1. Oster ME, Lee KA, Honein MA, Et Al., Temporal Trends in Survival Among Infants With

1. Oster ME, Lee KA, Honein MA, Et Al., Temporal Trends in Survival Among Infants With

<p>References</p><p>1. Oster ME, Lee KA, Honein MA, et al., Temporal trends in survival among infants with</p><p> critical congenital heart defects. Pediatrics 2013;131: e1502–8.</p><p>2. Welke KF, Shen I, Ungerleider RM. Current assessment of mortality rates in</p><p> congenital cardiac surgery. Ann Thorac Surg 2006;82:164–70.</p><p>3. Bellinger DC, Newburger JW, Wypij D, et al. Behaviour at eight years in children with</p><p> surgically corrected transposition: The Boston Circulatory Arrest Trial. Cardiol Young</p><p>2009;19:86–97.</p><p>4. Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in</p><p> children with congenital heart disease: evaluation and management: a scientific</p><p> statement from the American Heart Association. Circulation 2012;126:1143–72.</p><p>5. Bellinger DC, Wypij D, duPlessis AJ, et al. Neurodevelopmental status at eight years</p><p> in children with dextro-transposition of the great arteries: the Boston Circulatory</p><p>Arrest Trial. J Thorac Cardiovasc Surg 2003;126: 1385–96.</p><p>6. van Rijen EH, Utens EM, Roos-Hesselink JW, et al. Psychosocial functioning of the</p><p> adult with congenital heart disease: a 20–33 years follow-up. Eur Heart J</p><p>2003;24:673–83.</p><p>7. Andropoulos DB, Easley RB, Brady K, et al. Neurodevelopmental outcomes after</p><p> regional cerebral perfusion with neuromonitoring for neonatal aortic arch</p><p> reconstruction. Ann Thorac Surg 2013;95: 648–54.</p><p>8. Daliento L, Mapelli D, Volpe B. Measurement of cognitive outcome and quality of life</p><p> in congenital heart disease. Heart 2006;92:569–74. 9. Daliento L, Mapelli D, Russo G, et al. Health related quality of life in adults with</p><p> repaired tetralogy of Fallot: psychosocial and cognitive outcomes. Heart</p><p>2005;91:213–8.</p><p>10. Lane DA, Lip GY, Millane TA. Quality of life in adults with congenital heart disease.</p><p>Heart 2002;88:71–5.</p><p>11. Kovacs AH, Saidi AS, Kuhl EA, et al. Depression and anxiety in adult congenital heart</p><p> disease: predictors and prevalence. Int J Cardiol 2009;137:158–64.</p><p>12. Kovacs AH, Sears SF, Saidi AS. Biopsychosocial experiences of adults with congenital</p><p> heart disease: review of the literature. Am Heart J 2005;150: 193–201.</p><p>13. Kamphuis M, Vogels T, Ottenkamp J, et al. Employment in adults with congenital</p><p> heart disease. Arch Pediatr Adolesc Med 2002;156:1143–8.</p><p>14. Mahle WT, Tavani F, Zimmerman RA, et al. An MRI study of neurological injury</p><p> before and after congenital heart surgery. Circulation 2002;106: I109–14. </p><p>15. Andropoulos DB, Hunter JV, Nelson DP, et al. Brain immaturity is associated with</p><p> brain injury before and after neonatal cardiac surgery with high-flow bypass and</p><p> cerebral oxygenation monitoring. J Thorac Cardiovasc Surg 2010;139:543–56.</p><p>16. Andropoulos DB, Brady K, Easley RB, et al. Erythropoietin neuroprotection in</p><p> neonatal cardiac surgery: a phase I/II safety and efficacy trial. J Thorac Cardiovasc</p><p>Surg 2013;146:124–31.</p><p>17. Galli KK, Zimmerman RA, Jarvik GP, et al. Periventricular leukomalacia is common</p><p> after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2004;127: 692–704.</p><p>18. Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities</p><p> after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc</p><p>Surg 2006;131:190–7. 