Last Time - Point Iterative Methods

Last Time - Point Iterative Methods

<p>Last Time - Point Iterative Methods</p><p>2 A U = v for the system  U = g with a computational molecule</p><p>B 3</p><p>2 B 2 B 0 B 1 = h g + B . C . s</p><p>B 4</p><p>[A] partitioned into [R] + [D] + [S] Below Diagonal Above</p><p> n  n n + 1 n n + 1 + ( 1 - ) U i , j n n + 1 n n + 1 n + 1 - 1 n n n n U i , j = [ B 1 U i + 1 , j + B 2 U i - 1 , j + B 3 U i , j + 1 + B 4 U i , j - 1 – R h s ] B 0</p><p>U n + 1 = - D - 1 R + S U n + D - 1 V</p><p>Jacobi: G J</p><p>U n + 1 = - R + D - 1 S U n + R + D - 1 V</p><p>Gauss - Seidel: G G S</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 1 S.O.R.:  n + 1 - 1 n - 1 U = D + R 1 -  D - S U + D + R  V</p><p>G </p><p>Basic Rule: Type I Boundary: Do not use the PDE on the Bdy. Type II or III Bdys: Use PDE Plus B.C. together</p><p>Spectral Radius, , of iteration matrix [G] is the largest magnitude eigenvalue of [G]</p><p> < 1 for convergence</p><p>Bare Essentials of Iterative Methods</p><p>Computational Estimate for </p><p> n = U n - U n - 1</p><p>1/ 2 轾M 2 Un- U n-1 d n 犏 ( i i ) r @ = 臌i=1 n-1 1/ 2 M 2 d 轾 n-1 n - 2 犏 (Ui- U i ) 臌i=1</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 2</p><p>Now to prove that an iteration scheme can converge</p><p>Consider the following worst case situations. Recall def. Strict Diagonal Dominance</p><p> a i i >  a i j j  i </p><p>Expanding on the iteration handout</p><p> n n n - 1 Define  = U - U = U - A v  exact algebraic solutions (unknown) Since n n - 1 U = G U + r and U = G U + r</p><p> n = G U n - 1 + r - G U - r = G U n - 1 - U or  n = G  n - 1 = G G  n - 2  G n  0</p><p>0 However we still don’t know  But n n n - 1 Define  = U - U This incremental error can be determined for all n  n = G U n - 1 + r - G U n - 2 - r = G U n - 1 - U n - 2 or  n = G  n - 1  G n  0</p><p>Finally we can examine Residuals:</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 3 Normally A U = v 0 = A U - v  A U n - v Define R n = A U n - v = A U n - A A - 1 v = A U n - A - 1 v n n remember  = U - U R n = A  n = A G  n - 1 = A G A - 1 A  n - 1 R n - 1 R n = A G A - 1 R n - 1  A G n A - 1 R 0</p><p>Therefore, we have the following error measures</p><p> n n - 1 n 0  = G   G  numerical vs algebraic</p><p> n n - 1 n 0  = G   G  incremental errors</p><p> n n - 1 n 0 R = G R  G R residual error</p><p>Each of these error indicators converges to zero if and only if the spectral radius, , (or largest absolute value eigenvalue) of the iteration matrix is less than 1. Therefore,  n    n - 1</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 4  n    n - 1</p><p>R n   R n - 1 and one can estimate the spectral radius of the system via</p><p>1/ 2 轾M 2 Un- U n-1 d n 犏 ( i i ) r @ = 臌i=1 n-1 1/ 2 M 2 d 轾 n-1 n - 2 犏 (Ui- U i ) 臌i=1</p><p>If one measures  expect the following</p><p>1</p><p></p><p>I t e r a t i o n s</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 5 Given A U = v where [A] strict diagonal dominance</p><p>Prove Convergence  a i j  i =   a Define j  i i i </p><p> n + 1 = G  n Recall   a i j - 1 j  1 G J = - D R + S = – Jacobi a i i </p><p> n + 1 1 n  : i = - a i j  j a i i  j  1 </p><p> n + 1 a i j n n i   j   i  j  i a i i </p><p> n m a x n where  j j</p><p>Worst case n + 1 n   m a x </p><p> m a x < 1 sufficient for convergence</p><p>Note: Elliptic equation m a x = 1  Jacobi will not diverge.</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 6 Examine Gauss - Seidel :</p><p> N n + 1 - 1 n n + 1 n n 1 =  a 1 j  j   1   1    a 1 1 j = 2 since 1 < 1</p><p> N n + 1 - 1 n + 1 n  2 = a 2 1 1 +  a 2 j  j a 2 2 j = 3 </p><p>N </p><p> n + 1 a 2 1 n a 2 j n n 2   +   j   2  a 2 2 j = 3 a 2 2 etc. . . .</p><p> a 2 1 n + 1 a 2 1 n 1 <  In general since a 2 2 a 2 2</p><p> the Gauss - Seidel will converge faster (or diverge faster) than Jacobi. and 2 G S = J</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 7 From S.O.R. theory for [A] Symmetric, Consistently ordered, “Property A”</p><p>2 G S = J</p><p> = 2 = 2 o p t 2 1 + 1 - J 1 + 1 - G S Recall: Self Adjoint implies symmetry</p><p>Rates of Convergence</p><p>In the limit of large n, recall that</p><p> n + M M n  =   and therefore</p><p> n + M = M  n or  n + M M =  n and if you wish to reduce the existing error by a factor of K</p><p> n + M K =  n one can write</p><p>M  = K and solve for M, the number of iterations required to get to desired accuracy</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 8 M = l n ( K ) / l n ( )</p><p>2 When solving  U = 0 on a square </p><p>Jacobi 2  = m a x  = c o s h ~ 1 - h a s h  0 2</p><p>The rate of convergence of a linear iteration</p><p> n + 1 n U = G U + r characterized by the matrix [G] is</p><p>R G J = - l o g  G J = - l o g </p><p>(-) since  < 1 for (+) convergence rate</p><p>Ref: Young, D.M. Trans. AM. Math. Soc., 76, #92, 1954 Ames - on reserve Westlake - listed in handout class 1 - Appendix B Eigenvalue Bounds</p><p>2 2 - l o g  ~ - l o g 1 - h = h + O h 4 and 2 2</p><p>Thus, the convergence rate for Jacobi iterations is approximately h 2 / 2 which is slow for small values of h</p><p> l o g 1 + x = x - x 2 + x 3 - x 4 2 3 4 - 1 < x  1</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 9 The max  in G G S is c o s 2 h ~ 1 - h 2 as h 0</p><p>2 2 4  R G G S = - l o g c o s h ~ h + O h or the Gauss-Seidel iterations will converge twice as fast as Jacobi.</p><p>Finally  max  in G  ~ 1 - 2 h as h 0</p><p>2 R G ~ 2 h + O h for optimal S.O.R.</p><p>2 h ~ 2 h 2 h times faster than Gauss-Seidel which for small h is significant</p><p>ME 525 (Sullivan) Point Iterative Techniques Continued - Lecture 5 10</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us