Solving Linear Systems of Differential Equations

Solving Linear Systems of Differential Equations

<p> Solving Linear Systems of Differential Equations:</p><p>You are given a linear system of differential equations: </p><p> d a b  Y  Y  AY, Y (0)  Y0 . dt c d </p><p>The type of behavior depends upon the eigenvalues of matrix A. The procedure is to determine the eigenvalues and eigenvectors and use them to construct the general solution. </p><p>If you have an initial condition, you can determine your two arbitrary constants in the general solution in order to obtain the particular solution. Thus, if Y1 (t ) and Y2 (t ) are two linearly independent solutions, then the general solution is given as Y(t ) c1 Y 1 ( t )  c 2 Y 2 ( t ). </p><p>Then, setting t  0, you get two linear equations for c1 and c2 : c1Y 1(0) c 2 Y 2 (0)  Y 0 .</p><p>The major work is in finding the linearly independent solutions. This depends upon the different types of eigenvalues that you obtain from solving the characteristic equation, det(Y I )  0.</p><p>I. Two real, distinct roots. a. Solve the eigenvalue problem AV  V for each eigenvalue obtaining two </p><p> eigenvectors V1 ,V 2 .</p><p>1t  2 t b. Write the general solution as a linear combination Y(t )  c1 e V 1  c 2 e V2 II. Two complex conjugate roots. a. Solve the eigenvalue problem AV  V for one eigenvalue,    i  , obtaining one eigenvector V. Note that this eigenvector may have complex entries. b. Write the vector Y(t ) et V  e  t (cos t  i sin  t ) V . c. Construct two linearly independents solutions to the problem by letting</p><p>V1  Re( Y (t )) and V2  Im( Y (t )) .</p><p>Note that since the original system of equations does not have any i's, then d we have [Re(Y (t )) i Im( Y ( t ))]  A [Re( Y ( t ))  i Im( Y ( t ))]. Differentiating the dt sum and splitting the real and imaginary parts of the equation, gives d d Re(Y (t )) i Im( Y ( t ))  A [Re( Y ( t ))]  i A [Im( Y ( t ))]. Setting the real and dt dt d imaginary parts equal, we have Re(Y (t )) A [Re( Y ( t ))], and dt d Im(Y (t )) A [Im( Y ( t ))]. Therefore, the real and imaginary parts each are dt solution of the system!</p><p> d. Write the general solution as a linear combination Y(t )  c1 V 1  c 2 V2 I. One Repeated Root e. Solve the eigenvalue problem AV  V for the one eigenvalue obtaining </p><p> the first eigenvector V1.</p><p> f. Solve the eigenvalue problem AV2 V 2  V 1 for V2 . t  t g. The general solution is then given by Y(t ) c1 e V 1  c 2 e ( V2  t V 1 ) . II. Examples 4 2  h. A   . 3 3 </p><p>4  2 0  3 3  Eigenvalues: 0 (4  )(3   )  6 Thus,   1,6. 02  7   6 0 (  1)(   6)</p><p>Eigenvectors:   1:   6 :</p><p>4 2 v1   v 1  4 2 v1   v 1          6   3 3 v2   v 2  3 3 v2   v 2 </p><p>3 2 v1   0  2 2 v1   0              3 2 v2   0  3 3 v2   0 </p><p>v1  2  v1  1  3v1 2 v 2  0,      . 2v1  2 v 2  0,      . v2  3  v2  1 </p><p>1t  2 t Y(t )  c1 e V 1  c 2 e V2</p><p> t2 6 t  1  Y(t )  c1 e   c 2 e   General Solution: 3   1  t6 t 2c1 e c 2 e   t6 t . 3c1 e  c 2 e </p><p>3 5  i. A   . 1 1 </p><p>3  5 0  1 1   0 (3  )(  1   )  6 Eigenvalues: Thus,  1 i ,1  i . 02  2   2 (  2)  4  4(1)(2)   1  i . 2 Eigenvectors:  1  i :</p><p>3 5 v1   v 1    (1  i )   1 1 v2   v 2 </p><p>2i  5 v1   0        1 2  i v2   0 </p><p>v1  2  i  (2i ) v1  5 v 2  0,      . v2  1 </p><p>Complex Solution:</p><p>t2i (1 i ) t  2  i  e  e   1   1 </p><p> t 2  i  e(cos t  i sin t )  1 </p><p> t (2i )(cos t  i sin t )   e   cost i sin t </p><p> t (2cost sin t )  i (cos t  2sin t )   e   cost i sin t </p><p> t2cost sin t  t  cos t  2sin t  e   ie  . cost   sin t </p><p> t2cost sin t  t  cos t  2sin t  Y(t )  c1 e   c 2 e   cost   sin t  General Solution: t c1(2cos t sin t )  c 2 (cos t  2sin t )   e  . c1cos t c 2 sin t </p><p> t2c1 c 2  t  2 c 2  c 1  Note: This can be rewritten as Y(t ) e cos t   e sin t   . c1   c 2 </p><p>7 1  j. A   . 9 1 </p><p>7  1 0  9 1  0 (7  )(1   )  9 Eigenvalues: Thus,   4. 02  8   16 0 (  4)2 .</p><p>Eigenvectors:   4 :</p><p>7 1 v1   v 1     4   9 1 v2   v 2 </p><p>3 1 v1   0        9 3 v2   0 </p><p>v1  1  3v1 v 2  0,      . v2  3 </p><p>Second Linearly Independent Solution:</p><p>Solve AV2 V 2  V 1</p><p>7 1 u1   u 1   1    4      9 1 u2   u 2   3 </p><p>3 1 u1   1        9 3 u2   3 </p><p>3u1 u 2  1   u 1  1       . 9u1 3 u 2  3  u 2  2 </p><p>General Solution: </p><p>t  t Y(t ) c1 e V 1  c 2 e ( V2  t V 1 )</p><p>4t1  4 t   1   1   Y(t )  c1 e   c 2 e    t    3   2   3  </p><p>4t c1 c 2 (1  t )   e  . 3c1 c 2 (2  3 t ) </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us