Web Appendix: MPLUS Output for the Data in Table 3

Web Appendix: MPLUS Output for the Data in Table 3

<p> Modeling Multiple Response 1</p><p>Web Appendix: MPLUS output for the data in Table 3</p><p>Mplus VERSION 6.1 MUTHEN & MUTHEN INPUT </p><p>INSTRUCTIONS</p><p>TITLE: ML estimation of Likert model</p><p>DATA: FILE IS mplusdt.out;</p><p>VARIABLE: NAMES ARE x11 x12 x21 x22 x31 x32 age edu; CATEGORICAL ARE x11 x12 x21 x22 x31 x32; USEVARIABLES ARE x11 x12 x21 x22 x31 x32;</p><p>MISSING ARE ALL (-9); </p><p>ANALYSIS: ESTIMATOR = MLR; LINK = PROBIT; INTEGRATION = GAUSSHERMITE(15); MODEL:</p><p> f1 BY x11 @ 1 x12 @ 1; f2 BY x21 @ 1 x22 @ 1; f3 BY x31 @ 1 x32 @ 1;</p><p>OUTPUT: TECH1 TECH8; PLOT: TYPE = PLOT3;</p><p>INPUT READING TERMINATED NORMALLY ML estimation of Likert model</p><p>SUMMARY OF ANALYSIS</p><p>Number of groups 1 Number of observations 1287</p><p>Number of dependent variables 6 Number of independent variables 0 Number of continuous latent variables 3</p><p>Observed dependent variables</p><p>Binary and ordered categorical (ordinal) X11 X12 X21 X22 X31 X32</p><p>Continuous latent variables F1 F2 F3</p><p>Estimator MLR Information matrix OBSERVED Optimization Specifications for the Quasi-Newton Algorithm for Continuous Outcomes Maximum number of iterations 100 Convergence criterion 0.100D-05 Optimization Specifications for the EM Algorithm Maximum number of iterations 500 Convergence criteria Loglikelihood change 0.100D-02 Relative loglikelihood change 0.100D-05 Derivative 0.100D-02 Optimization Specifications for the M step of the EM Algorithm for Categorical Latent variables Number of M step iterations 1 M step convergence criterion 0.100D-02 Basis for M step termination ITERATION Optimization Specifications for the M step of the EM Algorithm for Censored, Binary or Ordered Categorical (Ordinal), Unordered Categorical (Nominal) and Count Outcomes</p><p>Number of M step iterations 1 M step convergence criterion 0.100D-02 Basis for M step termination ITERATION Maximum value for logit thresholds 10 Minimum value for logit thresholds -10 Modeling Multiple Response 3</p><p>Minimum expected cell size for chi-square 0.100D-01 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Optimization algorithm EMA Integration Specifications Type GAUSSHERMITE Number of integration points 15 Dimensions of numerical integration 3 Adaptive quadrature ON Link PROBIT Cholesky ON</p><p>Input data file(s) mplusdt.out Input data format FREE</p><p>SUMMARY OF DATA</p><p>Number of missing data patterns 4</p><p>COVARIANCE COVERAGE OF DATA</p><p>Minimum covariance coverage value 0.100</p><p>PROPORTION OF DATA PRESENT FOR U </p><p>Covariance Coverage X11 X12 X21 X22 X31</p><p>X11 1.000 X12 1.000 1.000 X21 0.709 0.709 0.709 X22 0.690 0.690 0.600 0.690 X31 0.709 0.709 0.709 0.600 0.709 X32 0.690 0.690 0.600 0.690 0.600 Covariance Coverage X32</p><p>X32 0.690</p><p>UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES</p><p>X11 Category 1 0.291 375.000 Category 2 0.709 912.000 X12 Category 1 0.310 399.000 Category 2 0.690 888.000 X21 Category 1 0.708 646.000 Category 2 0.292 266.000 X22 Category 1 0.753 669.000 Category 2 0.247 219.000 X31 Category 1 0.459 419.000 Category 2 0.541 493.000 X32 Category 1 0.485 431.000 Category 2 0.515 457.000</p><p>THE MODEL ESTIMATION TERMINATED NORMALLY</p><p>MODEL FIT INFORMATION</p><p>Number of Free Parameters 12</p><p>Loglikelihood</p><p>H0 Value -3321.906 H0 Scaling Correction Factor 1.005 for MLR</p><p>Information Criteria Modeling Multiple Response 5</p><p>Akaike (AIC) 6667.813 Bayesian (BIC) 6729.734 Sample-Size Adjusted BIC 6691.616 (n* = (n + 