Exploring the End Behavior Of

Exploring the End Behavior Of

<p> Honors Math 3 Name: Date:</p><p>Graphing Polynomials: End Behavior</p><p>Investigation</p><p>End behavior is the behavior of the graph of a function as x becomes infinitely large (+Ҙ or -Ҙ ).</p><p>You will need: a graphing calculator. Sketch a graph of each function and discuss with your groups any relationships that you notice among the functions degree, leading coefficient and end behavior.</p><p>2 3 4 5 f ( x )  x f ( x )  x f ( x )  x f ( x )  x f (x)  x6</p><p>   </p><p>Does your conjecture change for the group of functions below? f (x)  x2 f (x)  x3 f (x)  x4 f (x)  x5 f (x)  x6</p><p>Does your conjecture change for the group of functions below? f (x)  2x2 f (x)  2x3 f (x)  2x4 f (x)  2x5 f (x)  2x6 Summarize your conjecture:</p><p>2 Formalize your conjecture about the end behavior of a function of the form f (x) = ax n for each pair of conditions below.</p><p> a. when a > 0 and n is even b. when a < 0 and n is even</p><p> c. when a > 0 and n is odd d. when a < 0 and n is odd</p><p> n n - 1 If a polynomial function is written in standard form, f (x) = an x + an- 1x + ...+ a1x + a0, the leading coefficient is an . That is, the leading coefficient is the coefficient of the term of greatest degree in the polynomial.</p><p>The end behavior of a polynomial function depends on ______</p><p>Problem Set</p><p>1. Sketch the end behavior of the following functions. It’s okay if you’re not sure about the middle of the graph. a. f (x) = 3x 4 - 7x 3 - 13 b. f (x) = - 2x 3 + 3x 2 + 4x +1</p><p>2. Describe the end behavior of the graphs of the following functions. Decide if f (x) ® +/- Ҙ as x ® +/- Ҙ . You do NOT need to completely distribute the ones that are factored—all that matters is the term with the highest power of x.</p><p> as x ® Ҙ , f (x) ® ? as x ® -Ҙ , f (x) ® ? 3 a. f (x) = - 2x + 6x - 11 b. f (x) = x 4 - 5x 3 - x 2 + 2x +1</p><p> c. f (x) = 2(x - 1)(x + 3)(x - 5) </p><p> d. f (x) = - x 2(x + 7)(x - 3)</p><p> e. f (x) = 3x 2(x - 1)3 (x + 2)</p><p>3 3. The four functions below have each been graphed. Match the graphs with the functions without using your calculator. Use the x-intercepts and end behavior to guide you. </p><p> f (x) = (x + 3)(x - 1)(x - 5) h(x) = - x(x + 3)(x - 3) g(x) = 0.5(x + 5)(x +1)(x - 4) k(x) = - 1(x + 3)(x - 1)(x - 5)</p><p>30 30</p><p>A 20 B 20</p><p>10 10</p><p>0 0 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -10 -10</p><p>-20 -20</p><p>-30 -30</p><p>30 30</p><p>C 20 D 20</p><p>10 10</p><p>0 0 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -10 -10</p><p>-20 -20</p><p>-30 -30</p><p>4. Sketch a graph of each of the functions below. Plot the x- and y-intercepts and make sure that your end behavior is appropriate. You do not need to plot any additional points. The x-scale is one unit; the y-scale is ten units. </p><p> a. f (x) = 2(x - 5)(x +1)(x + 4) b. f (x) = - 0.5(x + 6)(x + 2)(x - 5)(x - 1)</p><p>50 50</p><p>30 30</p><p>10 10</p><p>-8 -6 -4 -2 -10 0 2 4 6 8 -8 -6 -4 -2 -10 0 2 4 6 8</p><p>-30 -30</p><p>-50 -50 4 c. f (x) = - 3x(x - 2)(x + 6) d. f (x) = 2x(x + 3)(x - 1)(2x - 7) 50 50</p><p>30 30</p><p>10 10</p><p>-8 -6 -4 -2 -10 0 2 4 6 8 -8 -6 -4 -2 -10 0 2 4 6 8</p><p>-30 -30</p><p>-50 -50</p><p>On the next two, you will need to factor the quadratic terms to find all the zeros. e. f (x) = (x - 5)(x +1)(x 2 - 3x + 2) f. f (x) = - 3(x 2 - 2x - 8)(2x 2 + 9x - 5)</p><p>50 50</p><p>30 30</p><p>10 10</p><p>-8 -6 -4 -2 -10 0 2 4 6 8 -8 -6 -4 -2 -10 0 2 4 6 8</p><p>-30 -30</p><p>-50 -50</p><p>You need to factor the next two fully before graphing. g. f (x) = x 3 - 2x 2 - 15x h. f (x) = - 3x 3 + 27x</p><p>50 50</p><p>30 30</p><p>10 10</p><p>-8 -6 -4 -2 -10 0 2 4 6 8 -8 -6 -4 -2 -10 0 2 4 6 8</p><p>-30 -30</p><p>-50 -50</p><p>6. Write a possible equation for each graph below. Use the form f (x) = a(x - __)(x - __)..... You do not need to find the value of a, but the end behavior should enable you to tell whether it is positive or negative. a. b.</p><p>30 30</p><p>20 20</p><p>10 10</p><p>0 0 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -10 -10</p><p>-20 -20</p><p>-30 -30</p><p> c. d. 60 30</p><p>40 20</p><p>20 10</p><p>0 0 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -20 -10</p><p>-40 -20</p><p>-60 -30</p><p>6</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us