<p>References</p><p>1. Oster ME, Lee KA, Honein MA, et al., Temporal trends in survival among infants with</p><p> critical congenital heart defects. Pediatrics 2013;131: e1502–8.</p><p>2. Welke KF, Shen I, Ungerleider RM. Current assessment of mortality rates in</p><p> congenital cardiac surgery. Ann Thorac Surg 2006;82:164–70.</p><p>3. Bellinger DC, Newburger JW, Wypij D, et al. Behaviour at eight years in children with</p><p> surgically corrected transposition: The Boston Circulatory Arrest Trial. Cardiol Young</p><p>2009;19:86–97.</p><p>4. Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in</p><p> children with congenital heart disease: evaluation and management: a scientific</p><p> statement from the American Heart Association. Circulation 2012;126:1143–72.</p><p>5. Bellinger DC, Wypij D, duPlessis AJ, et al. Neurodevelopmental status at eight years</p><p> in children with dextro-transposition of the great arteries: the Boston Circulatory</p><p>Arrest Trial. J Thorac Cardiovasc Surg 2003;126: 1385–96.</p><p>6. van Rijen EH, Utens EM, Roos-Hesselink JW, et al. Psychosocial functioning of the</p><p> adult with congenital heart disease: a 20–33 years follow-up. Eur Heart J</p><p>2003;24:673–83.</p><p>7. Andropoulos DB, Easley RB, Brady K, et al. Neurodevelopmental outcomes after</p><p> regional cerebral perfusion with neuromonitoring for neonatal aortic arch</p><p> reconstruction. Ann Thorac Surg 2013;95: 648–54.</p><p>8. Daliento L, Mapelli D, Volpe B. Measurement of cognitive outcome and quality of life</p><p> in congenital heart disease. Heart 2006;92:569–74. 9. Daliento L, Mapelli D, Russo G, et al. Health related quality of life in adults with</p><p> repaired tetralogy of Fallot: psychosocial and cognitive outcomes. Heart</p><p>2005;91:213–8.</p><p>10. Lane DA, Lip GY, Millane TA. Quality of life in adults with congenital heart disease.</p><p>Heart 2002;88:71–5.</p><p>11. Kovacs AH, Saidi AS, Kuhl EA, et al. Depression and anxiety in adult congenital heart</p><p> disease: predictors and prevalence. Int J Cardiol 2009;137:158–64.</p><p>12. Kovacs AH, Sears SF, Saidi AS. Biopsychosocial experiences of adults with congenital</p><p> heart disease: review of the literature. Am Heart J 2005;150: 193–201.</p><p>13. Kamphuis M, Vogels T, Ottenkamp J, et al. Employment in adults with congenital</p><p> heart disease. Arch Pediatr Adolesc Med 2002;156:1143–8.</p><p>14. Mahle WT, Tavani F, Zimmerman RA, et al. An MRI study of neurological injury</p><p> before and after congenital heart surgery. Circulation 2002;106: I109–14. </p><p>15. Andropoulos DB, Hunter JV, Nelson DP, et al. Brain immaturity is associated with</p><p> brain injury before and after neonatal cardiac surgery with high-flow bypass and</p><p> cerebral oxygenation monitoring. J Thorac Cardiovasc Surg 2010;139:543–56.</p><p>16. Andropoulos DB, Brady K, Easley RB, et al. Erythropoietin neuroprotection in</p><p> neonatal cardiac surgery: a phase I/II safety and efficacy trial. J Thorac Cardiovasc</p><p>Surg 2013;146:124–31.</p><p>17. Galli KK, Zimmerman RA, Jarvik GP, et al. Periventricular leukomalacia is common</p><p> after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2004;127: 692–704.</p><p>18. Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities</p><p> after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc</p><p>Surg 2006;131:190–7. 19. Miller SP, McQuillen PS, Hamrick S, et al. Abnormal brain development in newborns</p><p> with congenital heart disease. N Engl J Med 2007;357:1928–38.