19. Miller SP, McQuillen PS, Hamrick S, et al. Abnormal brain development in newborns</p><p> with congenital heart disease. N Engl J Med 2007;357:1928–38.</p><p>20. Beca J, Gunn JK, Coleman L, et al. New white matter brain injury after infant heart</p><p> surgery is associated with diagnostic group and the use of circulatory arrest.</p><p>Circulation 2013;127: 971–9.</p><p>21. Block AJ, McQuillen PS, Chau V, et al. Clinically silent preoperative brain injuries do</p><p> not worsen with surgery in neonates with congenital heart disease. J Thorac</p><p>Cardiovasc Surg2010;140: 550–7.</p><p>22. Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict</p><p> neurodevelopmental outcomes in preterm infants. N Engl J Med 2006;355:685–94.</p><p>23. Miller SP, Ferriero DM, Leonard C, et al. Early brain injury in premature newborns</p><p> detected with magnetic resonance imaging is associated with adverse early</p><p> neurodevelopmental outcome. J Pediatr 2005;147:609–16.</p><p>24. Volpe JJ.Neurobiology of periventricular leukomalacia in the premature infant.</p><p>Pediatr Res 2001;50:553–62.</p><p>25. Buser JR, Segovia KN, Dean JM, et al. Timing of appearance of late oligodendrocyte</p><p> progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white</p><p> matter to hypoxia-ischemia. J Cereb Blood Flow Metab 2010;30:1053–65.</p><p>26. Segovia KN, McClure M, Moravec M, et al. Arrested oligodendrocyte lineage</p><p> maturation in chronic perinatal white matter injury. Ann Neurol 2008;63: 520–30.</p><p>27. Greeley WJ, Ungerleider RM. Assessing the effect of cardiopulmonary bypass on the</p><p> brain. Ann Thorac Surg 1991;52:417–9. 28. Greeley WJ, Kern FH, Ungerleider RM, et al. The effect of hypothermic</p><p> cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in</p><p> neonates, infants, and children. J Thorac Cardiovasc Surg 1991;101:783–94.</p><p>29. Greeley WJ, Ungerleider RM, Smith LR, Reves JG.T he effects of deep hypothermic</p><p> cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants</p><p> and children. J Thorac Cardiovasc Surg 1989;97: 737–45.</p><p>30. Greeley WJ, Ungerleider RM, Kern FH, et al. Effects of cardiopulmonary bypass on</p><p> cerebral blood flow in neonates, infants, and children. Circulation 1989;80:I209–15.</p><p>31. Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood</p><p> flow. Trends Neurosci 2009;32:160–9.</p><p>32. Fraser CD 3rd, Brady KM, Rhee CJ, et al. The frequency response of cerebral</p><p> autoregulation. J Appl Physiol 2013;115:52–6.</p><p>33. Taylor RH, Burrows FA, Bissonnette B. Cerebral pressure-flow velocity relationship</p><p> during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg</p><p>1992;74:636–42.</p><p>34. Czosnyka M, Brady K, Reinhard M, et al. Monitoring of cerebrovascular</p><p> autoregulation: facts, myths, and missing links. Neurocrit Care 2009;10:373–86.</p><p>35. Gleason CA, Short BL, Jones MD Jr. Cerebral blood flow and metabolism during and</p><p> after prolonged hypocapnia in newborn lambs. J Pediatr 1989;115:309–14.</p><p>36. Muizelaar JP, van der Poel HG, Li ZC, et al. Pial arteriolar vessel diameter and CO2</p><p> reactivity during prolonged hyperventilation in the rabbit. J Neurosurg 1988;69:923–</p><p>7. 37. Laussen PC. Optimal blood gas management during deep hypothermic paediatric</p><p> cardiac surgery: alpha-stat is easy, but pH-stat may be preferable. Paediatr Anaesth</p><p>2002;12:199–204.</p><p>38. Hiramatsu T, Miura T, Forbess JM, et al. pH strategies and cerebral energetics before</p><p> and after circulatory arrest. J Thorac Cardiovasc Surg 1995;109:948–57.</p><p>39. Hirsch JC, Jacobs ML, Andropoulos D, et al. Protecting the infant brain during cardiac</p><p> surgery: a systematic review. Ann Thorac Surg 2012;94:1365–73.