Advective - Diffusive Equation (Steady - State)

Advective - Diffusive Equation (Steady - State)

<p> Advective - Diffusive Equation (Steady - State)</p><p>SS : not accumulating or generating any more source effects</p><p>Conservation + Constitutive = PDE  2   q  0 q  D u  V u D  u  V u  0 (D, V constant) (V, D > 0) 2 d u d u 1  D : D 2  V  0 d x d x </p><p>Dimensionless Form : x / L</p><p> 1        1     x L x  x  L </p><p> d 2 u d u  P e  0 V L  d  P e  "Peclet #" d  D ratio of advection to diffusion effects</p><p>FD form :</p><p>2 x U i 2  P e  ?   0 h    x / L h </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 1 U  U  i) Centered : P i 1 i 1 ; multiplying the FD form e 2 h by h 2 :</p><p>1 + P e h - 2 1 - P e h = 0 2 2 P h Note: Diag. Dominance when e  1 i.e. P h  2 2 e (Weak Form) A 2nd order linear constant coeff. soln => exp( )</p><p>Exact Solution of Difference Equations :</p><p> P e h   P e h  U i 1  1    2 U i  U i 1  1    2   2 </p><p>U i  U i 1 Try i ; solve for  U i   2 U i 1   U i 1</p><p> P e h   P e h   1    2    1   2  0  2   2  1 2   P e h   P e h  2   4  4  1    1   2  2        P e h  2  1    2 </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 2  2     P e h   1   1   1        2     P h 1  e 2</p><p>P h 1  e 2   P h 1  e 2 1  1 C o n s t a n t </p><p> P e h   1    2  2   P e h   1    2 </p><p> i U i  A  B 2 Exact Soln to PDE : 2  e x p P e h  U  C  D e x p P e </p><p>------</p><p>The following soln satisfies the governing equation: V L  V x  e x p    e x p    D   D  U  V L e x p    1  D </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 3 V L e x p    D   1 C  D  V L  V L  let e x p    1 e x p    1  D   D  V x L U  C  D e x p    C  D e x p P   D L  e</p><p> i U i  A  B 2  C  D e x p P e  or 2  e x p P e h  i 2  e x p P e i h   e x p P e </p><p>------</p><p>P h 1  e 2 P e h   l e t   2 P h 2 1  e 2 1 2  1  1  </p><p>Binomial Expansion</p><p>Centered Formualtion gives: 2 3  2 3  2  1  1          1  2   2   2   </p><p>2 3 2  2  4 e x p 2   1  2       1  2   2 2  3   2 ! 3 ! 3</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 4 Ex. BC's U = 1  = 1 , U = 0</p><p>C o n s t .</p><p>U e x p ( P e  P e</p><p>0 </p><p>Numerical : Accuracy depends on agreement between and exp (Peh)</p><p>As h  0 : convergence with 0( ? ) (student try it)</p><p>As h  large : becomes negative! " S p u r i o u s U i O s c i l l a t i o n " w h e n F D P e h > 1 A n a l y t i c 2 </p><p> i . e . P e h > 2</p><p>0 1 </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 5 V x P h  "Cell Peclet #" e D</p><p> d u ii) Alternative : "Upstream Weighting" of d  i.e. backward F.D. </p><p>2 x U i  U i  U i 1   P e    0 h 2  h </p><p>1 + P e h - 2 - P e h 1 = 0</p><p>Note: Always - (Weak) Diagonal Dominance</p><p>Difference Equations :</p><p>2 1  P e h   2  P e h      0</p><p>2 2  P e h  2 P e h   4 1  P e h    2</p><p>2  P h  P h   e e 2</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 6 1  1 (Constant) and 2  1  P e h (Never Negative)</p><p>Or in terms of : upstream 2  1  2 </p><p> Upstream Weighting  no spurious oscillation Accuracy : 2 v e r s u s e x p P e h </p><p> d u iii) Alternative : "Downstream Weighting" of d  i.e forward Finite difference  x U i  U i 1  U i   P e    0 h 2  h </p><p>1 - 2 + P e h 1 - P e h = 0</p><p>2 1  2  P e h    1  P e h    0</p><p>1 1  1 and 2  ---> 1  P e h</p><p>Same order approx. to e x p P e h  as case ii (upstream weighting) again in terms of : 2 3  downstream 2  1  2   4   8   </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 7 But : P e h  1  Oscillations</p><p>Summary:</p><p>Upstream P e h   ; 0 h  2 Centered P e h  2 ; 0 h  Downstream P e h  1 ; 0 h </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 8 Wave Equation 2 U 2 U   0 t 2  E l l i p t i c i n S p a c e   H y p e r b o l i c O v e r a l l</p><p>U x , t   V x   e j t Periodic Solution:  A m p l i t u d e</p><p>Helmholtz Equation : will always work for a linear hyperbolic eqn.</p><p>2 2 2 2 2 2  V   V  0  x V i , j  y V i , j   h V i , j  0 E l l i p t i c</p><p>2 - D Molecule :</p><p>1</p><p>- 4 1 2 h 2 1</p><p>1 = 0</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 9</p><p>Diagonal Dominance:</p><p>- lost as h  0 Cannot converge to PDE w/ D.D. - available only when </p><p>2 h 2  4  4 2 h 2  8</p><p> h  Poor accuracy ; for ~ 1% , need 1 0 2  L    s o t h i s i s h    L 2 0 </p><p>Recall a U x x  b U x y  c U y y  d U x  e U y  f U  g a U  c U  f U  g x x y y and assumed f  0 & for f < 0 speed convergence Telegraph Equation</p><p>2 U U 2 U    c 2  0 t 2 t x 2</p><p>is dampening or frictions factor which is necessary It allows initial conditions to decay</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 10</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us