If a and B Are Independent Events

If a and B Are Independent Events

<p> Magdy Essafty – [email protected] 1 الرد على موضوع سؤال فى الحتمالت </p><p>اسم العضو : مجدى الصفتى </p><p>Question 1 If A and B are independent events Then P ( A ∩B ) = P ( A ) . P ( B ) To prove that : A, B  are independent events we must prove : P ( A ∩B ) = P ( A) . P ( B ) Since : P ( A ∩B ) = 1 – P ( A B ) P ( A ∩B ) = 1 – P ( A ) – P ( B ) + P ( A ∩B ) P ( A ∩B ) = 1 – P ( A ) – P ( B ) + P ( A ) . P ( B ) P ( A ∩B ) = [ 1 – P ( A ) ] – P ( B ) [ 1 – P ( A ) ] P ( A ∩B ) = [ 1 – P ( A ) ] . [ 1 – P ( B ) ] P ( A ∩B ) = P ( A) . P ( B ) Therefore A, B  are independent events.</p><p>Question 2 S = { ( w , w , w , w ) , ( l , l , l , l ) , ( w , w , w , l ) , ( w , w , l , w ) , ( w , l , w , w ) , ( l , w , w , w ) , ( l , l , l , w ) , ( l , l , w , l ) , ( l , w , l , l ) , ( w , l , l , l ) , ( w , w , l , l ) , ( l , l , w , w ) , ( w , l , l , w ) , ( l , w , w , l ) , ( w , l , w , l ) , ( l , w , l , w ) } Range of the random variable: { 4 , 3 , 2 , 1 , 0 } The probability distribution: </p><p>X r 4 3 2 1 0 1 1 3 1 1 f ( X r ) 16 4 8 4 16 Magdy Essafty – [email protected] 2 الرد على موضوع سؤال فى الحتمالت </p><p>اسم العضو : مجدى الصفتى </p><p>The expectation 1 1 3 1 1  = 4  + 3  + 2  + 1  + 0  = 2 16 4 8 4 16 The variance 1 1 3 1 1  2 = 16  + 9  + 4  + 1  + 0  = 5 16 4 8 4 16</p><p>Question 3</p><p> = 250 ,  = 6 240 250 P ( x  240 ) = P ( z  ) 6</p><p>P ( z  - 1.67 ) = P ( z  1.67 ) = 0.5 – 0.4525 = 0.0475</p><p>Question 4</p><p>ىىى ىىى ىىىىى ىىىىىىىى ىى ىىىىىى ىىىىىى : </p><p>10  7  3 C 3 C 4 C 3 = 4200</p><p>ىىى ىىى ىىىىى ىىىىىىىى ىى ىىىىىى ىىىىىى : </p><p>3  7  3 C 3 C 4 C 3 = 35 مع تحياتى للجميع </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us