</p><p>40. Sakamoto T, Zurakowski D, Duebener LF, et al. Combination of alpha-stat strategy</p><p> and hemodilution exacerbates neurologic injury in a survival piglet model with deep</p><p> hypothermic circulatory arrest. Ann Thorac Surg 2002;73:180–9.</p><p>41. Wypij D, Jonas RA, Bellinger DC, et al. The effect of hematocrit during hypothermic</p><p> cardiopulmonary bypass in infant heart surgery: results from the combined Boston</p><p> hematocrit trials. J Thorac Cardiovasc Surg 2008;135:355–60. </p><p>42. Kurth CD, Steven JM. Keeping a cool head. Anesthesiology 2000;93: 598–600.</p><p>43. Bissonnette B, Holtby HM, Davis AJ, et al. Cerebral hyperthermia in children after</p><p> cardiopulmonary bypass. Anesthesiology, 2000;93:611–8.</p><p>44. Cottrell SM, Morris KP, Davies P, et al. Early postoperative body temperature and</p><p> developmental outcome after open heart surgery in infants. Ann Thorac Surg</p><p>2004;77: 66–71.</p><p>45. Kern FH, Jonas RA, Mayer JE Jr, et al. Temperature monitoring during CPB in infants:</p><p> does it predict efficient brain cooling? Ann Thorac Surg 1992;54:749–54.</p><p>46. Bellinger DC, Wernovsky G, Rappaport LA, et al. Cognitive development of children</p><p> following early repair of transposition of the great arteries using deep hypothermic</p><p> circulatory arrest. Pediatrics 1991;87:701–7. 47. Wong PC, Barlow CF, Hickey PR, et al. Factors associated with choreoathetosis after</p><p> cardiopulmonary bypass in children with congenital heart disease. Circulation</p><p>1992;86:II118–26.</p><p>48. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative</p><p> neurologic effects of hypothermic circulatory arrest versus low-flow</p><p> cardiopulmonary bypass in infant heart surgery. N Engl J Med 1993;329:1057–64.</p><p>49. de Ferranti S, Gauvreau K, Hickey PR, et al. Intraoperative hyperglycemia during</p><p> infant cardiac surgery is not associated with adverse neurodevelopmental outcomes</p><p> at 1, 4, and 8 years. Anesthesiology2004;100:1345–52.</p><p>50. Ballweg JA, Wernovsky G, Ittenbach RF, et al. Hyperglycemia after infant cardiac</p><p> surgery does not adversely impact neurodevelopmental outcome. Ann Thorac Surg</p><p>2007;84: 2052–8.</p><p>51. Burrows FA, Bissonnette B. Cerebral blood flow velocity patterns during cardiac</p><p> surgery utilizing profound hypothermia with low-flow cardiopulmonary bypass or</p><p> circulatory arrest in neonates and infants. Can J Anaesth 1993;40:298–307.</p><p>52. Hillier SC, Burrows FA, Bissonnette B, Taylor RH. Cerebral hemodynamics in neonates</p><p> and infants undergoing cardiopulmonary bypass and profound hypothermic</p><p> circulatory arrest: assessment by transcranial Doppler sonography. Anesth Analg</p><p>1991;72:723–8.</p><p>53. Astudillo R, van der Linden J, Ekroth R, et al. Absent diastolic cerebral blood flow</p><p> velocity after circulatory arrest but not after low flow in infants. Ann Thorac Surg</p><p>1993;56:515–9. 54. Jonassen AE, Quaegebeur JM, Young WL. Cerebral blood flow velocity in pediatric</p><p> patients is reduced after cardiopulmonary bypass with profound hypothermia. J</p><p>Thorac Cardiovasc Surg 1995;110:934–43.</p><p>55. Tsui SS, Kirshbom PM, Davies MJ, et al. Nitric oxide production affects cerebral</p><p> perfusion and metabolism after deep hypothermic circulatory arrest. Ann Thorac</p><p>Surg 1996;61:1699–707.</p><p>56. Tsui SS, Kirshbom PM, Davies MJ, et al. Thromboxane A2-receptor blockade</p><p> improves cerebral protection for deep hypothermic circulatory arrest. Eur J</p><p>Cardiothorac Surg,1997;12:228–35.