</p><p>20. Beca J, Gunn JK, Coleman L, et al. New white matter brain injury after infant heart</p><p> surgery is associated with diagnostic group and the use of circulatory arrest.</p><p>Circulation 2013;127: 971–9.</p><p>21. Block AJ, McQuillen PS, Chau V, et al. Clinically silent preoperative brain injuries do</p><p> not worsen with surgery in neonates with congenital heart disease. J Thorac</p><p>Cardiovasc Surg2010;140: 550–7.</p><p>22. Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict</p><p> neurodevelopmental outcomes in preterm infants. N Engl J Med 2006;355:685–94.</p><p>23. Miller SP, Ferriero DM, Leonard C, et al. Early brain injury in premature newborns</p><p> detected with magnetic resonance imaging is associated with adverse early</p><p> neurodevelopmental outcome. J Pediatr 2005;147:609–16.</p><p>24. Volpe JJ.Neurobiology of periventricular leukomalacia in the premature infant.</p><p>Pediatr Res 2001;50:553–62.</p><p>25. Buser JR, Segovia KN, Dean JM, et al. Timing of appearance of late oligodendrocyte</p><p> progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white</p><p> matter to hypoxia-ischemia. J Cereb Blood Flow Metab 2010;30:1053–65.</p><p>26. Segovia KN, McClure M, Moravec M, et al. Arrested oligodendrocyte lineage</p><p> maturation in chronic perinatal white matter injury. Ann Neurol 2008;63: 520–30.</p><p>27. Greeley WJ, Ungerleider RM. Assessing the effect of cardiopulmonary bypass on the</p><p> brain. Ann Thorac Surg 1991;52:417–9. 28. Greeley WJ, Kern FH, Ungerleider RM, et al. The effect of hypothermic</p><p> cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in</p><p> neonates, infants, and children. J Thorac Cardiovasc Surg 1991;101:783–94.</p><p>29. Greeley WJ, Ungerleider RM, Smith LR, Reves JG.T he effects of deep hypothermic</p><p> cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants</p><p> and children. J Thorac Cardiovasc Surg 1989;97: 737–45.</p><p>30. Greeley WJ, Ungerleider RM, Kern FH, et al. Effects of cardiopulmonary bypass on</p><p> cerebral blood flow in neonates, infants, and children. Circulation 1989;80:I209–15.</p><p>31. Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood</p><p> flow. Trends Neurosci 2009;32:160–9.</p><p>32. Fraser CD 3rd, Brady KM, Rhee CJ, et al. The frequency response of cerebral</p><p> autoregulation. J Appl Physiol 2013;115:52–6.</p><p>33. Taylor RH, Burrows FA, Bissonnette B. Cerebral pressure-flow velocity relationship</p><p> during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg</p><p>1992;74:636–42.</p><p>34. Czosnyka M, Brady K, Reinhard M, et al. Monitoring of cerebrovascular</p><p> autoregulation: facts, myths, and missing links. Neurocrit Care 2009;10:373–86.</p><p>35. Gleason CA, Short BL, Jones MD Jr. Cerebral blood flow and metabolism during and</p><p> after prolonged hypocapnia in newborn lambs. J Pediatr 1989;115:309–14.</p><p>36. Muizelaar JP, van der Poel HG, Li ZC, et al. Pial arteriolar vessel diameter and CO2</p><p> reactivity during prolonged hyperventilation in the rabbit. J Neurosurg 1988;69:923–</p><p>7. 37. Laussen PC. Optimal blood gas management during deep hypothermic paediatric</p><p> cardiac surgery: alpha-stat is easy, but pH-stat may be preferable. Paediatr Anaesth</p><p>2002;12:199–204.</p><p>38. Hiramatsu T, Miura T, Forbess JM, et al. pH strategies and cerebral energetics before</p><p> and after circulatory arrest. J Thorac Cardiovasc Surg 1995;109:948–57.</p><p>39. Hirsch JC, Jacobs ML, Andropoulos D, et al. Protecting the infant brain during cardiac</p><p> surgery: a systematic review. Ann Thorac Surg 2012;94:1365–73.