Cortical oscillations as temporal reference frames for perception Anne Kosem To cite this version: Anne Kosem. Cortical oscillations as temporal reference frames for perception. Agricultural sciences. Université Pierre et Marie Curie - Paris VI, 2014. English. NNT : 2014PA066074. tel-01069219 HAL Id: tel-01069219 https://tel.archives-ouvertes.fr/tel-01069219 Submitted on 29 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’UNIVERSITE PIERRE ET MARIE CURIE Spécialité Neurosciences Cognitives Présentée par Anne KÖSEM CORTICAL OSCILLATIONS AS TEMPORAL REFERENCE FRAMES FOR PERCEPTION Directeur de recherche: Virginie VAN WASSENHOVE Thèse soutenue le 27 mars 2014 Devant la commission d’examen formée de : Dr. Rufin VAN RULLEN Rapporteur Pr. Ole JENSEN Rapporteur Pr. David POEPPEL Examinateur Dr. Catherine TALLON-BAUDRY Examinatrice Dr. Florian WASZAK Examinateur Dr. Nathalie GEORGE Examinatrice Dr. Virginie VAN WASSENHOVE Examinatrice ABSTRACT The timing of sensory events is a crucial perceptual feature, which affects both explicit judgments of time (e.g. duration, temporal order) and implicit temporal perception (e.g. movement, speech). Yet, while the relative external timing between events is commonly evaluated with a clock in physics, the brain does not have access to this external reference. In this dissertation, we tested the hypothesis that the brain should recover the temporal information of the environment from its own dynamics. Using magnetoencephalography (MEG) combined with psychophysics, the experimental work suggests the involvement of cortical oscillations in the encoding of timing for perception. In the first part of this dissertation, we established that the phase of low-frequency cortical oscillations could encode the explicit timing of events in the context of entrainment, i.e. if neural activity follows the temporal regularities of the stimulation. The implications of brain oscillations for the encoding of timing in the absence of external temporal regularities were investigated in a second experiment. Results from a third experiment suggest that entrainment does only influence audiovisual temporal processing when bound to low-frequency dynamics in the delta range (1-2 Hz). In the last part of the dissertation, we tested whether oscillations in sensory cortex could also ‘tag’ the timing of acoustical features for speech perception. Overall, this thesis provides evidence that the brain is able to tune its timing to match the temporal structure of the environment, and that such tuning may be crucial to build up internal temporal reference frames for explicit and implicit timing perception. RÉSUMÉ La perception explicite du temps écoulé (la durée, l’ordre temporel…) et les jugements implicites des dynamiques de notre environnement (percevoir le mouvement, la parole…) nécessitent l’extraction des relations temporelles entre événements sensoriels. Alors que le temps physique est communément évalué en rapport à un référentiel externe (celui de l’horloge), le cerveau lui n’a pas accès à ce référentiel. Dans cette thèse, nous émettons l’hypothèse que le cerveau génère son propre référentiel temporel à partir des dynamiques neurales. Combinant la magnétoencéphalographie (MEG) aux données psychophysiques, les présents travaux suggèrent que les oscillations corticales sont impliquées dans l’encodage du temps perçu. Une première étude montre que la phase des oscillations corticales basse-fréquences peut encoder l’ordre temporel perçu entre événements sensoriels s’il y a entrainement neural, i.e. si l’activité cérébrale suit les régularités temporelles de la stimulation. L’implication des oscillations cérébrales en l’absence d’entrainement est testée dans une seconde expérience. Les résultats d’une troisième expérience suggèrent que l’entrainement neural n’a d’influence sur le traitement temporel des informations multisensorielles qu’à basse fréquence (1-2 Hz). Un dernier chapitre aborde le rôle l’entrainement neural dans l’encodage la temporalité des informations acoustiques pour la perception de la parole. En conclusion, cette thèse suggère que le cerveau est capable de suivre la structure temporelle du monde extérieur, et que cet ajustement permet la construction d’un référentiel temporel interne pour la perception explicite et implicite du temps. ACKNOWLEDGMENTS First and foremost, I am greatly indebted to my thesis supervisor Virginie van Wassenhove. I thank her for giving me the opportunity to work at Neurospin and for providing me with the most favorable environments to