</p><p>57. S Skaryak LA, Kirshbom PM, DiBernardo LR, et al. Modified ultrafiltration improves</p><p> cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg</p><p>1995;109:744–51.</p><p>58. K Kirshbom PM, Skaryak LR, DiBernardo LR, et al. pH-stat cooling improves cerebral</p><p> metabolic recovery after circulatory arrest in a piglet model of aortopulmonary</p><p> collaterals. J Thorac Cardiovasc Surg 1996;111:147–55.</p><p>59. Rodriguez RA, Austin EH 3rd, Audenaert SM. Postbypass effects of delayed</p><p> rewarming on cerebral blood flow velocities in infants after total circulatory arrest. J</p><p>Thorac Cardiovasc Surg 1995;110:1686–90.</p><p>60. Fuller S, Rajagopalan R, Jarvik GP et al. J. Maxwell Chamberlain Memorial Paper for</p><p> congenital heart surgery. Deep hypothermic circulatory arrest does not impair</p><p> neurodevelopmental outcome in school-age children after infant cardiac surgery.</p><p>Ann Thorac Surg 2010;90:1985–94. 61. Bellinger DC, Rappaport LA, Wypij D, et al. Patterns of developmental dysfunction</p><p> after surgery during infancy to correct transposition of the great arteries. J Dev</p><p>Behav Pediatr 1997;18:75–83.</p><p>62. McGrath E, Wypij D, Rappaport LA, et al. Prediction of IQ and achievement at age 8</p><p> years from neurodevelopmental status at age 1 year in children with D-transposition</p><p> of the great arteries. Pediatrics, 2004;114:e572–6.</p><p>63. Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great</p><p> arteries corrected with the arterial switch procedure: neuropsychological</p><p> assessment and structural brain imaging. Circulation 2011;124:1361–9. </p><p>64. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after</p><p> hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J</p><p>Thorac Cardiovasc Surg 2003;126:1765–74.</p><p>65. Visconti KJ, Rimmer D, Gauvreau K, et al. Regional low-flow perfusion versus</p><p> circulatory arrest in neonates: one-year neurodevelopmental outcome. Ann Thorac</p><p>Surg 2006;82:2207–11.</p><p>66. Goldberg CS, Bove EL, Devaney EJ, et al. A randomized clinical trial of regional</p><p> cerebral perfusion versus deep hypothermic circulatory arrest: outcomes for infants</p><p> with functional single ventricle. J Thorac Cardiovasc Surg 2007;133: 880–7.</p><p>67. Algra SO, Jansen NJ, van der Tweel I, et al. Neurological injury after neonatal cardiac</p><p> surgery: a randomized, controlled trial of 2 perfusion techniques. Circulation</p><p>2014;129:224–33.</p><p>68. Schwartz AE, Kaplon RJ, Young WL, et al. Cerebral blood flow during low-flow</p><p> hypothermic cardiopulmonary bypass in baboons. Anesthesiology 1994;81:959–64. 69. Schwartz AE, Kaplon RJ, Young WL, et al. Phenylephrine increases cerebral blood</p><p> flow during low-flow hypothermic cardiopulmonary bypass in baboons.</p><p>Anesthesiology, 1996;85:380–4.</p><p>70. Schwartz AE, Sandhu AA, Kaplon RJ, et al. Cerebral blood flow is determined by</p><p> arterial pressure and not cardiopulmonary bypass flow rate. Ann Thorac Surg</p><p>1995;60:165–9.</p><p>71. Harrington DK, Walker AS, Kaukuntla H, et al. Selective antegrade cerebral perfusion</p><p> attenuates brain metabolic deficit in aortic arch surgery: a prospective randomized</p><p> trial. Circulation 2004;110:II231–6.</p><p>72. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD Jr. Novel cerebral physiologic</p><p> monitoring to guide low-flow cerebral perfusion during neonatal aortic arch</p><p> reconstruction. J Thorac Cardiovasc Surg 2003;125:491–9.