Crystal (Ligand) Field Theory

Crystal (Ligand) Field Theory

Crystal (ligand) field theory Literature Title page • C.E. Housecroft, A.G. Sharpe: Inorganic chemistry 1 Crystal (ligand) field theory • Sphere symmetry Title page • jj-coupling, LS- coupling 2 Schrödinger equation Crystal field 2 ˆ 2m (r) V (r) (r) E(r) Schrödinger equation m: electron mass kinetickinetická energy E. potenciálnpotential energyí E. o: permitivity of vacuum 2 2 2 : wave functions x2 y2 z2 e: electron charge Hydrogen atom: Vˆ e2 4 or E: energy ħ: Planck’s constant R: radial function in spherical coordinates: n,l,m Rn,l (r)Yl,m (,) Y: angular function 2 2 2 r2 2 2 ˆ ˆ ˆ ˆ n: principal quantum number Hn,l,m Enn,l,m H T V l: orbital quantum number ˆ2 2 L Yl,m l(l 1) Yl,m determine the orbital angular momentum ˆ l = 0 ... n-1 LzYl,m mlYl,m ml: magnetic quantum number projection of the angular momentum into z-axis m l = -l … l 3 Radial function Crystal field 8 7 2 2 4r ·Rnl(r) 6 5 4 1s Bohr’s radius a0 = 0.52918 Å 2s 3 The distance of the electron (maximum 2p of the orbital 1s density) from nuclei in 3s 2 hydrogen atom 3p 3d 1 2 4 0 a0 2 0 me 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 r / a0 Radial function – the dependence on Z Crystal field The radius of maximal electron density Effective nuclear charge a0* = a0 / Z* Z* = Z - σ σ = screening constant, a sum over all electrons The electrons are merged into groups () (1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p)(5d)(5f)... Slater’s rules: electron on the right does not contribute to σ Electrons inside the group screen 0.35 (1s only 0.30) n–1 (s,p) screen 0.85 n–2 and lower screen 1.00 If the electron is in d or f, all electron on the left screen 1.0 An example for Fe (26): 5 Atomic orbitals – spherical harmonic functions (angular parts) Crystal field Solution of Schrödinger equation Linear combination: (complex function): . (real function): . ml Yl 0 s Y0 0 pz Y1 p 1 Y 1 Y 1 x 2 1 1 p i Y 1 Y 1 y 2 1 1 d Y 0 z 2 2 d 1 Y 2 Y 2 x 2 y 2 2 2 2 d i Y 2 Y 2 xy 2 2 2 d 1 Y 1 Y 1 xz 2 2 2 d i Y 1 Y 1 yz 2 2 2 33 Y3 f ... 6 Atomic orbitals Crystal field Orbital and spin angular momentun Crystal field m: electron mass o: permitivity of vacuum : eigenfunctions sˆ2 2s(s 1) s 1 2 e: electron charge ˆ E: energy Lˆ Y m Y sz ms z l,m l l,m 2 ħ: Planck’s constant R: radial function Y: angular function n: principal quantum number l: orbital quantum number determine the orbital angular momentum l = 0 ... n-1 ˆ ˆ ˆ ˆ ml: magnetic quantum number Hn,l,m Enn,l,m H T V projection of the angular ˆ2 2 L Yl,m l(l 1) Yl,m momentum into z-axis m l = -l … l s: spin angular momentum ms: projection into z-axis ms = -1/2 … 1/2 8 Dirac’s equation Crystal field 2 2 2 퐸 = 푐 푝Ԧ + 푚0푐 Relativistic formula for the total energy of a free particle 1 0 2 2 2 2 where 훽 = 훼Ԧ = 0 휎Ԧ 퐸 = 푐 −ℏ ∆ + 푚0푐 = −푖ℏ푐훼Ԧ훻 + 훽푚0푐 0 −1 휎Ԧ 0 0 1 0 −푖 1 0 Pauli matrixes: 휎 = 휎 = 휎 = 푥 1 0 푦 푖 0 푧 0 −1 s: spin quantum number | s | s(s 1) determines angular momentum of electron 1 s 2 ms: projection into z-axis ms = -s … s sz ms 1 1 ms 2 , 2 9 Spin-orbit coupling Magnetism Spin orbit interaction is known in atomic physics as Hso SL relativistic correction of the electron energies (푠Ԧ, 푝Ԧ, and 퐿 mean vector operators of spin, momentum and angular momentum) > 0 : less than ½ occupied orbital, ℏ 푉푆퐿 = 2 푠Ԧ ∙ ∇푉 × 푝Ԧ/푚0 J=|L-S|, direction of L and S opposite 4푚0푐 ℏ 1 푑푉 < 0 : more than ½ occupied orbital, 푉 = 퐿 ∙ 푠Ԧ 푆퐿,푠푝ℎ 4푚 푐2 푟 푑푟 J=L+S, direction of L and S identical 0 3d < 4d < 5d M2+ < M3+< … Approximate solution of Dirac’s equation: ˆ ˆ ˆ ˆ Vm : Relativistic mass correction HD HSchr Vm VD Vso VD : Contact interaction (Darwin’s term), significant for s orbitals only. Vso : Spin-orbit coupling Gyromagnetic ratio Magnetism Gyromagnetic ratio is a ration of m: electron mass e: electron charge magnetic momentum and angular momentum l l ħ: Planck’s constant l: orbital angular momentum B e Gyromagnetic ratio for s: spin angular momentum l 1 2m orbital momentum B: Bohr’s magneton r: radius of electron circuit e 2 B Gyromagnetic ratio for v: velocity of electron s m spin momentum : time of electron circulation I: current e : magnetic moment B 2m Derivation for orbital angular momentum: . 