
Comparison of Physical Connectivity Particle Tracking Models in the Flemish Cap Region Shuangqiang Wang, Zeliang Wang, Camille Lirette, Andrew J. Davies, and Ellen. L. Kenchington Ocean and Ecosystem Sciences Division Maritimes Region Fisheries and Oceans Canada Bedford Institute of Oceanography PO Box 1006 Dartmouth, Nova Scotia Canada B2Y 4A2 2019 Canadian Technical Report of Fisheries and Aquatic Sciences 3353 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un public international et ils sont distribués à cet échelon. II n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-à-dire les sciences halieutiques et aquatiques. Les rapports techniques peuvent être cités comme des publications à part entière. Le titre exact figure au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la base de données Résumés des sciences aquatiques et halieutiques. Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les numéros 1 à 456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 925. i Canadian Technical Report of Fisheries and Aquatic Sciences 3353 2019 Comparison of Physical Connectivity Particle Tracking Models in the Flemish Cap Region by Shuangqiang Wang, Zeliang Wang, Camille Lirette, Andrew J. Davies1, and Ellen L. Kenchington Ocean and Ecosystem Sciences Division Maritimes Region Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth, N.S. Canada B2Y 4A2 1 University of Rhode Island, Department of Biological Sciences, Woodward Hall, 9 East Alumni Avenue, Kingston, RI 02881, USA ii © Her Majesty the Queen in Right of Canada, 2019. Cat. No. Fs97-6/3353E-PDF ISBN 978-0-660-33600-8 ISSN 1488-5379 Correct citation for this publication: Wang, S., Wang, Z., Lirette, C., Davies, A. and Kenchington, E. 2019. Comparison of Physical Connectivity Particle Tracking Models in the Flemish Cap Region. Can. Tech. Rep. Fish. Aquat. Sci. 3353: v + 39 p. iii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iv RÉSUMÉ ........................................................................................................................................ v INTRODUCTION .......................................................................................................................... 1 METHODOLOGY ......................................................................................................................... 3 PARCELS FRAMEWORK ........................................................................................................ 3 DETERMINATION OF OPTIMAL PARAMETER VALUES................................................. 3 Number of Particles ................................................................................................................ 4 Time Step ................................................................................................................................ 4 Random Walk ......................................................................................................................... 4 Number of Particles with Random Walk Applied .................................................................. 5 SIMULATION EXPERIMENTS ............................................................................................... 5 Impacts of Random Walk on Connectivity ............................................................................. 5 Identification of Potential Source Populations ....................................................................... 6 Connectivity among Closed Areas.......................................................................................... 7 COMPARISON OF CONNECTIONS PRODUCED WITH WEBDROGUE AND PARCELS ..................................................................................................................................................... 7 RESULTS ....................................................................................................................................... 7 OPTIMIZATION OF PARAMETERS ...................................................................................... 7 Number of Particles to Seed ................................................................................................... 7 Time Step ................................................................................................................................ 9 Random Walk ....................................................................................................................... 10 Number of Particles with Random Walk Applied ................................................................ 18 SIMULATION EXPERIMENTS ............................................................................................. 20 Impacts of Random Walk on Connectivity ........................................................................... 20 Identification of Potential Source Populations ..................................................................... 22 Connectivity Among Closed Areas ...................................................................................... 24 COMPARISON OF CONNECTIONS PRODUCED WITH WEBDROGUE AND PARCELS ................................................................................................................................................... 32 DISCUSSION ............................................................................................................................... 34 ACKNOWLEDGEMENTS .......................................................................................................... 36 REFERENCES ............................................................................................................................. 36 APPENDIX 1. CORRECTING PARTICLE TRAJECTORIES EXTENDING ONTO LAND THROUGH RANDOM WALK IN PARCELS ........................................................................... 39 iv ABSTRACT Wang, S., Wang, Z., Lirette, C., Davies, A. and Kenchington, E. 2019. Comparison of Physical Connectivity Particle Tracking Models in the Flemish Cap Region. Can. Tech. Rep. Fish. Aquat. Sci. 3353: v + 39 p. Lagrangian particle tracking models are considered an important tool for assessing connectivity in the deep sea. A number of user interfaces are available to assess oceanic structural connectivity. These use currents produced by state-of-the-art ocean models, and can be used to run forward/hindcast simulations, habitat connectivity calculations, comparison of physical circulation models, etc. We compared simulation outputs from two particle tracking packages, WebDrogue v.0.7 and the Parcels framework version 2.1, the former having been previously published in a study investigating connectivity patterns among closed areas in the NAFO Regulatory Area. We further tested a combination of parameters used by Parcels (number of particles, particle spacing, time step, random walk) to determine optimal values for future applications. Parcels identified more connectivity than WebDrogue with differences attributed to higher current velocities in the underlying ocean model, although drift pathways were
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages46 Page
-
File Size-