Physics in a Nut-Shell: Two-State Systems

Physics in a Nut-Shell: Two-State Systems

<p>PHYSICS IN A NUT-SHELL: TWO-STATE SYSTEMS D. Dubbers, WS 2008/2009</p><p>1. Prologue: Classical coupled vibrations </p><p>Demonstration: Double Pendulum: normal modes, beats</p><p>1.1 Symmetric coupled oscillator a) Free oscillator</p><p>Force law m˙x˙  kx , with spring constant k, has solution x(t)  x0 cos(ω0t  φ) with frequency ω0  k/m .</p><p>From initial cond's x(0), x˙(0) follows x0 , φ The total energy in the system is 1 2 E  2 kx0</p><p>(For mathematical pendulum:</p><p> k  mg/l : ω0  g/l is independent of m) </p><p>1.1 b) normal coordinates and eigenfrequencies</p><p>Spring constants k1  k2  k</p><p> m˙x˙  kx  k'(x  x ) Force law 1 1 2 1 m˙x˙  kx  k'(x  x ) 2 2 1 2 k k' k</p><p> shorthand mx˙˙  Kx</p><p> x1  k  k'  k'  with x   , K    .  x2    k' k  k'</p><p>These differential equations can be decoupled by taking their sum and their difference, i.e. with 1 normal coordinates q  (x1  x2 ) 2</p><p> this becomes mq˙˙  kq</p><p> mq˙˙  (k  2k') q or mq˙˙  Dq ,</p><p>k 0  q  with diagonal matrix D    and q    . 0 k  2k' q  The solutions are the normal vibrations</p><p> q (t)  q (0)cos(ωt  φ ) with the eigen-frequencies of the normal modes: a low frequency ω  k / m  ω0 = in-phase frequency = frequency of free pendulum a high frequency ω  (k  2k') / m = opposite-phase frequency, under double stretch of spring.</p><p>1.2 c) Initial conditions</p><p>Recipe: 1. define initial conditions for x and x˙ 2. translate to initial conditions for normal modes q and q˙ 3. write solution for q(t) 4. transform solution back to x(t) x Example "beats": 1</p><p>1. x1 (0)  x10 , x2 (0)  0, x˙1 (0)  x˙ 2 (0)  0 x 2 2. q (0)  q (0)  x10 / 2, q˙  (0)  q˙  (0)  0  φ  0 1 3. q (t)  x10 cos(ωt) 2 1 1 q 4. x1,2 (t)  (q  q )  x10[cos(ωt)  cos(ωt)] + 2 2</p><p> q − that is x1 (t)  x10 cos(½(ω  ω )t)  cos(½(ω  ω )t)</p><p> or x1 (t)  x10 cosωt  cos ω t and x2 (t)  x10 sin ωt  sinω t , with mean frequency ω  ½(ω  ω ) and beat frequency ω  ½(ω  ω ) .</p><p>1 2 The total energy E  2 kx0 of the system is exchanged between the two pendula with frequency Δω.</p><p>1.3 1.2 Asymmetric coupled oscillators (k1  k2 )</p><p>With k1  k  k , k2  k  k i.e. k  ½(k1  k2 ) , k  ½(k1  k2 ) :</p><p>k  k'  k'  k  k  k'  k'  1   Coefficient matrix K         k' k2  k'   k' k  k  k'</p><p>2 The eigenvalues e  mω of K are derived from the secular equation, with unit matrix I :</p><p> k  k'e  k  k' det(K  eI)   0  k' k  k'e  k or (k  k'e) 2  k 2  k'2  e 2  2(k  k')e  k 2  2kk'k 2  0 ,</p><p>2 2 2 to mω  e  k  k' k' k .</p><p>The splitting of the eigenvalues e+ − e− increases with increasing asymmetry Δk of the configuration, shown for the example k  0.8, k' 0.2 : </p><p>The eigen-values repel each other near Δk = 0.</p><p>1.4 a) General procedure:</p><p>Equation of motion mx˙˙  Kx </p><p>K is symmetric (actio = reactio), can be diagonalized such that RT KR  D with diagonal matrix D, with the eigenvalues ei on its diagonal, and with orthogonal matrix R: RR T  I , with transposed matrix RT.</p><p>Because of KR  RD : </p><p>The rows ri of the transformation matrix R then are the eigenvectors of K: Kri  ei ri .</p><p>This diagonalization is achieved by a transformation of coordinates x  Rq , and q  R T x .