Preconditioned and Randomized Methods for Efficient Bayesian Inversion of Large Data Sets and Their Application to Flow and Transport in Porous Media

Preconditioned and Randomized Methods for Efficient Bayesian Inversion of Large Data Sets and Their Application to Flow and Transport in Porous Media

Dissertation submitted to the Combined Faculty for the Natural Sciences and Mathematics of Heidelberg University, Germany for the degree of Doctor of Natural Sciences Put forward by Diplom-Mathematiker Ole Klein Born in Frankenthal (Pfalz) Date of oral examination: 12.07.2016 Preconditioned and Randomized Methods for Efficient Bayesian Inversion of Large Data Sets and their Application to Flow and Transport in Porous Media Supervisor: Prof. Dr. Peter Bastian Second supervisor: Prof. Dr. Olaf A Cirpka Abstract The efficient and reliable estimation of model parameters is important for the simula- tion and optimization of physical processes. Most models contain variables that have to be adjusted, e.g. in the form of material properties, and the uncertainty of state estimates and predictions is directly linked to the uncertainty of these parameters. Therefore, efficient methods for parameter estimation and uncertainty quantification are required. If the physical system is spatially highly heterogeneous, then the num- ber of model parameters can be very large. At the same time, imaging techniques and time series can provide a large number of measurements for model calibration. Many of the available methods become inefficient or outright unfeasible if both the number of model parameters and the number of state observations are large. This thesis is concerned with the development of methods that remain efficient when a large number of measurements is used to estimate an even larger number of model parameters. The main result is a special preconditioned Conjugate Gradients method that can achieve both quasilinear complexity in the number of parameters and pseudo- constant complexity in the number of measurements. The thesis also provides ran- domized methods that allow linearized uncertainty quantification for large systems, taking redundancy in the measurements into account if applicable. Zusammenfassung Die effiziente und zuverlässige Schätzung von Modellparametern ist wichtig fürdie Simulation und Optimierung physikalischer Prozesse. Die meisten Modelle enthalten unbekannte Größen, z.B. Materialkonstanten, und die Unsicherheit von Zustands- schätzungen und Vorhersagen wird maßgeblich durch die Unsicherheit dieser Para- meter beeinflusst. Daher werden effiziente Methoden für Parameterschätzung und Unsicherheitsschätzung benötigt. Falls das physikalische System starke räumliche Heterogenität aufweist, kann die Anzahl der Modellparameter sehr groß sein. Gleich- zeitig können bildgebende Verfahren und Zeitreihen große Mengen an Messungen für die Modellkalibrierung bereit stellen. Viele der zur Verfügung stehenden Methoden werden ineffizient oder völlig unbrauchbar, wenn sowohl die Anzahl an Parametern als auch die Anzahl an Zustandsbeobachtungen groß sind. Diese Arbeit befasst sich mit der Entwicklung von Methoden, die effizient bleiben, wenn eine große Zahl Messungen genutzt wird um eine noch größere Zahl Modellpa- rameter zu schätzen. Das Hauptresultat ist eine spezielle vorkonditionierte Variante des CG-Verfahrens, die quasilineare Komplexität in der Anzahl der Parameter und pseudo-konstante Komplexität in der Anzahl der Messungen erreichen kann. Die Ar- beit stellt außerdem randomisierte Methoden zur Verfügung, die eine linearisierte Unsicherheitsschätzung für große Systeme ermöglichen und dabei eine eventuell vor- handene Redundanz in den Messungen berücksichtigen. Acknowledgments I would like to thank Prof. Dr. Peter Bastian for giving me the opportunity to carry out my research and write this thesis, for his encouragement and guidance along the way, and for giving me the freedom to find my own path. The cooperative and friendly atmosphere of his research group helped me a lot during my research, and its former and present members have always been willing to help and provide support. I had many fruitful discussions with Dr. Adrian Ngo, who helped me shape my ideas and work out the details of the methods I developed. Dr. Steffen Müthing was always supportive when problems with the hardware cropped up, and Dr. Olaf Ippisch provided helpful advice when I implemented the model equations. I would also like to thank Prof. Dr. Olaf A Cirpka for his insightful comments and suggestions. His explanations were always instructive, and through his guidance I acquired a deeper understanding of the subject matter. Large parts of this thesis are based on or motivated by the research he and his colleagues conducted throughout the years. My stay at his research group was very productive, and I learned a lot through the many discussions with Dr. Wei Li and Dr. Ronnie Schwede. I am grateful to everyone who supported me