(x-a) + … + cn(x-a) + …</p><p> dimana a dan pekali c0, c1, … , cn adalah pemalar. Siri (1) adalah bentuk khusus siri kuasa (2) dengan a = 0.</p><p>Siri Taylor dan Siri Mac Laurin.</p><p>53 Katalah f adalah suatu fungsi yang dapat dibezakan diseki- tar lengkungan a dan termasuk a. Maka f adalah suatu siri Taylor disekitar a yang ditakrif sebagai:</p><p> (k ) 2  f (a) (x - a)k = f(a) + f `(a)(x - a) + f ``(a)(x  a) + … + k0 k! 2!</p><p> f (n) (a)(x  a)n + n! + … (3) Jika a = 0, maka</p><p> (k ) f ``(0)x 2 f (n) (a)x n  f (0) xk = f(0) + f `(0)x + + …+ + … (4) k0 k! 2! n ! (4) adalah bentuk siri Mac Laurin.</p><p>54 Periodic Function.</p><p>Definition: A function f(x) is said to be periodic if its function values repeat at regular intervals of the indipendent variable. The regular interval between repetitions is the period of the oscillations. Y </p><p>X 0 x </p><p>Example: (a). y = sin x.</p><p>Y 1</p><p>0 π 2π X Graph of y = sinx goes through its complete range of values while x increases from 0o to 360o. The period is therefore 360o or 2π radians and the amplitude, the maximum displacement from the potition of rest, is 1. </p><p>55 (b). y = A sin nx. 0 Amplitude = A; period = 360 = 2 , n cycles in 360o. n n</p><p>Some examples for periodic function..</p><p>Y 4</p><p>X 0 6 8 14 16 period = 8 ms Y</p><p>3</p><p>X 0 2 5 6 8 11 period = 6 ms Y</p><p>2</p><p>X 0 2 3 5 7 8 10 period = 5 ms</p><p>56 Analytical description of a periodic function.</p><p>A periodic function can be defined analytically in many cases. Example 1. Y</p><p>3</p><p>X 0 4 6 10 12 </p><p>(a) Between x = 0 and x = 4, y = 3, i.e. f(x)= 3 0 < x < 4 (b) Between x = 4 and x = 6, y = 0, i.e. f(x) = 0. 4 < x < 6</p><p>So we could define the function by</p><p> f(x) = 3 , 0 < x < 4 f(x) = 0 , 4 < x < 6 f(x) = f(x + 6) , that mean the function is periodic with period 6 units.</p><p>The function can be written as follows:</p><p>3 , 0 < x < 4 f(x) = 0 , 4 < x < 6 f(x + 6) </p><p>57 Example 2. Y 5</p><p>X 0 8 16 The function define:</p><p>5 8 x , 0 < x < 8 f(x) = f(x + 8)</p><p>Example 3.</p><p>Y</p><p>2</p><p>0 2 6 8 12 X</p><p> x , 0 < x < 2 x f(x) = - 2 + 3, 2 < x < 6 f(x + 6).</p><p>58 Fourier Series.</p><p>The basic of a Fourier siries is to represent a periodic function by a trigonometrical series of the form f(x) = A0 + c1sin(x + α1) + c2sin(2x + α2) + c3sin(3x + αn) + … + cnsin(nx + αn) + … where: A0 is a constant term. c1, c2, c3, …, cn denote the amplitudes of the compound sine terms. α1, α2, …, αn are constant auxiliary angles.