</p><p>New equation of motion mq˙˙  mR T ˙x˙  RT K x expanded with R R T  I to mq˙˙  RT K(RRT )x  (R T KR)(RT x) gives mq˙˙  Dq with oscillatory solutions q(t), which can be back-transformed to give x(t)  Rq(t) .</p><p>1st Example: Symmetric coupled oscillator</p><p> x1  1 q  q  1  1 1q  x            Rq ,  x2  2 q  q  2 1 1q  and the rows of R contain the coefficients of x with respect to the basis q.</p><p>1.5 2nd Example: Asymmetric coupled oscillator</p><p>This corresponds to the general 2-dim case: RT KR  D or KR  RD , with</p><p>k  k  k'  k'  k  k' k'2 k 2 0  K    and D       2 2    k' k  k  k'  0 k  k' k' k </p><p>On both sides of KR  RD we can shorten out the common term (k  k')I.</p><p> cosφ sin φ  The most general orthogonal 2-dim matrix is R     sin φ cosφ</p><p>To obtain the variable φ we need to calculate only one element of the above matrix equation:  k  k'  c s  c s1 0  1        2 e  k'  k  s c  s c0 1 STATE MIXING 1 2 2 with abbrev. c  cosφ, s  sin φ, e  e  e  2 k' k . 0.8 The (1,1)-element for instance, gives </p><p>1 2 k cosφ  k'sin φ  2 ecosφ s o</p><p> c 0.6 1 2 2 2 2 or (k  2 e) cos φ  k' (1 cos φ) d n a</p><p> 0.4 2</p><p> which, with the asym. parameter   k / k', n i s</p><p>  0.2   2 1    leads to cos φ  2 1   2     1     4 2 0 2 4    2 1   ξ = k k' and sin φ  2 1   2      1  </p><p>1.6 CHECK of RT KR  D : Clearx x x  dk k'; a  ;  2 1 x cos  1a2 ; sin  1 a2 ; cos sin cos sin x 1 r  ; rt  ; matrixk  ; sin cossin cos  1 x diag  rt.matrixk.r; ApartPowerExpandFullSimplifydiagMatrixForm 1 x2 0  OK 0 1 x2 </p><p>For a given pendulum, for instance pendulum no. 1 with trajectory x1 (t)  q (t)cosφ  q (t)sin φ , the mixing coefficients cosφ and sin φ give the relative amplitudes of the normal modes q±(t) with frequencies ω±.</p><p>2 2 cos φ and sin φ then are the fraction of energy in the normal modes q+(t), and q−(t). 2 2 1 For the symmetric double pendulum, with Δk = 0, cos φ  cos φ  2 .</p><p>1.7 b) Motion of the asymmetric coupled oscillator:</p><p>Initial conditions, with c  cosφ, s  sin φ :</p><p> x10  1. x(0)     0 </p><p> c s x10  c q (0) 2. q(0)  Rx(0)      x10       s c 0   s q (0)</p><p>q (0)cos(ωt) c cos(ωt) q (t) 3. q(t)     x10      q (0)cos(ωt)  s cos(ωt) q (t) c  sc cos(ω t)  c 2 cos(ω t)  s 2 cos(ω t)  x(t)  RT q(t)  x      x     4. 10    10    s c  s cos(ωt)  s c cos(ωt)  s c cos(ωt) for: 10% ASYMM. COUPLED OSCILL., k k'  2 3  k  1 k  0.1 k' 0.05 2 2 i.e. k / k  = 10% asymmetry between spring constants k1, k2, x ,</p><p>1 1 and k'/ k  5% relative coupling strength: x s e d u t i l</p><p> p 0 m a</p><p>1</p><p>0 20 40 60 80 100 time t</p><p>1.8 c) Extension to many coupled oscillators: </p><p> mx˙˙  Kx</p><p>2k k 0 0 0 k 2k k 0 0  matrixk  0 k 2k k 0 ; 0 0 k 2k k 0 0 0 k 2k k  1; SortEigenvaluesmatrixk, GreaterMatrixForm N</p><p>0.2679491924311228  1.  2. 3. 3.732050807568877 </p><p>1.9 c) Various notations</p><p>N.B.: The normal modes q± form an orthonormal system: T 2 2 (q  q )  cos (t   ) dt  1 , and T  0 2 T (q  q∓)  cos(t   ) cos(∓t  ∓) dt  0 , for large T. T  0</p><p>As the q and q form an orthogonal system, so do the x and x . + −    1 2 x1  q cosφ  q sin φ  q        alternative expression x1  q (q  x1 )  q (q  x1 )  x2      x  q (q  x ) x1 general case i  j j j i   (q  x1 ) the same in quantum mechanics: φ</p><p>| x1  | q  q | x1   | q  q | x1     (q  x1 ) q | x   | q  q | x  general case i  j j j i</p><p>| q  q |  1 symbolically  j j j .</p><p>1.10</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us