</p><p>40. Sakamoto T, Zurakowski D, Duebener LF, et al. Combination of alpha-stat strategy</p><p> and hemodilution exacerbates neurologic injury in a survival piglet model with deep</p><p> hypothermic circulatory arrest. Ann Thorac Surg 2002;73:180–9.</p><p>41. Wypij D, Jonas RA, Bellinger DC, et al. The effect of hematocrit during hypothermic</p><p> cardiopulmonary bypass in infant heart surgery: results from the combined Boston</p><p> hematocrit trials. J Thorac Cardiovasc Surg 2008;135:355–60. </p><p>42. Kurth CD, Steven JM. Keeping a cool head. Anesthesiology 2000;93: 598–600.</p><p>43. Bissonnette B, Holtby HM, Davis AJ, et al. Cerebral hyperthermia in children after</p><p> cardiopulmonary bypass. Anesthesiology, 2000;93:611–8.</p><p>44. Cottrell SM, Morris KP, Davies P, et al. Early postoperative body temperature and</p><p> developmental outcome after open heart surgery in infants. Ann Thorac Surg</p><p>2004;77: 66–71.</p><p>45. Kern FH, Jonas RA, Mayer JE Jr, et al. Temperature monitoring during CPB in infants:</p><p> does it predict efficient brain cooling? Ann Thorac Surg 1992;54:749–54.</p><p>46. Bellinger DC, Wernovsky G, Rappaport LA, et al. Cognitive development of children</p><p> following early repair of transposition of the great arteries using deep hypothermic</p><p> circulatory arrest. Pediatrics 1991;87:701–7. 47. Wong PC, Barlow CF, Hickey PR, et al. Factors associated with choreoathetosis after</p><p> cardiopulmonary bypass in children with congenital heart disease. Circulation</p><p>1992;86:II118–26.</p><p>48. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative</p><p> neurologic effects of hypothermic circulatory arrest versus low-flow</p><p> cardiopulmonary bypass in infant heart surgery. N Engl J Med 1993;329:1057–64.</p><p>49. de Ferranti S, Gauvreau K, Hickey PR, et al. Intraoperative hyperglycemia during</p><p> infant cardiac surgery is not associated with adverse neurodevelopmental outcomes</p><p> at 1, 4, and 8 years. Anesthesiology2004;100:1345–52.</p><p>50. Ballweg JA, Wernovsky G, Ittenbach RF, et al. Hyperglycemia after infant cardiac</p><p> surgery does not adversely impact neurodevelopmental outcome. Ann Thorac Surg</p><p>2007;84: 2052–8.</p><p>51. Burrows FA, Bissonnette B. Cerebral blood flow velocity patterns during cardiac</p><p> surgery utilizing profound hypothermia with low-flow cardiopulmonary bypass or</p><p> circulatory arrest in neonates and infants. Can J Anaesth 1993;40:298–307.</p><p>52. Hillier SC, Burrows FA, Bissonnette B, Taylor RH. Cerebral hemodynamics in neonates</p><p> and infants undergoing cardiopulmonary bypass and profound hypothermic</p><p> circulatory arrest: assessment by transcranial Doppler sonography. Anesth Analg</p><p>1991;72:723–8.</p><p>53. Astudillo R, van der Linden J, Ekroth R, et al. Absent diastolic cerebral blood flow</p><p> velocity after circulatory arrest but not after low flow in infants. Ann Thorac Surg</p><p>1993;56:515–9. 54. Jonassen AE, Quaegebeur JM, Young WL. Cerebral blood flow velocity in pediatric</p><p> patients is reduced after cardiopulmonary bypass with profound hypothermia. J</p><p>Thorac Cardiovasc Surg 1995;110:934–43.</p><p>55. Tsui SS, Kirshbom PM, Davies MJ, et al. Nitric oxide production affects cerebral</p><p> perfusion and metabolism after deep hypothermic circulatory arrest. Ann Thorac</p><p>Surg 1996;61:1699–707.</p><p>56. Tsui SS, Kirshbom PM, Davies MJ, et al. Thromboxane A2-receptor blockade</p><p> improves cerebral protection for deep hypothermic circulatory arrest. Eur J</p><p>Cardiothorac Surg,1997;12:228–35.