<p> Advective - Diffusive Equation (Steady - State)</p><p>SS : not accumulating or generating any more source effects</p><p>Conservation + Constitutive = PDE 2 q 0 q D u V u D u V u 0 (D, V constant) (V, D > 0) 2 d u d u 1 D : D 2 V 0 d x d x </p><p>Dimensionless Form : x / L</p><p> 1 1 x L x x L </p><p> d 2 u d u P e 0 V L d P e "Peclet #" d D ratio of advection to diffusion effects</p><p>FD form :</p><p>2 x U i 2 P e ? 0 h x / L h </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 1 U U i) Centered : P i 1 i 1 ; multiplying the FD form e 2 h by h 2 :</p><p>1 + P e h - 2 1 - P e h = 0 2 2 P h Note: Diag. Dominance when e 1 i.e. P h 2 2 e (Weak Form) A 2nd order linear constant coeff. soln => exp( )</p><p>Exact Solution of Difference Equations :</p><p> P e h P e h U i 1 1 2 U i U i 1 1 2 2 </p><p>U i U i 1 Try i ; solve for U i 2 U i 1 U i 1</p><p> P e h P e h 1 2 1 2 0 2 2 1 2 P e h P e h 2 4 4 1 1 2 2 P e h 2 1 2 </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 2 2 P e h 1 1 1 2 P h 1 e 2</p><p>P h 1 e 2 P h 1 e 2 1 1 C o n s t a n t </p><p> P e h 1 2 2 P e h 1 2 </p><p> i U i A B 2 Exact Soln to PDE : 2 e x p P e h U C D e x p P e </p><p>------</p><p>The following soln satisfies the governing equation: V L V x e x p e x p D D U V L e x p 1 D </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 3 V L e x p D 1 C D V L V L let e x p 1 e x p 1 D D V x L U C D e x p C D e x p P D L e</p><p> i U i A B 2 C D e x p P e or 2 e x p P e h i 2 e x p P e i h e x p P e </p><p>------</p><p>P h 1 e 2 P e h l e t 2 P h 2 1 e 2 1 2 1 1 </p><p>Binomial Expansion</p><p>Centered Formualtion gives: 2 3 2 3 2 1 1 1 2 2 2 </p><p>2 3 2 2 4 e x p 2 1 2 1 2 2 2 3 2 ! 3 ! 3</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 4 Ex. BC's U = 1 = 1 , U = 0</p><p>C o n s t .</p><p>U e x p ( P e P e</p><p>0 </p><p>Numerical : Accuracy depends on agreement between and exp (Peh)</p><p>As h 0 : convergence with 0( ? ) (student try it)</p><p>As h large : becomes negative! " S p u r i o u s U i O s c i l l a t i o n " w h e n F D P e h > 1 A n a l y t i c 2 </p><p> i . e . P e h > 2</p><p>0 1 </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 5 V x P h "Cell Peclet #" e D</p><p> d u ii) Alternative : "Upstream Weighting" of d i.e. backward F.D. </p><p>2 x U i U i U i 1 P e 0 h 2 h </p><p>1 + P e h - 2 - P e h 1 = 0</p><p>Note: Always - (Weak) Diagonal Dominance</p><p>Difference Equations :</p><p>2 1 P e h 2 P e h 0</p><p>2 2 P e h 2 P e h 4 1 P e h 2</p><p>2 P h P h e e 2</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 6 1 1 (Constant) and 2 1 P e h (Never Negative)</p><p>Or in terms of : upstream 2 1 2 </p><p> Upstream Weighting no spurious oscillation Accuracy : 2 v e r s u s e x p P e h </p><p> d u iii) Alternative : "Downstream Weighting" of d i.e forward Finite difference x U i U i 1 U i P e 0 h 2 h </p><p>1 - 2 + P e h 1 - P e h = 0</p><p>2 1 2 P e h 1 P e h 0</p><p>1 1 1 and 2 ---> 1 P e h</p><p>Same order approx. to e x p P e h as case ii (upstream weighting) again in terms of : 2 3 downstream 2 1 2 4 8 </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 7 But : P e h 1 Oscillations</p><p>Summary:</p><p>Upstream P e h ; 0 h 2 Centered P e h 2 ; 0 h Downstream P e h 1 ; 0 h </p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 8 Wave Equation 2 U 2 U 0 t 2 E l l i p t i c i n S p a c e H y p e r b o l i c O v e r a l l</p><p>U x , t V x e j t Periodic Solution: A m p l i t u d e</p><p>Helmholtz Equation : will always work for a linear hyperbolic eqn.</p><p>2 2 2 2 2 2 V V 0 x V i , j y V i , j h V i , j 0 E l l i p t i c</p><p>2 - D Molecule :</p><p>1</p><p>- 4 1 2 h 2 1</p><p>1 = 0</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 9</p><p>Diagonal Dominance:</p><p>- lost as h 0 Cannot converge to PDE w/ D.D. - available only when </p><p>2 h 2 4 4 2 h 2 8</p><p> h Poor accuracy ; for ~ 1% , need 1 0 2 L s o t h i s i s h L 2 0 </p><p>Recall a U x x b U x y c U y y d U x e U y f U g a U c U f U g x x y y and assumed f 0 & for f < 0 speed convergence Telegraph Equation</p><p>2 U U 2 U c 2 0 t 2 t x 2</p><p>is dampening or frictions factor which is necessary It allows initial conditions to decay</p><p>ME 515 - Numerical Solution of PDEs - Sullivan, Lec # 9 10</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-