</p><p>73. DeCampli WM, Schears G, Myung R, et al. Tissue oxygen tension during regional low-</p><p> flow perfusion in neonates. J Thorac Cardiovasc Surg 2003;125:472–80.</p><p>74. Myung RJ, Petko M, Judkins AR, et al. Regional low-flow perfusion improves</p><p> neurologic outcome compared with deep hypothermic circulatory arrest in neonatal</p><p> piglets. J Thorac Cardiovasc Surg. 2004;127:1051–6.</p><p>75. Sasaki T, Tsuda S, Riemer RK, et al. Optimal flow rate for antegrade cerebral</p><p> perfusion. J Thorac Cardiovasc Surg 2010;139:530–76. </p><p>76. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD Jr. low-flow perfusion provides</p><p> comparable blood flow and oxygenation to both cerebral hemispheres during</p><p> neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg 2003;126:1712–7. 77. Liu J, Ji B, Feng Z, et al. Application of modified perfusion technique on one stage</p><p> repair of interrupted aortic arch in infants: a case series and literature review. ASAIO</p><p>J 2007;53:666–9.</p><p>78. Oppido G, Pace Napoleone C, Turci S, et al. Moderately hypothermic</p><p> cardiopulmonary bypass and low-flow antegrade selective cerebral perfusion for</p><p> neonatal aortic arch surgery. Ann Thorac Surg2006;82:2233–9.</p><p>79. Lim C, Kim WH, Kim SC, et al. Aortic arch reconstruction using regional perfusion</p><p> without circulatory arrest. Eur J Cardiothorac Surg 2003;23:149–55.</p><p>80. Langley SM, Chai PJ, Miller SE, et al. Intermittent perfusion protects the brain during</p><p> deep hypothermic circulatory arrest. Ann Thorac Surg 1999;68:4–12.</p><p>81. Hickey E, Karamlou T, You X, et al. Hawley H. Seiler Resident Award paper. The use of a miniaturized circuit and bloodless prime to avoid cerebral no-reflow after neonatal cardiopulmonary bypass. Ann Thorac Surg. 2007;83:895–901.</p><p>82. Greeley WJ, Kern FH, Ungerleider RM, The effect of hypothermic cardiopulmonary</p><p> bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and</p><p> children. J Thorac Cardiovasc Surg. 1991;101:783–94.</p><p>83. Kern FH, Ungerleider RM, Reves JG, et al. Effect of altering pump flow rate on</p><p> cerebral blood flow and metabolism in infants and children. Ann Thorac Surg</p><p>1993;56:1366–72.</p><p>84. Kern FH, Ungerleider RM, Quill TJ, et al. Cerebral blood flow response to changes in</p><p> arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in</p><p> children. J Thorac Cardiovasc Surg 1991;101:618–22. 85. Bacon F. Of the proficience and advancement of learning divine and human. In:</p><p>Bacon F. The works of Francis Bacon (vol. I) Cambridge, UK: Hurd & Houghton, 1878,</p><p> p. 121 (original work published 1605).</p><p>86. Claridge JA, Fabian TC. History and development of evidence-based medicine. World</p><p>J Surg 2005;29:547–53.</p><p>87. Columb MO, Lalkhen AG. Systematic reviews & meta-analyses. Curr Anaesth Crit</p><p>Care, 2005;16:391–394.</p><p>88. American Socieity of Anesthesiologists. Standards for basic anesthetic monitoring.</p><p>July 1, 2011; available from: http://www.asahq.org/For-Members/Standards-</p><p>Guidelines-and-Statements.aspx (accessed March 28, 2014).</p><p>89. Pedersen T, Nicholson A, Hovhannisyan K, et al. Pulse oximetry for perioperative</p><p> monitoring. Cochrane Database Syst Rev. 2014 Mar 17;3:CD002013. [Epub ahead of</p><p> print]</p><p>90. Kasman N, Brady K. Cerebral oximetry for pediatric anesthesia: why do intelligent</p><p> clinicians disagree? Paediatr Anaesth 2011;21:473–8.</p><p>91. The Brain Trauma Foundation. The American Association of Neurological Surgeons.</p><p>The Joint Section on Neurotrauma and Critical Care. Indications for intracranial</p><p> pressure monitoring. J Neurotrauma 2000;17:479–91.