</p><p>57. S Skaryak LA, Kirshbom PM, DiBernardo LR, et al. Modified ultrafiltration improves</p><p> cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg</p><p>1995;109:744–51.</p><p>58. K Kirshbom PM, Skaryak LR, DiBernardo LR, et al. pH-stat cooling improves cerebral</p><p> metabolic recovery after circulatory arrest in a piglet model of aortopulmonary</p><p> collaterals. J Thorac Cardiovasc Surg 1996;111:147–55.</p><p>59. Rodriguez RA, Austin EH 3rd, Audenaert SM. Postbypass effects of delayed</p><p> rewarming on cerebral blood flow velocities in infants after total circulatory arrest. J</p><p>Thorac Cardiovasc Surg 1995;110:1686–90.</p><p>60. Fuller S, Rajagopalan R, Jarvik GP et al. J. Maxwell Chamberlain Memorial Paper for</p><p> congenital heart surgery. Deep hypothermic circulatory arrest does not impair</p><p> neurodevelopmental outcome in school-age children after infant cardiac surgery.</p><p>Ann Thorac Surg 2010;90:1985–94. 61. Bellinger DC, Rappaport LA, Wypij D, et al. Patterns of developmental dysfunction</p><p> after surgery during infancy to correct transposition of the great arteries. J Dev</p><p>Behav Pediatr 1997;18:75–83.</p><p>62. McGrath E, Wypij D, Rappaport LA, et al. Prediction of IQ and achievement at age 8</p><p> years from neurodevelopmental status at age 1 year in children with D-transposition</p><p> of the great arteries. Pediatrics, 2004;114:e572–6.</p><p>63. Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great</p><p> arteries corrected with the arterial switch procedure: neuropsychological</p><p> assessment and structural brain imaging. Circulation 2011;124:1361–9. </p><p>64. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after</p><p> hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J</p><p>Thorac Cardiovasc Surg 2003;126:1765–74.</p><p>65. Visconti KJ, Rimmer D, Gauvreau K, et al. Regional low-flow perfusion versus</p><p> circulatory arrest in neonates: one-year neurodevelopmental outcome. Ann Thorac</p><p>Surg 2006;82:2207–11.</p><p>66. Goldberg CS, Bove EL, Devaney EJ, et al. A randomized clinical trial of regional</p><p> cerebral perfusion versus deep hypothermic circulatory arrest: outcomes for infants</p><p> with functional single ventricle. J Thorac Cardiovasc Surg 2007;133: 880–7.</p><p>67. Algra SO, Jansen NJ, van der Tweel I, et al. Neurological injury after neonatal cardiac</p><p> surgery: a randomized, controlled trial of 2 perfusion techniques. Circulation</p><p>2014;129:224–33.</p><p>68. Schwartz AE, Kaplon RJ, Young WL, et al. Cerebral blood flow during low-flow</p><p> hypothermic cardiopulmonary bypass in baboons. Anesthesiology 1994;81:959–64. 69. Schwartz AE, Kaplon RJ, Young WL, et al. Phenylephrine increases cerebral blood</p><p> flow during low-flow hypothermic cardiopulmonary bypass in baboons.</p><p>Anesthesiology, 1996;85:380–4.</p><p>70. Schwartz AE, Sandhu AA, Kaplon RJ, et al. Cerebral blood flow is determined by</p><p> arterial pressure and not cardiopulmonary bypass flow rate. Ann Thorac Surg</p><p>1995;60:165–9.</p><p>71. Harrington DK, Walker AS, Kaukuntla H, et al. Selective antegrade cerebral perfusion</p><p> attenuates brain metabolic deficit in aortic arch surgery: a prospective randomized</p><p> trial. Circulation 2004;110:II231–6.</p><p>72. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD Jr. Novel cerebral physiologic</p><p> monitoring to guide low-flow cerebral perfusion during neonatal aortic arch</p><p> reconstruction. J Thorac Cardiovasc Surg 2003;125:491–9.</p><p>73. DeCampli WM, Schears G, Myung R, et al. Tissue oxygen tension during regional low-</p><p> flow perfusion in neonates. J Thorac Cardiovasc Surg 2003;125:472–80.