Choice and Preference Analysis for Quality Improvement” and Seminar on Experimentation

Choice and Preference Analysis for Quality Improvement” and Seminar on Experimentation

Con il patrocinio di Toulon-Verona Conference Università degli studi di Bari “Aldo Moro” Università degli studi di Foggia Politecnico di Bari Conference on “Choice and preference analysis for quality improvement” and seminar on experimentation University of Bari University Hall and Student Center (former “Palazzo delle Poste”) 9-10 July 2015 BOOK OF ABSTRACTS 2015 Stampato: luglio 2015 ISBN 978-88-88793-87-0 © Copyright 2015 by Università degli Studi di Bari Aldo Moro Tutti i diritti di traduzione, riproduzione e adattamento, totale o parziale, con qualsiasi mezzo (comprese le copie fotostatiche e i microfilm) sono riservati 3 SUMMARY ZAVARRONE E., GRASSIA G. , VITAGLIANO M. Photo fooding: Some remarks on measurement processes .....................................p. 5 SANTARCANGELO V., BUONDONNO A., ODDO G., STAFFIERI F.P., SANTARCANGELO N., MARAGNO M., TRENTINELLA F. Web misinformation: A text-mining approach for legal accepted facts.....................6 TOMA E., D’UGGENTO A.M., RICCI V. Factorial analysis of end-to-end performance evaluation of Italian higher education institutions ......................................................................................................7 PISCITELLI A., D’AMBROSIO A. Sensory evaluation of seven white wines to define consumers preference by key intrinsic attributes to wine choice ...........................................................................8 BOLZAN M., MAROZZI M. Issues in designing an index of trust for public institutions ........................................9 MARIANI P., ZAVANELLA B. Business enterprises and economic system: subjective expectations ........................10 D’ALESSANDRO M.T, GAUDIANO G., COLUCCI M., SANTARCANGELO V., ROMANO A , MINERVA T. Process mining: Review and a case study....................................................................11 FABBRIS L., SCIONI M. A fractional design to elicit graduates' preferences for job characteristics.............12 FABBRIS L., RAPISARDA L., SCIONI M. An experiment to define the optimum salary for fresh graduates............................13 MANDARANO A., TRETTEL A. Misurare il comportamento istintivo durante la fruizione di messaggi pubblicitari, logo aziendale e navigazione internet con la rilevazione dell’attività cerebrale, emozionale e di puntamento dello sguardo: il caso di Telecom Italia/TIM .......................................................................................................14 DEGAN L., GUIDETTI C., MORICHI M. Analysis and implementation of a NPS (Net Promoter Score) Survey: The Ariston Thermo case .....................................................................................................15 GIORDANO G., LAURO C.N., SCEPI G. Embedding covariates in conjoint analysis models ....................................................16 GALASSO R., GRASSIA F., GRASSIA M.G., ZAVARRONE E. PLS path modelling for the evaluation of patients' satisfaction of a department .....................................................................................................................17 4 MARIANI, P., RANCATI, E., GORDINI, N. Determinants of student satisfaction in higher education: The case of Bicocca University of Milan........................................................................................................18 ZANELLA A., CASCINI E. Quality control of perishable goods sale points ..........................................................19 D’ANGELLA A., LUPO N., CONTINI D. Mapping di impianti elettrici e tecnologici: misura della qualità per servizi di installazione e manutenzione ........................................................................................20 PALAZZO L., SALVATI D.B., RAGOZINI G. Comparing operative units in a large company through archetypes in a benchmarking perspective............................................................................................21 SCOLORATO C., SANTELLI F., RAGOZINI G. Understanding customer satisfaction determinants through models for ordinal data ....................................................................................................................22 LIBERATI C., MARIANI P. Visualization and monitoring of dynamic customer satisfaction ..............................23 MASSARI A., PERCHINUNNO P., GIRONE F. Statistical models for categorical variables for measuring student satisfaction at the University of Bari................................................................................................24 D’UGGENTO A.M., NISIO A. Introducing performance management in universities. The case of the University ‘Aldo Moro’ of Bari ....................................................................................25 CASCINI E., FACCINI P. Statistica e ricerca industriale: ottimizzazione simultanea delle caratteristiche di un catalizzatore Ziegler-Natta........................................................26 CASCINI E. Ordinamento degli score derivanti dall’analisi delle componenti principali mediante un indicatore di qualità complessivo...........................................................27 SANTARCANGELO V., ODDO G., PILATO M., VALENTI F., FORNARO C. An opinion mining application on OSINT for a reputation analysis of public administrations ..............................................................................................................28 5 Photo fooding: Some remarks on measurement processes ZAVARRONE E.