</p><p>92. Austin EH 3rd, Edmonds HL Jr, Auden SM, et al. Benefit of neurophysiologic</p><p> monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg1997;114:707–17. </p><p>93. Akiyama T, Kobayashi K, Nakahori T, et al. Electroencephalographic changes and</p><p> their regional differences during pediatric cardiovascular surgery with hypothermia.</p><p>Brain Dev 2001;23:115–21.</p><p>94. Bowdle TA. Depth of anesthesia monitoring. Anesthesiol Clin 2006;24:793–822. 95. Davidson AJ. Measuring anesthesia in children using the EEG. Paediatr Anaesth</p><p>2006;16:374–87.</p><p>96. Sigl JC, Chamoun NG. An introduction to bispectral analysis for the</p><p> electroencephalogram. J Clin Monit 1994;10:92–404.</p><p>97. Denman WT, Swanson EL, Rosow D, et al. Pediatric evaluation of the bispectral index</p><p>(BIS) monitor and correlation of BIS with end-tidal sevoflurane concentration in</p><p> infants and children. Anesth Analg 2000;90:872–7.</p><p>98. Goldmann L, Shah MV, Hebden MW. Memory of cardiac anaesthesia. Psychological</p><p> sequelae in cardiac patients of intra-operative suggestion and operating room</p><p> conversation. Anaesthesia 1987;42:596–603.</p><p>99. Dowd NP, Cheng DC, Karski JM, et al. Intraoperative awareness in fast-track cardiac</p><p> anesthesia. Anesthesiology 1998;89:1068–73.</p><p>100. Zabala L, Ahmed MI, Denman WT. Bispectral index in a 3-year old undergoing deep</p><p> hypothermia and circulatory arrest. Paediatr Anaesth 2003;13:355–9.</p><p>101. Mychaskiw G, Heath BJ, Eichhorn JH.Falsely elevated bispectral index during deep</p><p> hypothermic circulatory arrest. Br J Anaesth 2000;85:798–800.</p><p>102. Laussen PC, Murphy JA, Zurakowski D, et al. Bispectral index monitoring in children</p><p> undergoing mild hypothermic cardiopulmonary bypass. Paediatr Anaesth</p><p>2001;11:567–73.</p><p>103. Fischer AQ, Truemper EJ. Applications in the neonate and child. In: Bibikian VL,</p><p>Wechsler LR (eds) Transcranial Doppler Ultrasonography, 2nd edn. Oxford: England:</p><p>Butterworth-Heineman, 1993, pp. 355–75.</p><p>104. O'Brien JJ, Butterworth J, Hammon JW, et al. Cerebral emboli during cardiac surgery</p><p> in children. Anesthesiology 1997;87:1063–9. 105. Rodriguez RA, Cornel G, Splinter WM, et al. Cerebral vascular effects of aortovenous</p><p> cannulations for pediatric cardiopulmonary bypass. Ann Thorac Surg 2000;69:1229–</p><p>35.</p><p>106. Sandström K, Nilsson K, Andréasson S, Larsson LE. Jugular bulb temperature</p><p> compared with non-invasive temperatures and cerebral arteriovenous oxygen</p><p> saturation differences during open heart surgery. Paediatr Anaesth 1999;9:123–8.</p><p>107. Yoshitake A, Goto T, Baba T, Shibata Y. Analysis of factors related to jugular venous</p><p> oxygen saturation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth</p><p>1999;13:160–4.</p><p>108. Jobsis FF. Non-invasive, infra-red monitoring of cerebral O2 sufficiency, bloodvolume,</p><p>HbO2-Hb shifts and bloodflow. Acta Neurol Scand 1977;64:452–3.</p><p>109. Brazy JE, Lewis DV, Mitnick MH, Jöbsis vander Vliet FF. Noninvasive monitoring of</p><p> cerebral oxygenation in preterm infants: preliminary observations. Pediatrics</p><p>1985;75:217–25.</p><p>110. Watzman HM, Kurth CD, Montenegro LM, et al. Arterial and venous contributions to</p><p> near-infrared cerebral oximetry. Anesthesiology 2000;93: 947–53.</p><p>111. Yoxall CW, Weindling AM, Dawani NH, Peart I. Measurement of cerebral venous</p><p> oxyhemoglobin saturation in children by near-infrared spectroscopy and partial</p><p> jugular venous occlusion. Pediatr Res 1995;38:319–23.