<p>Chapter 04.08 Gauss-Seidel – More Examples Civil Engineering</p><p>Example 1 To find the maximum stresses in a compound cylinder, the following four simultaneous linear equations need to be solved. 7 5 3 4.2857 10 9.2307 10 0 0 c1 7.887 10 7 5 7 5 4.2857 10 5.4619 10 4.2857 10 5.4619 10 c 0 2 6.5 0.15384 6.5 0.15384 c3 0.007 7 5 0 0 4.2857 10 3.6057 10 c4 0 In the compound cylinder, the inner cylinder has an internal radius of a 5", and an outer radius c 6.5" , while the outer cylinder has an internal radius of c 6.5" and an outer radius of b 8" . Given E 30 106 psi, 0.3, and that the hoop stress in the outer cylinder is given by E 1 2 c3 1 c4 2 , 1 r find the stress on the inside radius of the outer cylinder.</p><p>Find the values of c1 , c2 , c3 and c4 using the Gauss-Seidel Method. Use</p><p>c1 0.005 c 0.001 2 c3 0.0002 c 0.03 4 as the initial guess and conduct two iterations. Solution Rewriting the equations gives 7.887 103 9.2307 105 c 0c 0c c 2 3 4 1 4.2857 107 0 4.2857 107 c 4.2857 107 c 5.4619105 c c 1 3 4 2 5.4619105 0.007 6.5c 0.15384c 0.15384c c 1 2 4 3 6.5</p><p>04.08.1 04.08.2 Chapter 04.08</p><p>0 0c 0c 4.2857 107 c c 1 2 3 4 3.6057 105 Iteration #1 Given the initial guess of the solution vector as</p><p>c1 0.005 c 0.001 2 c3 0.0002 c4 0.03 we get 7.887 103 9.2307 105 0.001 c 1 4.2857 107 1.6249104 0 4.2857 107 1.6249104 4.2857 107 0.0002 5.4619105 0.03 c 2 5.4619105 1.5569103 0.007 6.5 1.6249104 0.153841.5569103 0.15384 0.03 c 3 6.5 2.4125104 0 4.2857 107 2.4125104 c 4 3.6057 105 2.8675102</p><p>The absolute relative approximate error for each ci then is 1.6249104 0.005 100 a 1 1.6249104 2977.1% 1.5569103 0.001 100 a 2 1.5569103 35.770% 2.4125104 0.002 100 a 3 2.4125104 17.098% 2.8675102 0.03 100 a 4 2.8675102 4.6223% At the end of the first iteration, the estimate of the solution vector is Gauss-Seidel Method – More Examples: Civil Engineering 04.08.3</p><p>4 c1 1.624910 3 c 1.556910 2 4 c3 2.412510 2 c4 2.867510 and the maximum absolute relative approximate error is 2977.1% . Iteration #2 The estimate of the solution vector at the end of Iteration #1 is 4 c1 1.624910 3 c 1.556910 2 4 c3 2.412510 2 c4 2.867510 Now we get 7.887 103 9.2307 105 1.5569 103 c 1 4.2857 107 1.5050104 0 4.2857 107 1.5050104 4.2857 107 2.4125104 5.4619105 2.8675102 c 2 5.4619105 3 2.063910 0.007 6.5 1.5050104 0.15384 2.0639103 0.15384 2.8675102 c 3 6.5 4 1.989210 0 4.2857 107 1.9892104 c4 5 3.6057 10 2 2.364310 The absolute relative approximate error for each ci then is 1.5050104 1.6249104 100 a 1 1.5050104 7.9702% 2.0639103 1.5569103 100 a 2 2.0639103 175.44% 1.9892104 2.4125104 100 a 3 1.9892104 21.281% 04.08.4 Chapter 04.08</p><p>2.3643102 2.8675102 100 a 4 2.3643102 21.281% At the end of the second iteration, the estimate of the solution vector is 4 c1 1.505010 3 c 2.063910 2 4 c3 1.989210 2 c4 2.364310 and the maximum absolute relative approximate error is 175.44% . At the end of the second iteration the stress on the inside radius of the outer cylinder is calculated E 1 2 c3 1 c4 2 1 r 30106 1 0.3 1.9892104 1 0.3 2.3643102 2 2 1 0.3 6.5 21439psi Conducting more iterations gives the following values for the solution vector and the corresponding absolute relative approximate errors. % % Iteration c1 a 1 c2 a 2 4 3 1 1.624910 2977.1 1.556910 35.770 4 3 2 1.505010 7.9702 2.063910 175.44 3 2.284810 4 34.132 9.893110 3 79.138 4 3.9711104 42.464 2.8949102 65.826 5 8.0755104 50.825 6.9799102 58.524 6 3 52.142 1 58.978 1.687410 1.701510</p><p> c % % Iteration 3 a 3 c4 a 4 4 2 1 2.412510 17.098 2.867510 4.6223 4 2 2 1.989210 21.281 2.364310 21.281 3 5.471610 5 263.55 6.5035103 263.55 4 1.5927 104 134.35 1.8931102 134.35 5 9.3454104 82.957 1.1108101 82.957 6 3 53.472 1 53.472 2.008510 2.387310 After six iterations, the absolute relative approximate errors are not decreasing. In fact, conducting more iterations reveals that the absolute relative approximate error does not approach zero or converge to any other number. Gauss-Seidel Method – More Examples: Civil Engineering 04.08.5</p><p>SIMULTANEOUS LINEAR EQUATIONS Topic Gauss-Seidel Method – More Examples Summary Examples of the Gauss-Seidel method Major Civil Engineering Authors Autar Kaw Date 2018年4月9日 Web Site http://numericalmethods.eng.usf.edu</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages5 Page
-
File Size-