View This Volume's Front and Back Matter

View This Volume's Front and Back Matter

http://dx.doi.org/10.1090/fim/021 FIELDS INSTITUT E MONOGRAPHS THE FIELD S INSTITUT E FO R RESEARC H I N MATHEMATICA L SCIENCE S Brauer Typ e Embedding Problems Arne Lede t American Mathematica l Societ y Providence, Rhode Islan d The Field s Institut e for Researc h i n Mathematical Science s The Field s Institute i s a center fo r mathematica l researc h activity , locate d i n Toronto , Canada. Ou r missio n i s to provid e a supportiv e an d stimulatin g environmen t fo r math - ematics research , innovatio n an d education . Th e Institut e i s supporte d b y th e Ontari o Ministry o f Training, College s and Universities , the Natural Science s and Engineerin g Re - search Counci l o f Canada , an d seve n Ontari o universitie s (Carleton , McMaster , Ottawa , Toronto, Waterloo , Wester n Ontario , an d York) . I n additio n ther e ar e severa l affiliate d universities an d corporat e sponsor s i n both Canad a an d th e Unite d States . Fields Institut e Editoria l Board : Car l R . Rieh m (Managin g Editor) , Barbar a Le e Keyfitz (Directo r o f the Institute) , Thoma s S . Salisbur y (Deput y Director) , Joh n Blan d (Toronto), Kennet h R . Davidso n (Waterloo) , Joe l Feldma n (UBC) , R . Mar k Goresk y (Institute fo r Advance d Study , Princeton) , Camero n Stewar t (Waterloo) , Norik o Yu i (Queen's). The autho r wa s supporte d i n par t b y a Queen' s Universit y Advisor y Researc h Com - mittee Postdoctora l Fellowship . 2000 Mathematics Subject Classification. Primar y 12F12 , 16K50 ; Secondar y 16S35 , 12G05. For additiona l informatio n an d update s o n this book , visi t www.ams.org/bookpages/fim-21 Library o f Congres s Cataloging-in-Publicatio n Dat a Ledet, Arne , 1967 - Brauer typ e embeddin g problem s / Arn e Ledet . p. cm . (Field s Institut e monographs , ISS N 1069-5273 ; 21 ) Includes bibliographica l reference s an d index . ISBN 0-8218-3726- 5 (alk . paper ) 1. Inverse Galoi s theory . 2 . Brauer groups . I . Title . II . Series . QA247 + 200504281 3 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed t o the Acquisition s Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 200 5 b y the America n Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o th e Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . This publicatio n wa s prepare d b y The Field s Institute . Visit th e AM S hom e pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 1 0 09 0 8 0 7 0 6 0 5 Contents Introduction v Acknowledgments vii i Chapter 1 . Galoi s Theor y 1 Notation 1 1.1. Integra l element s 1 1.2. Algebrai c extension s an d splittin g fields 2 1.3. Separabilit y 4 1.4. Galoi s extensions 6 1.5. Th e Galoi s group a s permutation grou p 9 1.6. Reductio n modul o prime s 1 1 1.7. Cyclotomi c fields 1 3 1.8. Cycli c extensions an d Hilber t Sat z 9 0 1 5 1.9. Radica l extension s an d solvabilit y 1 7 1.10. Th e norma l basi s theore m 1 9 Exercises 2 1 Chapter 2 . Invers e Galoi s Theor y an d Embeddin g Problem s 2 7 2.1. Invers e Galoi s theory 2 7 2.2. Definitio n o f Galoi s theoretical embeddin g problem s 2 9 2.3. Grou p cohomolog y 3 0 2.4. Braue r typ e embeddin g problem s 3 4 Exercises 4 0 Chapter 3 . Braue r Group s 4 3 3.1. Basi c fact s abou t algebra s 4 3 3.2. Simpl e Artinia n ring s 4 4 3.3. Finite-dimensiona l centra l simpl e algebra s 4 6 3.4. Th e Braue r grou p 5 0 3.5. Cycli c algebras 5 3 3.6. Braue r typ e embeddin g problem s revisite d 5 6 3.7. Extension s o f the dihedra l grou p 5 9 Exercises 6 2 Chapter 4 . Grou p Cohomolog y 6 7 4.1. Th e cohomologie s i n dimension s 0 and 1 6 7 4.2. Galoi s Twis t 6 8 4.3. Th e long-exac t cohomolog y sequenc e 7 0 4.4. Th e corestrictio n ma p 7 2 iv Content s Exercises 7 3 Chapter 5 . Quadrati c Form s 7 7 5.1. Basi c theory o f quadratic form s 7 7 5.2. Cliffor d algebra s 8 1 5.3. Quadrati c form s an d non-abelia n cohomolog y 8 3 Exercises 8 5 Chapter 6 . Decomposin g th e Obstructio n 8 7 6.1. Decompositio n alon g a direct produc t 8 7 6.2. Orthogona l representation s 9 5 6.3. Projectiv e representation s 9 8 Exercises 10 2 Chapter 7 . Quadrati c Form s an d Embeddin g Problem s 10 5 7.1. Group s o f exponent 4 10 5 7.2. Witt' s Criterio n 10 8 7.3. Group s o f exponent 8 11 4 Exercises 12 1 Chapter 8 . Reducin g th e Embeddin g Proble m 12 3 8.1. Reductio n t o Brauer typ e embeddin g problem s 12 3 8.2. Examples : Th e holomorp h o f the quaternio n grou p 13 3 8.3. Embeddin g problem s wit h cycli c kernel o f order 4 14 1 Exercises 14 8 Appendix A . Pro-finit e Galoi s Theor y 15 1 Introduction 15 1 A.l. Th e separabl e closur e o f a field 15 1 A.2. Galoi s extension s 15 2 A.3. Pro-finit e group s 15 4 A.4. Pro-finit e Galoi s theory 15 6 A.5. Pro-finit e grou p cohomolog y 15 7 A.6. Pro-finit e cohomolog y an d th e Braue r grou p 15 8 Exercises 16 0 Bibliography 16 3 Index 167 Introduction Consider a Galoi s theoretica l embeddin g problem , i.e. , th e questio n o f embeddin g a Galoi s extensio n M/K wit h Galoi s grou p G — Gal(M/K) int o a large r Galoi s extension F/K, suc h tha t th e Galoi s grou p Gal(F/K) i s isomorphi c t o a specifie d group E an d th e restrictio n ma p fro m Ga l (F/if) t o G correspond s t o a give n homomorphism n: E — > G. Ho w d o w e approac h suc h a problem ? Ho w d o w e determine whethe r suc h a n extensio n F/K exists ? Ho w d o w e find i t i f it does ? O r (preferably) ho w d o w e find al l o f them i f there ar e any ? The answer s t o thes e question s o f cours e depen d o n th e kin d o f embeddin g problem considered , bot h with respec t t o the nature o f the groups an d the nature o f the field. Fo r instance, i f G and E ar e cyclic , it takes nothing mor e than elementar y Galois theor y t o solv e th e proble m ove r a finite field, wherea s i t take s clas s field theory (o r a t leas t som e reasonably sophisticate d algebrai c numbe r theory ) t o solv e it ove r th e field o f rational numbers .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us