</p><p>112. Rais-Bahrami K, Rivera O, Short BL. Validation of a noninvasive neonatal optical</p><p> cerebral oximeter in veno-venous ECMO patients with a cephalad catheter. J</p><p>Perinatol,2006;26:628–35. 113. Abdul-Khaliq H, Troitzsch D, Schubert S, et al. Cerebral oxygen monitoring during</p><p> neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Thorac</p><p>Cardiovasc Surg 2002;50:77–81.</p><p>114. Daubeney PE, Pilkington SN, Janke E, et al. Cerebral oxygenation measured by near-</p><p> infrared spectroscopy: comparison with jugular bulb oximetry. Ann Thorac Surg</p><p>1996;61:930–4.</p><p>115. Abdul-Khaliq H, Troitzsch D, Berger F, Lange PE. [Regional transcranial oximetry with</p><p> near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation</p><p> in the jugular bulb in infants and children for monitoring cerebral oxygenation].</p><p>Biomed Tech (Berl) 2000;45:328–32.</p><p>116. McQuillen PS, Barkovich AJ, Hamrick SE, et al. Temporal and anatomic risk profile of</p><p> brain injury with neonatal repair of congenital heart defects. Stroke 2007;38:36–41.</p><p>117. Phelps HM, Mahle WT, Kim D, et al. Postoperative cerebral oxygenation in</p><p> hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg</p><p>2009;87:1490–4.</p><p>118. Rivers EP, Coba V, Whitmill M.Whitmill, Early goal-directed therapy in severe sepsis</p><p> and septic shock: a contemporary review of the literature. Curr Opin Anaesthesiol</p><p>2008;21:128–40.</p><p>119. Tweddell JS, Ghanayem NS, Hoffman GM. Pro: NIRS is "standard of care" for</p><p> postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu</p><p>2010;13:44–50. 120. Snookes SH, Gunn JK, Eldridge BJ, et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics 2010;125:e818–27.</p><p>121. Tabbutt S, Gaynor JW, Newburger JW. Neurodevelopmental outcomes after congenital</p><p> heart surgery and strategies for improvement. Curr Opin Cardiol 2012;27:82–91. </p><p>122. Martinez-Biarge M, Jowett VC, Cowan FM, Wusthoff CJ. Neurodevelopmental outcome</p><p> in children with congenital heart disease. Semin Fetal Neonatal Med 2013;18:279–</p><p>85.</p><p>123. Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of</p><p> children after heart surgery with hypothermic circulatory arrest or low-flow</p><p> cardiopulmonary bypass. N Engl J Med. 1995;332:549–55.</p><p>124. Rivkin MJ, Watson CG, Scoppettuolo LA, et al. Adolescents with D-transposition of the</p><p> great arteries repaired in early infancy demonstrate reduced white matter</p><p> microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg</p><p>2013;146:543–9.</p><p>125. Gaynor JW, Gerdes M, Zackai EH, et al. Apolipoprotein E genotype and</p><p> neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg</p><p>2003;126:1736–45.</p><p>126. Fuller S, Nord AS, Gerdes M, et al. Predictors of impaired neurodevelopmental</p><p> outcomes at one year of age after infant cardiac surgery. Eur J Cardiothorac Surg</p><p>2009;36:40–7.</p><p>127. Gaynor JW, Jarvik GP, Gerdes M, et al. Postoperative electroencephalographic seizures</p><p> are associated with deficits in executive function and social behaviors at 4 years of</p><p> age following cardiac surgery in infancy. J Thorac Cardiovasc Surg 2013</p><p>Jul;146(1):132–7. 128. Fuller S, Rajagopalan R, Jarvik GP, et al. J. Maxwell Chamberlain Memorial Paper for</p><p> congenital heart surgery. Deep hypothermic circulatory arrest does not impair</p><p> neurodevelopmental outcome in school-age children after infant cardiac surgery.</p><p>Ann Thorac Surg 2010;90:1985–94.