Precalculus Final Exam Review

Precalculus Final Exam Review

<p>Precalculus Final Exam Review: NON-CALCULATOR section</p><p>1 1 cos2 x 1.) Simplify:  2.) Simplify: csc sin 1 csc2 x</p><p>3.) Find all solutions in the interval [0,2 ) : csc x + 2 = 0</p><p>4.) Find all solutions in the interval [0,2 ) : 2cos3 x  cos 2 x  0</p><p>5.) Evaluate: cos 165° (Hint: 165° = 210° - 45° ) 6.) Simplify: cos 6x cos 3x – sin 6x sin 3x </p><p>12 3 4  7.) Given sin u  ,   u  and cscv  ,  v   , find cos (u + v) 13 2 7 2</p><p>4 8.) Given cos  and sin  0 , find tan 2 5</p><p>9.) Find an equation of a line that passes through (5, 1) and is perpendicular to the line 4x – 2y = 5</p><p> x  3, x  3 10.) Given f (x)   find f(-5)  2x  8, x  3</p><p>11.) Find the vertex of the parabola: y = x2 – 2x + 8</p><p>12.) Find the x- and y-intercepts of: y = 2x2 – 5x – 3</p><p>1 13.) Find the vertical asymptote(s): f (x)  (x  2)(2x  3)</p><p>2x 2  9 14.) Find the horizontal asymptote(s): f (x)  3x 2 1</p><p>15.) The domain of f (x)  5  e x</p><p>16.) Convert from rectangular to polar coordinates: x2 + y2 + 3x – 2y = 0</p><p>1 17.) Evaluate: 3log 18.) Solve for x: 27x = 243 b b</p><p>19.) Find a formula for the nth term of the sequence. (Assume n begins with 1) 2 3 4 5 , , , ,... 1 4 9 16</p><p>20.) Find an for the arithmetic sequence with a1 = 3, d = -7, and n = 54 21.) Find the sum of the infinite geometric sequence: 2, 1, 0.5, 0.25, …</p><p>22.) Eliminate the parameter and find the corresponding rectangular coordinates. x  4cos , y  3sin</p><p> 5  23.) Write the point 3,  in polar coordinates using three different representations.  3 </p><p> 7  24.) Convert from polar to rectangular coordinates:  2,   6 </p><p>25.) Convert from polar to rectangular coordinates: r cos 2   2sin</p><p>3, x  2   3x 2  5  f (x)  lim f (x) lim   26.) If  find x2 27.) Find x  2  5, x  2  2x  3x 1</p><p> 2x 2  3x  2  lim   2 28.) Find x2   29.) Find lim x4 x  2  x  2 </p><p> 4 3 30.) Find an angle coterminal to   31.) Find the angle supplementary to   3 7</p><p>6 32.) Convert to degrees: 33.) Convert to radians: 40° 5</p><p>  7  2 3 34.) Give the exact value: csc  35.) Find  if sec   6  3</p><p>2 36.) A right triangle has an acute angle  , such that tan  . Find sin 3</p><p>  37.) Given u  2i  3 j and v  4i  2 j , find u  2v and calculate its magnitude and direction</p><p>38.) Find the quadrant in which  lies if tan  0 and cos  0</p><p>   39.) Determine the period of f(x) if f (x)  2cos3x    2 </p><p>40.) Determine the amplitude of f(x) if f (x)  2sin4x   </p><p>   41.) Describe the horizontal shift to the graph of g(x), given g(x)  3sin2x    4 </p><p>42.) Determine the period of the function: f(x) = 4 tan(5x)    3  43.) Evaluate: sinarctan    5  (x  h)2  3(x  h) (x 2  3x) 1 1 44.) Find lim 45.) Simplify:  h0 h 1 sin x 1 sin x</p><p>46.) Solve for x: log(5 – x) – log(2x – 6) = 1</p><p>(x  3) 2 (y 1) 2 47.) Find the vertices of the hyperbola:  4 16</p><p>48.) Find the center of the ellipse: 4x2 + 5y2 + 16x – 10y + 1 = 0</p><p>49.) Given u  2i  3 j and w  i  j and v  3u  5w, find the component form of v .</p><p>50.) A vector has a magnitude of 3 and a direction of   240 °. Find the vector.</p><p>51.) A vector w has initial point (4, 6) and terminal point (2, -5). Find the component form of the vector.</p><p>52.) Determine the magnitude of v : v   3,6</p><p> 3  53.) Solve x  5  10 54.) Plot the point whose polar coordinates are  4,   4 </p><p> x 2 55.) Graph the rational function f (x)  x  3</p><p>56.) Graph f(x) = 4 + log x 57.) Graph f(x) = log (x + 4)</p><p>58.) Sketch the graph: f(x) = 2 + sec 4x 60.) Sketch the graph: f(x) = -3 sin (2x)</p><p>   61.) Graph and write the equation for the vertical asymptotes of y  tan2x    4 </p><p>(x 1) 2 (y  3) 62.) Sketch a graph of f(x) = 3 – ex 63.) Sketch a graph of   1 9 4 Precalculus Review: Calculator Active</p><p>1.) Given a triangle with a = 42, b = 10, and A = 94°, find C.</p><p>2.) Find the number of years required for a $3500 investment to triple at a 7% interest rate compounded continuously.</p><p>3.) The sun is 23° above the horizon. Find the length of a shadow cast by a flagpole 17 feet tall.</p><p>4.) Find the direction of v if v   3,6 .</p><p>5.) A triangle has b = 20, c = 28 and C = 50°. Find the area of the triangle.</p><p>6.) A triangle has a = 50.2 cm, b = 29.7 cm, and c = 63 cm. Find the area.</p><p>7.) Ship A is 60 miles from a lighthouse on shore. Its bearing from the lighthouse is S 17° W. Ship B is 74 miles from the same lighthouse with a bearing of S 48° W. Find the number of miles between the ships.</p><p>8.) Solve 2x2 – 3x – 7 < 0</p><p>9.) Find all exact, real solutions of 4x3 – 38x – 6 = 0.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us