</p><p>Note that each sine term: cnsin(nx + αn) = cn{sin nx.cos αn + cos nx.sin αn} = (cn sin αn) cos nx + (cn cos αn) sin nx. = an cos nx + bn sin nx where: an = cn sin αn and bn = cn cos αn, a 2 2 n cn = an  bn and αn = arc tan( ). bn 1 For convenience in calculation, we write A0 = 2 a0 , and then, putting n = 1, 2, 3, …the hole Fourier siries becomes: 1 f(x) = 2 a0 + a1cos x + a2cos 2x + a3cos 3x + …+ ancos nx + b1sin x + b2sin 2x + b3 sin 3x + …+ bnsin nx + ..</p><p>1  or f(x) = a +  (ancos nx + bnsin nx) 2 0 n1</p><p> n – positive integer.</p><p>59 To find a0.</p><p>Integrate f(x) with respect to x from - π to π, then:</p><p> 1     f (x)dx a dx  =  0 +  {  ancos nx dx +  bnsin nx dx}  2  n1   1 ] 1 = 2 a0x  + Σ {0 + 0} = 2 a0 { π – (-π) = a0π. 1  → a0 =  f(x) dx  </p><p>To find an .</p><p>Multiply f(x) by cos mx and integrate from -π to π.</p><p> 1   f(x)cos mxdx=  a0cos mx dx+  2      {  ancos nx cos mx dx +  bnsin nx cos mx dx} n1  </p><p>1 1 ] 1 (i) 2 ∫ a0cos mx dx = 2m sin mx  ] = 2m {sin mπ- sin(-mπ)} = 0.</p><p>(ii) ∫ancos nx cos mx dx = 1 ∫an 2 {cos(n + m)x + cos (n – m) dx}</p><p> an  an  = 2(n  m) sin(n + m)x ] + 2(n  m) sin(n – m)x ] = 0 , if n ≠ m. </p><p>If n = m then:</p><p>60 2 1 ∫ ancos nx dx = an ∫ 2 (cos 2nx + 1)dx a sin 2nx  n ] = 2 { 2n + x} </p><p> an = 2 { 0 + π – (-π)} = an π.</p><p>(iii) ∫ bnsin nx cos mx dx 1 = bn 2 ∫{sin (n + m)x + sin (n – m)x} dx</p><p> bn  bn  = - 2(m  n) kos(n + m)x ] - 2(n  m) kos(n – m)x ] = 0 , if n ≠ m </p><p>If n = m, then:</p><p> bn ∫ bn sin nx cos nx dx = 2 ∫ sin 2nx dx b  n ] = - 4n cos 2n  = 0.  So that  f(x) cos nx dx = an π  1  → an =  f(x) kos nx dx.  </p><p>To find bn .</p><p>Multiply f(x) by sin mx and integrate from –π to π.  1  f(x) sin mx dx = ∫a0sin mx dx +  2   { ∫ ancos nx sin mx dx + ∫ bnsin nx sin mx dx } n1</p><p>1 = 2 a0(0) + Σ { an(0) + bn(0) } = 0 , if m ≠ n.</p><p>61 If m = n , then:  1  f(x) sin nx = ∫a0sin nx dx +  2  1 2  { ∫sin 2nx dx + ∫ bn sin nx dx } n1 2</p><p> bn = 0 + 0 + 2 ∫ (1 – cos 2nx) dx b sin 2nx  n ] = 2 [ x - 2n  = bnπ.</p><p>1  → bn =  f(x) sin nx dx  </p><p>Example. Determine the Fourier siries to represent the priodic function shown. a) Y</p><p>π</p><p>X 0 2π 4π </p><p> b) Y </p><p>4 | | -3π/2 - π - π/2 0 π/2 π 3π/2 X</p><p>Solution:</p><p>62 1 a) a0 = π ; an = 0 ; bn = - n . f(x) = ½ π – { sin x + ½ sin 2x + 1/3 sin 3x + …}</p><p>8 n b) a0 = 4 ; an = n sin 2 ; bn = 0. f(x) = 2 + 8/π{ sin x – 1/3 cos 3x + 1/5 cos 5x - … }</p><p>ODD AND EVEN FUNCTIONS.</p><p>63 Definition: A function f(x) is said to be even if f(-x) = f(x). </p><p>Example: f(x) = x2 is an even function since f(-2) = 4 = f(2) f(-3) = 9 = f(3) Y The graph of even function a 2 is therefore symmetrical about the Y-exis. X -a 0 a y= f(x) = cos x is even function since cos (-x) = cos x.