perform research. Virginie generously shared with me a lot of her expertise and research insight, for which I am deeply grateful. I thank her for her trust, enthusiasm, and continuous support during my PhD. The work described in this thesis was accomplished with the help and support of fellow lab-mates and collaborators. I am very grateful to Alexandre Gramfort who helped me discover the wonders of MNE-python; Christophe Pallier for his help on statistical analysis; Anahita Basirat and Leila Azizi who assisted me in designing and acquiring the data of the so-called “pata-pata” experiment; Laetitita Grabot and Karin Pestke who acquired and analyzed data of the PhaseTime experiment. I would like to thank the MEG team, in particular Marco Buatti and Leila Azizi, for their assistance. I thank the Neurospin medical staff for the recruitment of participants. I also thank the DGA and the CEA for their financial support granted through doctoral fellowship. I thank all the Neurospin fellows whom I had the opportunity to meet. A special thanks goes to Lucie, for being such a great roommate and a wonderful collaborator, which led to numerous publications in Brain Magazine. Baptiste and Catherine, thank you for the extended coffee-break discussions about cognitive science, gender theory and the quesadillas effect. I am indebted to Nawal, who gave me a ‘yeah-baby’ boost when we worked together at the library. My thanks to Nicolas for the good old karaoke times in the open space. I also thank Anna, Brice, Adeline, Clémence, Diana, Lucille, Thiago, Filipa, Clio, Elodie, Murielle, Marie, Mélanie, Jean-Rémi, Simon, Laurianne, Sebastien, Moti, Ioannis, Toussaint, Aurélien, Antonio, Vanna, Antoinette, and Laurence for all the agreable moments we spent together at Neurospin and beyond the “plateau de Saclay”. I thank my peers and friends from the Cogmaster: Jean-Rémy the metitative philosopher, Guillaume the anarchist anthropologist, Camillia the NIRS starlette, Cédric the game maker, Clio the double agent, Louise the demoiselle inconnue, Eléonore the sailor moon, and DJs Romain, Hadrien, & Victor. Finally, I would like to thank my family and friends, who have encouraged me and patiently listened to my nerdy reflections through all these years. First, I warmly thank my parents for their constant love, care, and support; and Hélène for being the best sister in the world. I also thank my sister of heart, Laure, and Ced, for all the joyful moments and their cheerful encouragements. Thomas, no matter hard I try, you will always be the nerdiest (and simply the best). Thank you for your unyielding support, even being miles away. I thank Becky for her evergreen enthusiasm and her correction of this manuscript. Mathieu and Laure, I do not know if we completed our mission, but life was definitely sweeter by you side. Thank you for these great moments. My big thanks also go to Claire, Karine, Romain, Sophie, Rym, Diane, Etienne and all the people who have accompanied me during this journey. CONTENTS Chapter 1: Introduction ......................................................................................... 3 1.1. The inner representation of time .................................................................................. 3 1.1.1. What is a time experience? .................................................................................... 3 1.1.2. How does the time experiencer sense time? ............................................................ 5 1.1.3. How is event timing encoded? ............................................................................... 6 1.2. Encoding event timing through neural latency .............................................................. 9 1.2.1. Brain access to external timing .............................................................................. 9 1.2.2. Temporal binding ............................................................................................... 11 1.2.3. Temporal plasticity ............................................................................................. 17 1.3. Encoding event timing with dedicated neural structures .............................................. 20 1.3.1. Specialized brain areas for the encoding of time ................................................... 20 1.3.2. Delay-tuned cells ................................................................................................ 21 1.3.3. Brain clocks ......................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages194 Page
-
File Size-