</p><p>74. Myung RJ, Petko M, Judkins AR, et al. Regional low-flow perfusion improves</p><p> neurologic outcome compared with deep hypothermic circulatory arrest in neonatal</p><p> piglets. J Thorac Cardiovasc Surg. 2004;127:1051–6.</p><p>75. Sasaki T, Tsuda S, Riemer RK, et al. Optimal flow rate for antegrade cerebral</p><p> perfusion. J Thorac Cardiovasc Surg 2010;139:530–76. </p><p>76. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD Jr. low-flow perfusion provides</p><p> comparable blood flow and oxygenation to both cerebral hemispheres during</p><p> neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg 2003;126:1712–7. 77. Liu J, Ji B, Feng Z, et al. Application of modified perfusion technique on one stage</p><p> repair of interrupted aortic arch in infants: a case series and literature review. ASAIO</p><p>J 2007;53:666–9.</p><p>78. Oppido G, Pace Napoleone C, Turci S, et al. Moderately hypothermic</p><p> cardiopulmonary bypass and low-flow antegrade selective cerebral perfusion for</p><p> neonatal aortic arch surgery. Ann Thorac Surg2006;82:2233–9.</p><p>79. Lim C, Kim WH, Kim SC, et al. Aortic arch reconstruction using regional perfusion</p><p> without circulatory arrest. Eur J Cardiothorac Surg 2003;23:149–55.</p><p>80. Langley SM, Chai PJ, Miller SE, et al. Intermittent perfusion protects the brain during</p><p> deep hypothermic circulatory arrest. Ann Thorac Surg 1999;68:4–12.</p><p>81. Hickey E, Karamlou T, You X, et al. Hawley H. Seiler Resident Award paper. The use of a miniaturized circuit and bloodless prime to avoid cerebral no-reflow after neonatal cardiopulmonary bypass. Ann Thorac Surg. 2007;83:895–901.</p><p>82. Greeley WJ, Kern FH, Ungerleider RM, The effect of hypothermic cardiopulmonary</p><p> bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and</p><p> children. J Thorac Cardiovasc Surg. 1991;101:783–94.</p><p>83. Kern FH, Ungerleider RM, Reves JG, et al. Effect of altering pump flow rate on</p><p> cerebral blood flow and metabolism in infants and children. Ann Thorac Surg</p><p>1993;56:1366–72.</p><p>84. Kern FH, Ungerleider RM, Quill TJ, et al. Cerebral blood flow response to changes in</p><p> arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in</p><p> children. J Thorac Cardiovasc Surg 1991;101:618–22. 85. Bacon F. Of the proficience and advancement of learning divine and human. In:</p><p>Bacon F. The works of Francis Bacon (vol. I) Cambridge, UK: Hurd & Houghton, 1878,</p><p> p. 121 (original work published 1605).</p><p>86. Claridge JA, Fabian TC. History and development of evidence-based medicine. World</p><p>J Surg 2005;29:547–53.</p><p>87. Columb MO, Lalkhen AG. Systematic reviews & meta-analyses. Curr Anaesth Crit</p><p>Care, 2005;16:391–394.</p><p>88. American Socieity of Anesthesiologists. Standards for basic anesthetic monitoring.</p><p>July 1, 2011; available from: http://www.asahq.org/For-Members/Standards-</p><p>Guidelines-and-Statements.aspx (accessed March 28, 2014).</p><p>89. Pedersen T, Nicholson A, Hovhannisyan K, et al. Pulse oximetry for perioperative</p><p> monitoring. Cochrane Database Syst Rev. 2014 Mar 17;3:CD002013. [Epub ahead of</p><p> print]</p><p>90. Kasman N, Brady K. Cerebral oximetry for pediatric anesthesia: why do intelligent</p><p> clinicians disagree? Paediatr Anaesth 2011;21:473–8.</p><p>91. The Brain Trauma Foundation. The American Association of Neurological Surgeons.</p><p>The Joint Section on Neurotrauma and Critical Care. Indications for intracranial</p><p> pressure monitoring. J Neurotrauma 2000;17:479–91.