</p><p>Definition: A function f(x) is said to be odd if f(-x) = -f(x)Example: f(x) = x3 , is n oddfunction since f(-2) = -8 = - f(2) f(-5) = -125 = -f(5) Y P</p><p>-a X 0 a The graph of an odd function is</p><p> thus symmetrical about the or Q y = f(x) = sin x is an odd function since sin (-x) = -sin x. Products of odd and even functions.</p><p>Theorem: The rules closely resemble the elementary rules of sign. a) (even) x (even) = (even). b) (odd) x (odd) = (even).</p><p>64 c) (odd) x (even) = (odd).</p><p>Proof : a) Let F(x) = f(x). g(x) , where f(x) and g(x) are even fuctions. Then: F(-x) = f(-x).g(-x) = f(x). g(x) = F(x). → F(-x) = F(x) → F(x) is even.</p><p> b) Let F(x) = u(x).v(x) , where u(x) and v(x) are odd functions. Then: F(-x) = u(-x).v(-x) = {-u(x)}. –{v(x)} = u(x).v(x) = F(x). → F(-x) = F(x) → F(x) is even.</p><p> c) Let F(x) = r(x).q(x) , r(x) is odd and q(x) is even. Then: F(-x) = r(-x).q(-x) = -r(x).q(x) = - r(x).q(x) = - F(x) → F(x) = - F(x) → F(x) is odd.</p><p>Two usefulfacts emerge from odd and even functios.</p><p> a) Even function.</p><p>65 Y</p><p>-a 0 a X </p><p>0 a a a  f(x) dx =  f(x) dx →  f(x) dx = 2  f(x) dx. a 0 a 0</p><p> b) Odd function. Y</p><p>X -a 0 a </p><p>0 a a  f(x) dx = -  f(x) dx →  f(x) dx = 0 a 0 a</p><p>Theorem: If f(x) is defined over the interval –π < x < π and f(x) is even, then the Fourier siries for f(x) contains cisine terms only. Included in this is a0 which may be regarded as ancos nx with n = 0.</p><p>66 0  Proof: Since f(x) is even,  f(x) dx =  f(x) dx.  0 1  2  a) a0 =  f(x) dx =  f(x) dx    0  1 b) an =  f(x) cos nxdx   f(x) and cos nx are even functions then f(x)cos nx is the product of two even functions and therefore itself even. 2  → an =  f(x).kon nx dx.  0 1  c) bn =  f(x).sin nx dx   f(x) is even function and sin nx is odd function. Then f(x).sin nx is an odd function.  1 . → bn =  f(x).sin nx dx. . . bn = 0.   Therefore, there are no sine terms in Fourier siries for f(x).</p><p>Example: Determine the Fourier siries for the following function.</p><p>π + x , -π < x < 0 f(x) = π – x , 0 < x < π f(x + 2π). </p><p>Solution: Y π</p><p>-π 0 π X f(x) is an evev function.</p><p>67    1 2 2 1 2] a0 =  f(x) dx =  (π – x) dx = [πx - x 0    0  2 = π. 1  an =  f(x).cos nx dx. [f(x)cos nx is even).   2  =  (π – x).cos nx dx  0 2 =  {∫ π cos nx dx - ∫ x cos nx dx} 2   x  1  ] ] 2 ] =  { n sin nx 0 - n sin nx 0 - n cos nx 0 } 2   1 =  { n sin nπ – 0 - n sin nx + 0 - n2 (cos nπ – 1)} 2 = - n2 (cos nπ – 1). If n = 0, 2, 4, … then (cos nπ – 1) = 0. If n = 1, 3, 5, … then (cos nπ – 1) = -2.</p><p> bn = 0. (why).</p><p>  2 f(x) = 2 +(  n2 )(-2) Σ cos nx.  4 1 1 f(x) = 2 +  {cos x + 9 cos 3x + 25 cos 5x + … }.