The Degrees of Freedom Are K - P - 1 = 4 - 0 - 1 = 3

The Degrees of Freedom Are K - P - 1 = 4 - 0 - 1 = 3

<p> Homework 7 due Mar. 21</p><p>8-61 (9-62) 8-68 (9-69) 9-4 (10-4) 9-20 (10-22) </p><p>8-61. Mean = np = 6(0.25) = 1.5</p><p>Value 0 1 2 3 4 Observed 4 21 10 13 2 Expected 8.8989 17.7979 14.8315 6.5918 1.6479</p><p>The expected frequency for value 4 is less than 3. Combine this cell with value 3:</p><p>Value 0 1 2 3-4 Observed 4 21 10 15 Expected 8.8989 17.7979 14.8315 8.2397</p><p>The degrees of freedom are k  p  1 = 4  0  1 = 3</p><p> a) 1) The variable of interest is the form of the distribution for the random variable X.</p><p>2) H0: The form of the distribution is binomial with n = 6 and p = 0.25 3) H1: The form of the distribution is not binomial with n = 6 and p = 0.25 4)  = 0.05 5) The test statistic is k 2 2 Oi  Ei  0   i1 Ei 2 2 6) Reject H0 if o  0.05,3  7.81 7) 4  8.89892 15  8.23972 2  ⋯  10.39 0 8.8989 8.2397</p><p>8) Since 10.39 > 7.81 reject H0. We can conclude that the distribution is not binomial with n = 6 and p = 0.25 at  = 0.05. b) P-value = 0.0155 (found using Minitab) 8-68. 1. The variable of interest is failures of an electronic component. 2. H0: Type of failure is independent of mounting position.</p><p>3. H1: Type of failure is not independent of mounting position. 4. a = 0.01 5. The test statistic is: r c 2 2 (oij  Eij) 0    i1j1 Eij 2 6. The critical value is .01,3  11.344 7. The calculated test statistic is 2 0  10.71 2 2 8. 0  0.01,3 , do not reject H0 and conclude evidence is not sufficient to claim that the type of failure is not independent of the mounting position at a = 0.01. P-value = 0.013 9-4. a) 1) The parameter of interest is the difference in mean burning rate, 1  2</p><p>2) H0 : 1  2  0 or 1  2</p><p>3) H1 : 1  2  0 or 1  2 4)  = 0.05 5) The test statistic is (x1  x2 )  0 z0  2 2 1  2 n1 n2</p><p>6) Reject H0 if z0 < z/2 = 1.96 or z0 > z/2 = 1.96 7) x1  18 x2  24  = 0 1  3 2  3</p><p> n1 = 20 n2 = 20 (18  24)  0 z0   6.32 (3)2 (3)2  20 20 8) Since 6.32 < 1.96 reject the null hypothesis and conclude the mean burning rates do not differ significantly at  = 0.05.</p><p> b) P-value = 2(1 (6.32))  2(1 1)  0 ‘               0   0 c)    z/2    z/2    2 2   2 2   1  2   1  2   n1 n2   n1 n2           2.5   2.5  = 1.96    1.96    (3)2 (3)2   (3)2 (3)2         20 20   20 20  = 1.96  2.64  1.96  2.64  0.68  4.6 = 0.24825  0 = 0.24825</p><p>2 2 2 2 1 2 1 2 d) x1  x2   z/2   1  2  x1  x2   z/2  n1 n2 n1 n2</p><p>(3)2 (3)2 (3)2 (3)2 18  24  1.96       18  24  1.96  20 20 1 2 20 20</p><p>7.86  1  2  4.14</p><p>We are 95% confident that the mean burning rate for solid fuel propellant 2 exceeds that of propellant 1 by between 4.14 and 7.86 cm/s.</p><p>9-20. a) 1) The parameter of interest is the difference in mean impact strength, 1  2</p><p>2) H0 : 1  2  0 or 1  2</p><p>3) H1 : 1  2  0 or 1  2 4)  = 0.05 5) The test statistic is (x1  x2 )  0 t0  s2 s2 1  2 n1 n2</p><p>6) Reject the null hypothesis if t0 < t, where t0.05,25 = 1.708 since 2  2 2  s1 s2     n1 n2     2  27.43  2  25.43 2  2   2  s1 s2      n1   n2   n1  1 n2  1   25 (truncated) 7) x1  290 x2  321</p><p> s1  12 s2  22</p><p> n1 = 10 n2 = 16 (290  321)  0 t0   4.64 (12)2 (22)2  10 16 8) Since 4.64 < 1.708 reject the null hypothesis and conclude that supplier 2 provides gears with higher mean impact strength at the 0.05 level of significance. b) P-value = P(t < 4.64): P-value < 0.0005 c) 1) The parameter of interest is the difference in mean impact strength, 2  1</p><p>2) H0 : 2  1  25</p><p>3) H1 : 2  1  25 or 2  1  25 4)  = 0.05 5) The test statistic is (x2  x1)   t0  s2 s2 1  2 n1 n2</p><p>6) Reject the null hypothesis if t0 > t, = 1.708 where 2  2 2  s1 s2     n1 n2     2  27.43  2  25.43 2  2   2  s1 s2      n1   n2   n1  1 n2  1   25 x  x   7) 1 290 2 321 0 =25 s1  12 s2  22 n1 = 10 n2 = 16 (321 290)  25 t0   0.898 (12)2 (22)2  10 16 8) Since 0.898 < 1.708, do not reject the null hypothesis and conclude that the mean impact strength from supplier 2 is not at least 25 ft-lb higher that supplier 1 using  = 0.05.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us