2) / 24)</p><p>Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes</p><p>Pearson Chi-Square</p><p>Value 0.000 Degrees of Freedom 51 P-Value 1.0000</p><p>Likelihood Ratio Chi-Square</p><p>Value 1.788 Degrees of Freedom 51 P-Value 1.0000</p><p>Chi-Square Test for MCAR under the Unrestricted Latent Class Indicator Model</p><p>Pearson Chi-Square</p><p>Value 1782.203 Degrees of Freedom 33 P-Value 0.0000</p><p>Likelihood Ratio Chi-Square</p><p>Value 1935.586 Degrees of Freedom 33 P-Value 0.0000 MODEL RESULTS</p><p>Two-Tailed Estimate S.E. Est./S.E. P-Value</p><p>F1 BY X11 1.000 0.000 999.000 999.000 X12 1.000 0.000 999.000 999.000</p><p>F2 BY X21 1.000 0.000 999.000 999.000 X22 1.000 0.000 999.000 999.000</p><p>F3 BY X31 1.000 0.000 999.000 999.000 X32 1.000 0.000 999.000 999.000</p><p>F2 WITH F1 -1.948 0.424 -4.599 0.000</p><p>F3 WITH F1 -3.393 0.470 -7.213 0.000 F2 2.229 0.479 4.656 0.000</p><p>Thresholds X11$1 -1.103 0.091 -12.085 0.000 X12$1 -0.996 0.088 -11.283 0.000 X21$1 0.926 0.149 6.233 0.000 X22$1 1.174 0.157 7.462 0.000 X31$1 -1.053 0.148 -7.118 0.000 X32$1 -0.934 0.146 -6.410 0.000</p><p>Variances</p><p>F1 3.032 0.426 7.119 0.000 F2 5.631 1.114 5.054 0.000 F3 7.402 1.305 5.672 0.000</p><p>QUALITY OF NUMERICAL RESULTS</p><p>Condition Number for the Information Matrix 0.281E-01 (ratio of smallest to largest eigenvalue) Modeling Multiple Response 7</p><p>TECHNICAL 1 OUTPUT</p><p>PARAMETER SPECIFICATION</p><p>TAU X11$1 X12$1 X21$1 X22$1 X31$1</p><p>1 7 8 9 10 11</p><p>TAU X32$1</p><p>1 12</p><p>NU X11 X12 X21 X22 X31</p><p>1 0 0 0 0 0</p><p>NU X32</p><p>1 0</p><p>LAMBDA F1 F2 F3</p><p>X11 0 0 0 X12 0 0 0 X21 0 0 0 X22 0 0 0 X31 0 0 0 X32 0 0 0 THETA X11 X12 X21 X22 X31</p><p>X11 0 X12 0 0 X21 0 0 0 X22 0 0 0 0 X31 0 0 0 0 0 X32 0 0 0 0 0</p><p>THETA</p><p>X32</p><p>ALPHA F1 F2 F3</p><p>1 0 0 0</p><p>BETA F1 F2 F3</p><p>F1 0 0 0 F2 0 0 0 F3 0 0 0</p><p>PSI</p><p>F1 F2 F3</p><p>F1 1 F2 2 3 F3 4 5 6 STARTING VALUES</p><p>TAU X11$1 X12$1 X21$1 X22$1 X31$1</p><p>1 -0.494 -0.444 0.493 0.620 -0.090</p><p>TAU X32$1</p><p>1 -0.033</p><p>NU X11 X12 X21 X22 X31</p><p>1 0.000 0.000 0.000 0.000 0.000</p><p>NU X32</p><p>1 0.000</p><p>LAMBDA F1 F2 F3</p><p>X11 1.000 0.000 0.000 X12 1.000 0.000 0.000 X21 0.000 1.000 0.000 X22 0.000 1.000 0.000 X31 0.000 0.000 1.000 X32 0.000 0.000 1.000 THETA X11 X12 X21 X22 X31</p><p>X11 1.000 X12 0.000 1.000 X21 0.000 0.000 1.000 X22 0.000 0.000 0.000 1.000 X31 0.000 0.000 0.000 0.000 1.000 X32 0.000 0.000 0.000 0.000 0.000</p><p>THETA X32</p><p>X32 1.000</p><p>ALPHA F1 F2 F3</p><p>1 0.000 0.000 0.000</p><p>BETA F1 F2 F3</p><p>F1 0.000 0.000 0.000 F2 0.000 0.000 0.000 F3 0.000 0.000 0.000 PSI F1 F2 F3</p><p>F1 0.050 F2 0.000 0.050 F3 0.000 0.000 0.050</p><p>TECHNICAL 8 OUTPUT</p><p>E STEP ITER LOGLIKELIHOOD ABS CHANGE REL CHANGE ALGORITHM 1 -0.38261107D+04 0.0000000 0.0000000 EM 2 -0.34037539D+04 422.3567415 0.1103880 FS 3 -0.33282446D+04 75.5093879 0.0221841 FS 4 -0.33220036D+04 6.2409246 0.0018751 FS 5 -0.33219065D+04 0.0971098 0.0000292 FS 6 -0.33219065D+04 0.0000292 0.0000000 FS</p><p>SAMPLE STATISTICS FOR </p><p>ESTIMATED FACTOR SCORES </p><p>SAMPLE STATISTICS</p><p>Means F1 F2 F3</p><p>1 0.000 0.0000.000</p><p>Covariances F1 F2 F3</p><p>F1 2.000 F2 -1.549 2.898 F3 -2.712 1.911 4.734 Correlations F1 F2 F3</p><p>F1 1.000 F2 -0.643 1.000 F3 -0.881 0.516 1.000</p><p>PLOT INFORMATION</p><p>The following plots are available:</p><p>Histograms (sample values, estimated factor scores) Scatterplots (sample values, estimated factor scores) Item characteristic curves Information curves</p><p>12</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us