along the way. My membership in the Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp) has given me the opportunity to meet many researchers and fellows with completely different academic backgrounds. The discussions Ihad in this environment often produced new insights and ideas, sometimes through con- versations that had only a cursory connection to my own research. I would also like to thank Prof. Dr. Kurt Roth and his research group for the interesting discussions we had. They have positively influenced my research and the methods I developed. I am thankful for the opportunity to write my thesis at the Interdisciplinary Cen- ter for Scientific Computing (IWR) of Heidelberg University, and I would liketo acknowledge the support that I have received from the members and staff of IWR and the Faculty of Mathematics and Computer Science. This research has in parts been funded through the GEOTECHNOLOGIEN research and development program of the Federal Ministry of Education and Research of Germany (BMBF), and their support is gratefully acknowledged. Contents 1 Introduction 1 1.1 Modeling and Inverse Modeling ...................... 2 1.2 Application: Flow and Transport in Porous Media ........... 6 1.3 Major Contributions ............................ 10 1.4 Document Outline ............................. 11 2 Method Description 13 2.1 Random Variables and Covariance Matrices ............... 14 2.1.1 Gaussian Random Vectors and Random Fields ......... 15 2.1.2 Covariance Matrix Calculus .................... 17 2.2 Bayesian Inference ............................. 20 2.2.1 Bayesian Inverse Problem ..................... 22 2.2.2 Maximum A Posteriori ....................... 23 2.3 Preconditioned Conjugate Gradients ................... 25 2.3.1 Steepest Descent .......................... 26 2.3.2 Conjugate Gradients ........................ 27 2.3.3 Preconditioning ........................... 29 2.3.4 Convergence Behavior ....................... 33 2.3.5 Caching PCG Version ....................... 36 2.4 Calculation of Sensitivities ......................... 38 2.4.1 Lagrangian Formalism ....................... 40 2.4.2 Adjoint Model and Problem .................... 41 2.5 Uncertainty Quantification ......................... 43 2.5.1 Randomized Spectral Decomposition ............... 46 2.5.2 Randomized Singular Value Decomposition ........... 48 2.6 A Posteriori Analysis and Sample Generation .............. 50 2.6.1 Realizations of the Posterior Distribution ............ 53 2.6.2 Normalized Errors ......................... 55 2.6.3 Normalized Residuals ....................... 58 2.7 Revisiting the Preconditioner ....................... 60 2.8 Summary and Discussion ......................... 63 2.8.1 Computational Costs ........................ 65 2.8.2 Memory Requirements ....................... 66 3 Alternative Approaches 69 3.1 Regularization Techniques ......................... 69 ix Contents 3.2 Treatment of the Inverse Problem ..................... 73 3.3 Optimization Schemes ........................... 76 3.3.1 Gauss-Newton and Cokriging Equations ............. 76 3.3.2 Randomized Gauss-Newton and Levenberg-Marquardt ..... 78 4 Governing Equations 81 4.1 Groundwater Flow Equation ....................... 81 4.2 Richards Equation ............................. 86 4.3 Transport Equation ............................ 91 4.4 Adjoint Equations ............................. 94 4.4.1 Groundwater Flow ......................... 94 4.4.2 Richards Regime .......................... 103 5 Implementation Details 109 5.1 Time Discretization ............................ 109 5.1.1 Runge-Kutta Methods ....................... 110 5.1.2 Adaptive Timestepping ...................... 113 5.2 Space Discretization ............................ 115 5.2.1 Discontinuous Galerkin ...................... 115 5.2.2 Diffusion Terms ........................... 117 5.2.3 Convection Terms ......................... 118 5.2.4 Remaining Terms and Boundary Conditions ........... 119 5.2.5 Slope Limiter and Flux Reconstruction ............. 120 5.3 Libraries and Software Packages ..................... 123 6 Applications 125 6.1 Dipole Experiments ............................ 126 6.1.1 Inversion of Stationary Flow in 2D ................ 126 6.1.2 Inversion of Stationary Flow in 3D ................ 132 6.1.3 Inversion under Transient Conditions ............... 137 6.2 Inversion of Solute Transport ....................... 140 6.3 Inversion of the Transient Richards Equation .............. 144 7 Conclusions 153 7.1 Summary .................................. 153 7.2 Outlook ................................... 155 x 1 Introduction This thesis is concerned with the estimation of model parameters from observations of dependent quantities, specifically the efficient estimation of spatially distributed parameter fields from relatively

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    183 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us