</p><p>129. Goff DA, Luan X, Gerdes M, et al. Younger gestational age is associated with worse</p><p> neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc</p><p>Surg 2012;143:535–42.</p><p>130. Robertson CM, Joffe AR, Sauve RS, et al. Outcomes from an interprovincial program of</p><p> newborn open heart surgery. J Pediatr 2004;144:86–92.</p><p>131. Atallah J, Joffe AR, Robertson CM, et al. Two-year general and neurodevelopmental</p><p> outcome after neonatal complex cardiac surgery in patients with deletion 22q11.2: a</p><p> comparative study. J Thorac Cardiovasc Surg 2007;134:772–9.</p><p>132. Creighton DE, Robertson CM, Sauve RS, et al. Neurocognitive, functional, and health</p><p> outcomes at 5 years of age for children after complex cardiac surgery at 6 weeks of</p><p> age or younger. Pediatrics 2007;120:e478–86.</p><p>133. Guerra GG, Robertson CM, Alton GY, J et al. Neurodevelopmental outcome following</p><p> exposure to sedative and analgesic drugs for complex cardiac surgery in infancy.</p><p>Paediatr Anaesth 2011;21:932–41.</p><p>134. Guerra GG, Robertson CM, Alton GY, et al. Neurotoxicity of sedative and analgesia</p><p> drugs in young infants with congenital heart disease: 4-year follow-up.Paediatr</p><p>Anaesth 2014;24:257–65.</p><p>135. Hoffman GM, Brosig CL, Mussatto KA, et al. Perioperative cerebral oxygen saturation in</p><p> neonates with hypoplastic left heart syndrome and childhood neurodevelopmental</p><p> outcome. J Thorac Cardiovasc Surg 2013;146:1153–64. 136. Andropoulos DB, Easley RB, Brady K, et al. Changing expectations for neurological</p><p> outcomes after the neonatal arterial switch operation. Ann Thorac Surg</p><p>2012;94:1250–5.</p><p>137. Andropoulos DB, Ahmad HB, Haq T, et al. The association between brain injury,</p><p> perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes</p><p> after neonatal cardiac surgery: a retrospective cohort study. Paediatr Anaesth</p><p>2014;24:266–74.</p><p>138. Newburger JW, Sleeper LA, Bellinger DC, et al. Early developmental outcome in</p><p> children with hypoplastic left heart syndrome and related anomalies: the single</p><p> ventricle reconstruction trial. Circulation 2012;125:2081–91.</p><p>139. Gaynor JW, Stopp C, Wypij D, et al. Early neurodevelopmental outcomes after cardiac</p><p> surgery in infancy have not improved: a multi-center retrospective analysis of 1718</p><p> patients. Circulation 2012;126:(21), Supplement: American Heart Association 2012</p><p>Annual Meeting Abstract #12437. (Abstract).</p><p>140. Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell</p><p> proliferation in rat cerebellar slice cultures. Neuroscience 2005;135:47–58.</p><p>141. Baulieu EE, Schumacher. M. Progesterone as a neuroactive neurosteroid, with special</p><p> reference to the effect of progesterone on myelination. Human Reproduction</p><p>2000;15:1–13.</p><p>142. Andropoulos DB, Mizrahi EM, Hrachovy RA, et al. Electroencephalographic seizures</p><p> after neonatal cardiac surgery with high-flow cardiopulmonary bypass. Anesth Analg</p><p>2010;110:1680–5. 143. Fraser CD Jr, Andropoulos DB. Principles of antegrade cerebral perfusion during arch</p><p> reconstruction in newborns/infants. Semin Thorac Cardiovasc Surg Pediatr Card Surg</p><p>Annu 2008:61–8.</p><p>144. Kern FH, Greeley WJ, Ungerleider R. The effects of bypass on the developing brain. Perfusion 1993;8:49–54.</p><p>145. Pigula FA, Nemoto EM, Griffith BP, Siewers RD (2000) Regional low-flow perfusion provides cerebral circulatory support during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg 119:331–9.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us