</p><p>Theorem. If f(x) is odd function defined over the interval –π < x < π, then the Fourier siries for f(x) contains sine terms only. </p><p>0  Proof: Sincs f(x) is odd function,  f(x) dx = -  f(x) dx.  0 1  a) a0 =  f(x) dx = 0  </p><p>68 1  b) an =  f(x).cos nx dx   = 0. [ f(x).cos nx is odd function]. 1  2  c) bn =  f(x).sin nx dx =  f(x).sin nx dx.    0</p><p>2  So, if f(x) is odd, ao = 0. an = 0 and bn =  f(x)sin x dx.  0</p><p>Example: Determine the Fourier siries for the function shown. Y 6</p><p>X -π 0 π </p><p>6 Solution: The function can be written as follows:</p><p>- 6 , -π < x < 0 f(x) = 6 , 0 < x < π f(x + 2π) We can see that this is an odd function and therefore, a0 = 0 and an = 0. f(x).sin nx is an even function. (why).</p><p>  1 2   bn =   f(x).sin nx dx =  0 f(x).sin nx dx  2 12 =  6 sin nx dx =  n (1- kos nπ).  0</p><p>69 If n = 0, 2, 4, … (1 – kon nπ) = 0 → bn = 0. 24  n If n = 1, 3, 5, … (1 – kos nπ) = 2 → bn = 24 1 1 → f(x) =  {sin x + 3 sin 3x + 5 sin 5x + … }</p><p>Exercises.</p><p>Determine the Fourier siries of the following functions..</p><p> x 1 -  , 0 < x < 2π 1. f(x) = f(x + 2π).</p><p>3 , -2 < x < 0</p><p>70 2. f(x) = -5 , 0 < x < 2 f(x + 4).</p><p>π + x , -π < x < 0 3. f(x) = π – x , 0 < x < π f(x + 2π).</p><p>0 , -π < x < 0 4. f(x) = x , 0 < x < π f(x + 2π)</p><p> x , 0 < x < π/2 5. f(x) = π – x , π/2 < x < π f(x + π).</p><p>-1 , -1 < x < 0 6. f(x) = 2x , 0 < x < 1 f(x + 2).</p><p> x2 , -π < x < π 7. f(x) = f(x + 2π).</p><p>3x 7 -  , -π < x < π 8. f(x) = f(x + 2π).</p><p>1 – x2, -1 < x < 1 9. f(x) = </p><p>71 f(x + 2).</p><p> x   2 , -π < x < 0 x  10. f(x) = 2 , 0 < x < π f(x + 2π).</p><p>Siri Separoh Julat (Half-range series)</p><p>Adakalanya suatu fungsi yang berada dalam julat 2π, ditakrif melalui julat 0 sehingga π sebagai ganti julat –π ke π atau 0 ke 2π. Misal, suatu fungsi f(x) = 2x yang berada dalam kalaan 2π hanya dinyatakan berada diantara x = 0 dan x = π. [0<x<π]. Tiada keyataan bagaimana fungsi tersebut diantara x = -π dan x = 0. [ -π<x<0].</p><p>Y</p><p>72 2π</p><p>X - π 0 π Dalam kes seperti di atas, terdapat tiga keadaan yang perlu diperhatikan. a) Jika f(x), 0<x<π simetri terhadap paksi Y, maka </p><p> f(x) = 2x, -π<x<π adalah suatu fungsi genap dan siri Fourier hanya mengandungi ungkapan kosinus sahaja.</p><p>Y 2π- f(x) = 2x, -π<x<π adalah fungsi genap. X -π 0 π b). Jika f(x) = 2x, 0<x<π simetri terhadap titik asalan 0, maka f(x) = 2x, -π<x<π adalah suatu fungsi ganjil dan siri Fourier hanya mengandungi ungkapan sinus sahaja. Y 2π f(x) = 2x, -π<x<π adalah fungsi ganjil. X -π 0 π </p><p>2π c) Jika f(x) = 2x, 0<x<π dan tidak dinyatakan samada fungsi genap atau fungsi ganjil, maka siri Fourier me- ngandungi kedua-dua ungkapan iaitu sinus dan kosinus.