</p><p>92. Austin EH 3rd, Edmonds HL Jr, Auden SM, et al. Benefit of neurophysiologic</p><p> monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg1997;114:707–17. </p><p>93. Akiyama T, Kobayashi K, Nakahori T, et al. Electroencephalographic changes and</p><p> their regional differences during pediatric cardiovascular surgery with hypothermia.</p><p>Brain Dev 2001;23:115–21.</p><p>94. Bowdle TA. Depth of anesthesia monitoring. Anesthesiol Clin 2006;24:793–822. 95. Davidson AJ. Measuring anesthesia in children using the EEG. Paediatr Anaesth</p><p>2006;16:374–87.</p><p>96. Sigl JC, Chamoun NG. An introduction to bispectral analysis for the</p><p> electroencephalogram. J Clin Monit 1994;10:92–404.</p><p>97. Denman WT, Swanson EL, Rosow D, et al. Pediatric evaluation of the bispectral index</p><p>(BIS) monitor and correlation of BIS with end-tidal sevoflurane concentration in</p><p> infants and children. Anesth Analg 2000;90:872–7.</p><p>98. Goldmann L, Shah MV, Hebden MW. Memory of cardiac anaesthesia. Psychological</p><p> sequelae in cardiac patients of intra-operative suggestion and operating room</p><p> conversation. Anaesthesia 1987;42:596–603.</p><p>99. Dowd NP, Cheng DC, Karski JM, et al. Intraoperative awareness in fast-track cardiac</p><p> anesthesia. Anesthesiology 1998;89:1068–73.</p><p>100. Zabala L, Ahmed MI, Denman WT. Bispectral index in a 3-year old undergoing deep</p><p> hypothermia and circulatory arrest. Paediatr Anaesth 2003;13:355–9.</p><p>101. Mychaskiw G, Heath BJ, Eichhorn JH.Falsely elevated bispectral index during deep</p><p> hypothermic circulatory arrest. Br J Anaesth 2000;85:798–800.</p><p>102. Laussen PC, Murphy JA, Zurakowski D, et al. Bispectral index monitoring in children</p><p> undergoing mild hypothermic cardiopulmonary bypass. Paediatr Anaesth</p><p>2001;11:567–73.</p><p>103. Fischer AQ, Truemper EJ. Applications in the neonate and child. In: Bibikian VL,</p><p>Wechsler LR (eds) Transcranial Doppler Ultrasonography, 2nd edn. Oxford: England:</p><p>Butterworth-Heineman, 1993, pp. 355–75.</p><p>104. O'Brien JJ, Butterworth J, Hammon JW, et al. Cerebral emboli during cardiac surgery</p><p> in children. Anesthesiology 1997;87:1063–9. 105. Rodriguez RA, Cornel G, Splinter WM, et al. Cerebral vascular effects of aortovenous</p><p> cannulations for pediatric cardiopulmonary bypass. Ann Thorac Surg 2000;69:1229–</p><p>35.</p><p>106. Sandström K, Nilsson K, Andréasson S, Larsson LE. Jugular bulb temperature</p><p> compared with non-invasive temperatures and cerebral arteriovenous oxygen</p><p> saturation differences during open heart surgery. Paediatr Anaesth 1999;9:123–8.</p><p>107. Yoshitake A, Goto T, Baba T, Shibata Y. Analysis of factors related to jugular venous</p><p> oxygen saturation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth</p><p>1999;13:160–4.</p><p>108. Jobsis FF. Non-invasive, infra-red monitoring of cerebral O2 sufficiency, bloodvolume,</p><p>HbO2-Hb shifts and bloodflow. Acta Neurol Scand 1977;64:452–3.</p><p>109. Brazy JE, Lewis DV, Mitnick MH, Jöbsis vander Vliet FF. Noninvasive monitoring of</p><p> cerebral oxygenation in preterm infants: preliminary observations. Pediatrics</p><p>1985;75:217–25.</p><p>110. Watzman HM, Kurth CD, Montenegro LM, et al. Arterial and venous contributions to</p><p> near-infrared cerebral oximetry. Anesthesiology 2000;93: 947–53.</p><p>111. Yoxall CW, Weindling AM, Dawani NH, Peart I. Measurement of cerebral venous</p><p> oxyhemoglobin saturation in children by near-infrared spectroscopy and partial</p><p> jugular venous occlusion. Pediatr Res 1995;38:319–23.