*, GRASSIA G. **, VITAGLIANO M.* *IULM University of Milan, **University ‘Federico II’ of Naples [email protected], [email protected] Some apps, developed for monitoring the healthy food habit, are based on systems that measure calories and nutrition in meals. Typically the apps user takes a photo (through i.e. smartphone) of the plate and could have an estimate of consumption of calorie and nutritional facts components (Pouladzadeh et al., 2013) in real time. These apps come from recent studies on food habits based on the use of digitalization as alternative to the classic PAPI questionnaire. The food digitalization presents advantages as low level impact and the speed of data acquisition but some limits too. For the digitalization measurement, any formal guidelines or protocol has not been proposed and the proprieties as validity and reliability risk being neglected. Scholars (Gemming et al., 2015, Martin et al. 2014) recognize this limit and they have highlighted some cautions in the capturing photo phase (distance from smartphone to the plate, lightness, type of resolution of the device used): not optimal condition to exposure can determine biased estimate of the calories and the nutrient components. It is evident these systems can be efficient if an accurate digitalization measurement process can be applied. This paper proposes an approach for evaluating the quality data in digitalization process through identification and testing of the minimum condition request for the correct functioning of these systems. The analysis has been implemented on photos of ice-cream under several measurement conditions. The conversion in bitmap and after in image matrices . These matrices can be evaluated in a heatmap approach. The ideal plate, that satisfies the measurement aspects, comes from the application of severe rules of clustering methods (Zhao, 2014). 6 Web misinformation: A text-mining approach for legal accepted facts SANTARCANGELO V.*, BUONDONNO A.**, ODDO G.**, STAFFIERI F.P.***, SANTARCANGELO N.****, MARAGNO M.*****, TRENTINELLA F.****** *Centro Studi S.r.l., **iInformatica Srls, ***Studio Legale Staffieri, ****BNG SpA *****Ordine degli Ingegneri della Provincia di Matera, ******Università Telematica E-campus [email protected] More and more information appear in the web every day, in our world interconnected by the web. However, the growing of misinformation (unintentional inaccurate information) and disinformation (intentional inaccurate information) of the web contents introduces a lot of noise in the analysis and results of “Big Data”. In this work we show a review about the information web spoofing and introduce an innovative system as solution about the investigation of the notoriety of web data. Our system is based on a web crawler that performs a “text mining” activity on web data about an input text data considered by the user. The system considers the recurrence of the web data (input), weighing every entries found thanks to a knowledge base that associates a notoriety weight (from -3.0 for worst notoriety to +3.0 for best notoriety) to the website (e.g. the website www.ansa.it has notoriety +3.0, the website www.wikipedia.it has notoriety +2.0, the website nonciclopedia.wikia.com has notoriety -3.0). The knowledge base, developed by us, considers over 1000 websites and it can be shared and improved for research tasks. Our tool permits to provide a prototypal “filtering” system for the misinformation that is a ‘Big data’ problem for the web contents. It can be useful for search engines and also as tool for web browsers (it is able to suggest the notoriety of a displayed web content). As case study, in this paper, we consider the usability of a web data content as “accepted fact” in legal context, that represents an actual open topic. The importance of this topic can be related to the no update of the regulations and from the growing of fake information on the web. In this work we show the legal context about ‘accepted fact’ in Italian legislation and propose our ‘filtering system’ as possible tool for legal field that aims to provide

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us