</p><p>Y </p><p>73 2π f(x)= 2x. –π<x<π bukan fungsi genap X atau ganjil. -π 0 π </p><p>Contoh. Suatu fungsi f(x) ditakrif sebagai berikut: 2x, 0<x<π f(x) = f(x+2π). Nyatakan siri cos separoh julat yang mewakili fungsi tersebut.</p><p>Penyelesaian: Kerana siri yang akan dinyatakan adalah mengan- dungi ungkapan cos, maka f(x) adalah fungsi genap. Y 2π y=2x X -π 0 π    1 2 2 2  f (x)dx f (x)dx 2xdx 2 a0 =  =  =  = (x )]0 = 2π    0  0  1  2  an =  f (x)cosnxdx =  2x cos nx dx    0 4 xsin nx  cos nx  4 ] 2 ] 2 =  { n 0 + n 0 } = n (cosnx – 1) an = 0, jika n genap dan 8 an = -  n2 , jika n ganjil.</p><p>74 bn = 0, kerana f(x) fungsi genap. Maka:</p><p> a0 f(x) = +  {ancosnx + bnsinnx} 2 n1 8 1 1 f(x) = π -  {cosx + 9 cos3x + 25 cos5x + … }</p><p>Contoh: f(x) ditakrif sebagai berikut: x+1, 0<x<π. f(x)= f(x+2π). Nyatakan siri sin separoh julat bagi fungsi tersebut.</p><p>Penyelesaian: Siri yang akan dinyatakan hanya mengan- dungi ungkapan sinus, maka f(x) adalah fungsi ganjil dan simetri terhadap titik 0. Y</p><p>π+1</p><p>-π 0 π X</p><p>-(π+1) a0 = 0 dan an = 0 , kerana f(x) fungsi ganjil. 1  2  2  bn =  f (x)sin nxdx =  f (x)sin nxdx = (x 1)sin nxdx    0  0 2   = { xsin nxdx +  sin nxdx }  0 0 2  xcosnx  sin nx  cos nx  2 ] 2 ] ] =  { n 0 + n 0 - n 0 =  n {1-(π+1)cosnπ}. cos nx = 1, untuk n genap ataupun ganjil. Maka:</p><p>75 2 2 bn =  n (1-π-1) = - n , jika n genap dan 2 4  2 bn =  n (1+π+1) =  n , jika n ganjil. Maka: 4  2 1 1 f(x) =  {sinx + 3 sin3x + 5 sin5x + …} 1 1 1 -2{ 2 sin2x + 4 sin4x + 6 sin6x + …}.</p><p>Functions with period T.</p><p>T T , If y=f(x) is defined in the range (- 2 2 ), i.e. has a period T, we can convert this to an interval of 2π.</p><p>Y</p><p>76 f(t) = f(t+T) 0 2π rad. = 3600 1 rad.= 360 = 57018`. → 2 2 2   If T = 2π rad. → = T rad. and T =  rad. The angle, x radians, at any time t is therefore x =  t and the Fourier siries to represent the function can be expressed as</p><p>1  n t n t f(t) = a0 +  {ancos + bnsin }. 2 n1</p><p>With the new variable 2 T  2 / a0 =  f(t)dt =  f(t)dt. T 0  0 2 T  2 /   an =  f(t)cos n t dt =  f(t)cos n t dt. T 0 T 0 2 T  2 /   bn =  f(t)sin n t dt =  f(t)sin n t dt. T 0  0</p><p>77 Example: Determine the Fourier siries for the periodic function defined by</p><p>2(1+t), -1 <t <0 f(t) = 0, 0< t <1 f(t+2). </p><p>Solution: Y 2</p><p>X -1 0 1 1  f(t) = ao +  {ancosn t + bnsinn t} 2 n1 T = 2. 2 T / 2 2 1 0 1 f (t)dt a0 =  =  f (t)dt =  2(1+t)dt +  0 dt T T / 2 2 1 1 0 2 0 = {2t + t }]1 = -(-2 + 1) = 1. 2 T / 2 2 1   an =  f(t)cosn t dt =  f(t)cosn t dt T T / 2 2 1 0 sin n t cos n t 0 =  2(1+t)dt + 0 = 2{(1+t) + 2 2 }]1 1 n n  2  = n2 2 (1 – cos n ).