</p><p>112. Rais-Bahrami K, Rivera O, Short BL. Validation of a noninvasive neonatal optical</p><p> cerebral oximeter in veno-venous ECMO patients with a cephalad catheter. J</p><p>Perinatol,2006;26:628–35. 113. Abdul-Khaliq H, Troitzsch D, Schubert S, et al. Cerebral oxygen monitoring during</p><p> neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Thorac</p><p>Cardiovasc Surg 2002;50:77–81.</p><p>114. Daubeney PE, Pilkington SN, Janke E, et al. Cerebral oxygenation measured by near-</p><p> infrared spectroscopy: comparison with jugular bulb oximetry. Ann Thorac Surg</p><p>1996;61:930–4.</p><p>115. Abdul-Khaliq H, Troitzsch D, Berger F, Lange PE. [Regional transcranial oximetry with</p><p> near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation</p><p> in the jugular bulb in infants and children for monitoring cerebral oxygenation].</p><p>Biomed Tech (Berl) 2000;45:328–32.</p><p>116. McQuillen PS, Barkovich AJ, Hamrick SE, et al. Temporal and anatomic risk profile of</p><p> brain injury with neonatal repair of congenital heart defects. Stroke 2007;38:36–41.</p><p>117. Phelps HM, Mahle WT, Kim D, et al. Postoperative cerebral oxygenation in</p><p> hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg</p><p>2009;87:1490–4.</p><p>118. Rivers EP, Coba V, Whitmill M.Whitmill, Early goal-directed therapy in severe sepsis</p><p> and septic shock: a contemporary review of the literature. Curr Opin Anaesthesiol</p><p>2008;21:128–40.</p><p>119. Tweddell JS, Ghanayem NS, Hoffman GM. Pro: NIRS is "standard of care" for</p><p> postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu</p><p>2010;13:44–50. 120. Snookes SH, Gunn JK, Eldridge BJ, et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics 2010;125:e818–27.</p><p>121. Tabbutt S, Gaynor JW, Newburger JW. Neurodevelopmental outcomes after congenital</p><p> heart surgery and strategies for improvement. Curr Opin Cardiol 2012;27:82–91. </p><p>122. Martinez-Biarge M, Jowett VC, Cowan FM, Wusthoff CJ. Neurodevelopmental outcome</p><p> in children with congenital heart disease. Semin Fetal Neonatal Med 2013;18:279–</p><p>85.</p><p>123. Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of</p><p> children after heart surgery with hypothermic circulatory arrest or low-flow</p><p> cardiopulmonary bypass. N Engl J Med. 1995;332:549–55.</p><p>124. Rivkin MJ, Watson CG, Scoppettuolo LA, et al. Adolescents with D-transposition of the</p><p> great arteries repaired in early infancy demonstrate reduced white matter</p><p> microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg</p><p>2013;146:543–9.</p><p>125. Gaynor JW, Gerdes M, Zackai EH, et al. Apolipoprotein E genotype and</p><p> neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg</p><p>2003;126:1736–45.</p><p>126. Fuller S, Nord AS, Gerdes M, et al. Predictors of impaired neurodevelopmental</p><p> outcomes at one year of age after infant cardiac surgery. Eur J Cardiothorac Surg</p><p>2009;36:40–7.</p><p>127. Gaynor JW, Jarvik GP, Gerdes M, et al. Postoperative electroencephalographic seizures</p><p> are associated with deficits in executive function and social behaviors at 4 years of</p><p> age following cardiac surgery in infancy. J Thorac Cardiovasc Surg 2013</p><p>Jul;146(1):132–7. 128. Fuller S, Rajagopalan R, Jarvik GP, et al. J. Maxwell Chamberlain Memorial Paper for</p><p> congenital heart surgery. Deep hypothermic circulatory arrest does not impair</p><p> neurodevelopmental outcome in school-age children after infant cardiac surgery.</p><p>Ann Thorac Surg 2010;90:1985–94.