2r / v l m r v I e / ev / 2r e 2 l IS (ev / 2r)(r ) 2me e v r 11 2 Energy of orbitals in sphere symmetry – hydrogen atom Crystal field One-electron scheme Hydrogen atom – 1 electron: (energy only depends on the Wave length of the transitions principal quantum number n) between energy levels is determined 3s —— 3p —— 3d —— by Rydberg’s formula: 2s —— 2p —— 1s —— 12 Energy of orbitals in sphere symmetry Crystal field One-electron scheme (energy only depends J: total angular momentum on the principal quantum number n) J = |L+S| … |L-S| 3s —— 3p —— 3d —— MJ: -J, ... , J 2s —— 2p —— j = |l+s| … |l-s| 1s —— mj = -j, ... , j Many-electrons scheme J=|L+S| … |L-S| j=|l+s| … |l-s| Coulombic interaction is predominant spin-orbit interaction is predominant 3d kvantová čísla Vazebná energie 3d —— 5/2 n l j l = ±1 j = 0, ±1 pro Cu (eV) 3p —— 3p 3d 3d 3 2 5/2 L1 3/2 3/2 1,6 3s —— 3 2 3/2 3s 3p M 3p 3 1 3/2 K 1/2 1/2 1 73,6 3 1 1/2 K3 2p —— 3s 3 0 1/2 119,8 2s —— 2p3/2 2p 2 1 3/2 K1 931,1 L 2s1/2 2p1/2 2 1 1/2 K2 951,0 1s —— 2s 2 0 1/2 1096,1 K 1s 1 0 1/2 8978,9 1s1/2 LS coupling J ~ L + S = l + s Valence electrons, spectroskopic j-j coupling J ~ j = (s+l) symbols Core electrons 13 LS and jj coupling Crystal field one electron electron state Orbital momentum of atom LS coupling 퐿 = σ 푚푙(occupied orbitals) so<Coulomb 푀퐿 = −퐿, … , 퐿 Spin momentum Orbital momentum 푆 = σ 푚 (occupied orbitals) Total momentum 푙 = 0, 1, 2, 3, … 푠 푀푆 = −푆, … , 푆 퐽 = 퐿 − 푆 , … , 퐿 + 푆 푚푙 = 0 푀 = −퐽, … , 퐽 Spin momentum 퐽 1 푠 = Τ2 2S+1 1 LJ 푚푠 = ± Τ2 Total momentum 푗 = 푙 − 푠 , … , 푙 + 푠 jj coupling 푚푗 = −푗, … , 푗 so>Coulomb 14 jj-coupling Crystal field m j l s m l s + 3/2 l +1 s + 1/2 + 1/2 + 1/2 0 - 1/2 - 1/2 - 1/2 -1 - 3/2 mj = -3/2, -1/2, +1/2, +3/2 j = 3/2 p3/2 mj = -1/2, +1/2 j = 1/2 p1/2 15 jj-coupling Crystal field quantum number Binding energy spin-orbit interaction n l j l = ±1 j = 0, ±1 for Cu (eV) is predominant 3d5/2 3d 3 2 5/2 L1 1,6 3p 3d 3/2 3/2 3 2 3/2 3s1/2 3p1/2 M 3p 3 1 3/2 K 1 73,6 3 1 1/2 2p3/2 K3 2s1/2 2p1/2 3s 3 0 1/2 119,8 1s1/2 2p 2 1 3/2 K1 931,1 L j-j coupling J ~ j = 2 1 1/2 K2 951,0 (s+l) 2s 2 0 1/2 1096,1 Core electrons K 1s 1 0 1/2 8978,9 16 Orbital and spin momentum, state of the atom Crystal field one electron orbital momentum spin momentum s s s 1 sz ms l ll 1 lz ml the whole atom orbital momentum spin momentum S M L LL 1 Lz M L S SS 1 z S M m M L ml S s electronic state of the atom multiplicity = (2S+1)(2L+1) 2S+1 L L: S, P, D, F, G, H, I, … 17 Weak coupling - LS-coupling Crystal field Russel-Saunders scheme: L li S si (LS-coupling) i i spin-orbit coupling J JJ 1 J z M J J L S J = L+S, L+S-1, ... ,L-S MJ = -J, ..., 0 , ... , J x>y x<y 2J+1 values ground state x – number of electrons y – number of orbitals 2S+1 values for S<L 2L+1 values for S>L state of the atom 2S+1 multiplicity = (2J+1) LJ 18 Spectroscopic symbols Crystal field 1 p ml: -1 0 1 l = 1 L = 1 P s = ½ S = ½ 2S+1=2 J = 1+½, 1+½-1 (= |1-½| ) 2 2 P3/2, P1/2 Multiplicity of the state 2P: (2L+1)(2S+1) = 32 = 6 (2J+1) = (23/2+1)+(21/2+1) = 4+2 = 6 19 Spectroscopic symbols – ground state Crystal field LL occupation of orbitals starts from maximal ml.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    71 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us