</p><p>Now  T = 2π and T = 2 , then 2 = 2π →  = π. 2 an = n 2  2 (1 – cos nπ). If n is even → an = 0, 4 If n is odd → an = n2 2 .</p><p>2 T / 2 2 0   bn =  f(t) sin n t dt = {  2(1+t) sin n t dt + 0 } T T / 2 2 1</p><p>78  cosn 1 0  2 2 ] = 2{(1 + t) n + n  sin n t } 1  cos0  cosn 1  = 2{(1 – 0)( n ) – (1 – 1)( n )+ n2 2 (sin 0 – sinn )} 1 1   = 2{- n + n2 2 sin(-n )}, but = π. Then: 2 bn = - n .</p><p>So the first few temrs of the Fourie siries</p><p>1 4 1 1    f(t) = 2 +  2 (cos t + 9 cos 3 t + 25 cos 5 t + …) 2 1 1    -  (sin t + 2 sin 2 t + 3 sin 3 t + … ).</p><p>Siri Separuh Julat Kalaan T. a. Fungsi Genap. T Y y = f(t), 0 <t < 2 f(t) = f(t + T) simetri terhadap Y. X -T/2 0 T/2 Jika y = f(t) adalah fungsi genap, maka bn = 0. 1  f(t) = a0 +  an cos nωt dimana 2 n1</p><p>79 4 T / 2 4 T / 2 a0 =  f(t) dt dan an =  f(t) cos nωt dt. T 0 T 0 b. Fungsi Ganjil. Y y = f(t), 0 < t < T -T/2 X f(t) = f(t + T). 0 T/2 Simetri terhadap titik O.</p><p> a0 = 0 ; an = 0.</p><p> f(t) =  bn sin nωt. n1 4 T / 2 bn =  f(t)sin nωt dt. T 0</p><p>Contoh: Diberi f(t) = 4 – t , 0 < t < 4. Y 4</p><p>X -4 0 4 Bina suatu fungsi yang simetri terhadap paksi Y. f(t) menjadi suatu fungsi genap. ωT = 2π dan T = 8. 2 4 4 4 4 4 a0 =  f(t)dt =  f(t)dt =  (4 – t)dt T 4 T 0 8 0 2 = 1 {4t - t }]4 = 4. 2 2 0</p><p>80 2 4 4 4 an =  f(t) cos nωt dt =  (4 – t) cos nωt dt T 4 8 0 1 4 4 = {  4cos nωt dt -  t.cos nωt dt 2 0 0 1 4sin n t 4 1 sin n t 4 1 4 ] t ] 2 2 cos n t ] = 2 . n 0 - 2 n 0 + 2n  0 2 2 1 = n sin 4nω - n sin 4nω + 2n2 2 (cos 4nω – 1) 1 = 2n2 2 (cos nωt – 1). 1 Tetapi: ωT = 2π dan T = 8, maka ω = 4 π. 1 Maka: cos 4nω = cos nπ. → an = 2n2 2 (cos nπ – 1). Jika n genap maka: an = 0, dan 1 Jika n ganjil maka: an = - n2 2 . bn = 0, kerana f(t) adalah fungsi genap. </p><p>1  f(t) = a0 +  an cos nωt = 2 n1 1 1 1 f(t) = 2 +  2 (cos ωt + 9 cos 3ωt + 25 cos 5ωt + … ). Contoh: Diberi 3 + t , 0 < t < 2. f(t) = Y 5 f(t + 4)</p><p>3 -2 0 2 X</p><p>-3 -5</p><p>Bina suatu fungsi yang simetri terhadap O. f(t) adalah suatu fungsi ganjil. a0 = 0 ; an = 0 .</p><p>81 1 ωT = 2π dan T = 4 . Maka ω = 2 π.  f(t) =  bn sin nωt. n1 2 T / 2 4 2 bn =  f(t) sin nωt dt =  (3 + t).sin nωt dt T T / 2 T 0 cos n t 2 sin n t 2 ] 2 2 ] = -(3 + t) n 0 + n  0 1 1 = - n {5 cos 2nω – 3 cos 0} + n2 2 {sin 2nω – sin 0} 1 1 1 = n {3 – 5 cos 2nω} + n2 2 sin 2nω. [gantikan ω = 2 π] 1 1 bn = n {3 – 5 cos nπ} + n2 2 sin nπ. 8 Jika n ganjil, maka bn = n 2 Jika n genap, maka bn = - n .</p><p>2 1 4 1 f(t) =  {4 sin ωt - 2 sin 2ωt + 3 sin 3ωt - 4 sin 3ωt + … } 1 dimana ω = 2 π.</p><p>82</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    82 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us