</p><p>129. Goff DA, Luan X, Gerdes M, et al. Younger gestational age is associated with worse</p><p> neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc</p><p>Surg 2012;143:535–42.</p><p>130. Robertson CM, Joffe AR, Sauve RS, et al. Outcomes from an interprovincial program of</p><p> newborn open heart surgery. J Pediatr 2004;144:86–92.</p><p>131. Atallah J, Joffe AR, Robertson CM, et al. Two-year general and neurodevelopmental</p><p> outcome after neonatal complex cardiac surgery in patients with deletion 22q11.2: a</p><p> comparative study. J Thorac Cardiovasc Surg 2007;134:772–9.</p><p>132. Creighton DE, Robertson CM, Sauve RS, et al. Neurocognitive, functional, and health</p><p> outcomes at 5 years of age for children after complex cardiac surgery at 6 weeks of</p><p> age or younger. Pediatrics 2007;120:e478–86.</p><p>133. Guerra GG, Robertson CM, Alton GY, J et al. Neurodevelopmental outcome following</p><p> exposure to sedative and analgesic drugs for complex cardiac surgery in infancy.</p><p>Paediatr Anaesth 2011;21:932–41.</p><p>134. Guerra GG, Robertson CM, Alton GY, et al. Neurotoxicity of sedative and analgesia</p><p> drugs in young infants with congenital heart disease: 4-year follow-up.Paediatr</p><p>Anaesth 2014;24:257–65.</p><p>135. Hoffman GM, Brosig CL, Mussatto KA, et al. Perioperative cerebral oxygen saturation in</p><p> neonates with hypoplastic left heart syndrome and childhood neurodevelopmental</p><p> outcome. J Thorac Cardiovasc Surg 2013;146:1153–64. 136. Andropoulos DB, Easley RB, Brady K, et al. Changing expectations for neurological</p><p> outcomes after the neonatal arterial switch operation. Ann Thorac Surg</p><p>2012;94:1250–5.</p><p>137. Andropoulos DB, Ahmad HB, Haq T, et al. The association between brain injury,</p><p> perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes</p><p> after neonatal cardiac surgery: a retrospective cohort study. Paediatr Anaesth</p><p>2014;24:266–74.</p><p>138. Newburger JW, Sleeper LA, Bellinger DC, et al. Early developmental outcome in</p><p> children with hypoplastic left heart syndrome and related anomalies: the single</p><p> ventricle reconstruction trial. Circulation 2012;125:2081–91.</p><p>139. Gaynor JW, Stopp C, Wypij D, et al. Early neurodevelopmental outcomes after cardiac</p><p> surgery in infancy have not improved: a multi-center retrospective analysis of 1718</p><p> patients. Circulation 2012;126:(21), Supplement: American Heart Association 2012</p><p>Annual Meeting Abstract #12437. (Abstract).</p><p>140. Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell</p><p> proliferation in rat cerebellar slice cultures. Neuroscience 2005;135:47–58.</p><p>141. Baulieu EE, Schumacher. M. Progesterone as a neuroactive neurosteroid, with special</p><p> reference to the effect of progesterone on myelination. Human Reproduction</p><p>2000;15:1–13.</p><p>142. Andropoulos DB, Mizrahi EM, Hrachovy RA, et al. Electroencephalographic seizures</p><p> after neonatal cardiac surgery with high-flow cardiopulmonary bypass. Anesth Analg</p><p>2010;110:1680–5. 143. Fraser CD Jr, Andropoulos DB. Principles of antegrade cerebral perfusion during arch</p><p> reconstruction in newborns/infants. Semin Thorac Cardiovasc Surg Pediatr Card Surg</p><p>Annu 2008:61–8.</p><p>144. Kern FH, Greeley WJ, Ungerleider R. The effects of bypass on the developing brain. Perfusion 1993;8:49–54.</p><p>145. Pigula FA, Nemoto EM, Griffith BP, Siewers RD (2000) Regional low-flow perfusion provides cerebral circulatory support during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg 119:331–9.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages18 Page
-
File Size-