<p>Precalculus Final Exam Review: NON-CALCULATOR section</p><p>1 1 cos2 x 1.) Simplify: 2.) Simplify: csc sin 1 csc2 x</p><p>3.) Find all solutions in the interval [0,2 ) : csc x + 2 = 0</p><p>4.) Find all solutions in the interval [0,2 ) : 2cos3 x cos 2 x 0</p><p>5.) Evaluate: cos 165° (Hint: 165° = 210° - 45° ) 6.) Simplify: cos 6x cos 3x – sin 6x sin 3x </p><p>12 3 4 7.) Given sin u , u and cscv , v , find cos (u + v) 13 2 7 2</p><p>4 8.) Given cos and sin 0 , find tan 2 5</p><p>9.) Find an equation of a line that passes through (5, 1) and is perpendicular to the line 4x – 2y = 5</p><p> x 3, x 3 10.) Given f (x) find f(-5) 2x 8, x 3</p><p>11.) Find the vertex of the parabola: y = x2 – 2x + 8</p><p>12.) Find the x- and y-intercepts of: y = 2x2 – 5x – 3</p><p>1 13.) Find the vertical asymptote(s): f (x) (x 2)(2x 3)</p><p>2x 2 9 14.) Find the horizontal asymptote(s): f (x) 3x 2 1</p><p>15.) The domain of f (x) 5 e x</p><p>16.) Convert from rectangular to polar coordinates: x2 + y2 + 3x – 2y = 0</p><p>1 17.) Evaluate: 3log 18.) Solve for x: 27x = 243 b b</p><p>19.) Find a formula for the nth term of the sequence. (Assume n begins with 1) 2 3 4 5 , , , ,... 1 4 9 16</p><p>20.) Find an for the arithmetic sequence with a1 = 3, d = -7, and n = 54 21.) Find the sum of the infinite geometric sequence: 2, 1, 0.5, 0.25, …</p><p>22.) Eliminate the parameter and find the corresponding rectangular coordinates. x 4cos , y 3sin</p><p> 5 23.) Write the point 3, in polar coordinates using three different representations. 3 </p><p> 7 24.) Convert from polar to rectangular coordinates: 2, 6 </p><p>25.) Convert from polar to rectangular coordinates: r cos 2 2sin</p><p>3, x 2 3x 2 5 f (x) lim f (x) lim 26.) If find x2 27.) Find x 2 5, x 2 2x 3x 1</p><p> 2x 2 3x 2 lim 2 28.) Find x2 29.) Find lim x4 x 2 x 2 </p><p> 4 3 30.) Find an angle coterminal to 31.) Find the angle supplementary to 3 7</p><p>6 32.) Convert to degrees: 33.) Convert to radians: 40° 5</p><p> 7 2 3 34.) Give the exact value: csc 35.) Find if sec 6 3</p><p>2 36.) A right triangle has an acute angle , such that tan . Find sin 3</p><p> 37.) Given u 2i 3 j and v 4i 2 j , find u 2v and calculate its magnitude and direction</p><p>38.) Find the quadrant in which lies if tan 0 and cos 0</p><p> 39.) Determine the period of f(x) if f (x) 2cos3x 2 </p><p>40.) Determine the amplitude of f(x) if f (x) 2sin4x </p><p> 41.) Describe the horizontal shift to the graph of g(x), given g(x) 3sin2x 4 </p><p>42.) Determine the period of the function: f(x) = 4 tan(5x) 3 43.) Evaluate: sinarctan 5 (x h)2 3(x h) (x 2 3x) 1 1 44.) Find lim 45.) Simplify: h0 h 1 sin x 1 sin x</p><p>46.) Solve for x: log(5 – x) – log(2x – 6) = 1</p><p>(x 3) 2 (y 1) 2 47.) Find the vertices of the hyperbola: 4 16</p><p>48.) Find the center of the ellipse: 4x2 + 5y2 + 16x – 10y + 1 = 0</p><p>49.) Given u 2i 3 j and w i j and v 3u 5w, find the component form of v .</p><p>50.) A vector has a magnitude of 3 and a direction of 240 °. Find the vector.</p><p>51.) A vector w has initial point (4, 6) and terminal point (2, -5). Find the component form of the vector.</p><p>52.) Determine the magnitude of v : v 3,6</p><p> 3 53.) Solve x 5 10 54.) Plot the point whose polar coordinates are 4, 4 </p><p> x 2 55.) Graph the rational function f (x) x 3</p><p>56.) Graph f(x) = 4 + log x 57.) Graph f(x) = log (x + 4)</p><p>58.) Sketch the graph: f(x) = 2 + sec 4x 60.) Sketch the graph: f(x) = -3 sin (2x)</p><p> 61.) Graph and write the equation for the vertical asymptotes of y tan2x 4 </p><p>(x 1) 2 (y 3) 62.) Sketch a graph of f(x) = 3 – ex 63.) Sketch a graph of 1 9 4 Precalculus Review: Calculator Active</p><p>1.) Given a triangle with a = 42, b = 10, and A = 94°, find C.</p><p>2.) Find the number of years required for a $3500 investment to triple at a 7% interest rate compounded continuously.</p><p>3.) The sun is 23° above the horizon. Find the length of a shadow cast by a flagpole 17 feet tall.</p><p>4.) Find the direction of v if v 3,6 .</p><p>5.) A triangle has b = 20, c = 28 and C = 50°. Find the area of the triangle.</p><p>6.) A triangle has a = 50.2 cm, b = 29.7 cm, and c = 63 cm. Find the area.</p><p>7.) Ship A is 60 miles from a lighthouse on shore. Its bearing from the lighthouse is S 17° W. Ship B is 74 miles from the same lighthouse with a bearing of S 48° W. Find the number of miles between the ships.</p><p>8.) Solve 2x2 – 3x – 7 < 0</p><p>9.) Find all exact, real solutions of 4x3 – 38x – 6 = 0.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages4 Page
-
File Size-