Lone Star College-Cyfair Formula Sheet

Lone Star College-Cyfair Formula Sheet

Lone Star College-CyFair Formula Sheet The following formulas are critical for success in the indicated course. Student CANNOT bring these formulas on a formula sheet or card to tests and instructors MUST NOT provide them during the test either on the board or on a handout. They MUST be memorized. Math 1314 College Algebra FORMULAS/EQUATIONS If 푃 = (푥 , 푦 ) and 푃 = (푥 , 푦 ), the distance from 푃 to 푃 is Distance Formula 1 1 1 2 2 2 1 2 2 2 푑(푃1, 푃2) = √(푥2 − 푥1) + (푦2 − 푦1) Standard Equation The standard equation of a circle of radius 푟 with center at (ℎ, 푘) is Of a Circle (푥 − ℎ)2 + (푦 − 푘)2 = 푟2 The slope 푚 of the line containing the points 푃1 = (푥1, 푦1) and 푃2 = (푥2, 푦2) is 푦2 − 푦1 Slope Formula 푚 = if 푥1 ≠ 푥2 푥2 − 푥1 푚 is undefined if 푥1 = 푥2 Point-slope The equation of a line with slope 푚 containing the points (푥1, 푦1) is Equation of a Line 푦 − 푦1 = 푚(푥 − 푥1) Slope-Intercept Equation of The equation of a line with slope 푚 and 푦-intercept 푏 is a Line 푦 = 푚푥 + 푏 The solutions of the equation 푎푥2 + 푏푥 + 푐 = 0, 푎 ≠ 0, are Quadratic Formula −푏 ± √푏2 − 4푎푐 푥 = 2푎 LIBRARY OF FUNCTIONS Constant Function Identity Function Square Function Cube Function 푓(푥) = 푏 푓(푥) = 푥 푓(푥) = 푥2 푓(푥) = 푥3 Reciprocal Function Squared Reciprocal Square Root Function Cube Root Function 1 Function 푓(푥) = 푥 푓(푥) = 3 푥 푓(푥) = √ √ 푥 1 푓(푥) = 푥2 Absolute Function Exponential Function Natural Logarithm Greatest Integer 푓(푥) = |푥| 푓(푥) = 푒푥 Function Function 푓(푥) = ln 푥 푓(푥) = ⟦푥⟧ 풚 풚 풇(풙) = 풆풙 풚 풇(풙) = 퐥퐧풙 풇(풙) = ⟦풙⟧ (ퟏ, 풆) ퟏ ൬−ퟏ, ൰ (풆, ퟏ) 풆 (ퟎ, ퟏ) (ퟏ, ퟎ) 풙 풙 ퟏ 풙 ൬ , −ퟏ൰ 풆 GEOMETRY FOMULAS r 푟 = Radius, 퐴 = Area, 퐶 = Circumference Circle ퟐ 푨 = 흅풓 푪 = ퟐ흅풓 푏 = Base, ℎ = Altitude(Height), 퐴 = Area Triangle h ퟏ 푨 = 풃풉 ퟐ b 푤 푙 = Length, 푤 = Width, 퐴 = Area, 푃 = Perimeter Rectangle 푨 = 풍풘 푷 = ퟐ풍 + ퟐ풘 푙 푙 = Length, 푤 = Width, ℎ = Height, Rectangular 푉 = Volume, 푆 = Surface Area Box 푽 = 풍풘풉 푺 = ퟐ풍풘 + ퟐ풍풉 + ퟐ풘풉 PROPERTIES OF LOGARITHMS • log푎(푀푁) = log푎 푀 + log푎 푁 푀 • log ( ) = log 푀 − log 푁 푎 푁 푎 푎 푟 • log푎 푀 = 푟 log푎 푀 log 푀 ln 푀 • log 푀 = = 푎 log 푎 ln 푎 • 푎푥 = 푒푥 ln 푎 Math 1316 Trigonometry Students in Trigonometry should know all the formulas from Math 1314 College Algebra plus the following. Unit Circle 풙ퟐ + 풚ퟐ = ퟏ TRIGONOMETRIC FUNCTIONS Of an Acute Angle 푏 Opposite 푐 Hypotenuse sin 휃 = = csc 휃 = = 푐 Hypotenuse 푏 Opposite 푎 Adjacent 푐 Hypotenuse cos 휃 = = sec 휃 = = 푐 Hypotenuse 푎 Adjacent 푏 Opposite 푎 Adjacent tan 휃 = = cot 휃 = = 푎 Adjacent 푏 Opposite Of a General Angle 풚 푏 푟 sin 휃 = csc 휃 = , 푏 ≠ 0 ퟐ ퟐ 푟 푏 풓 = √풂 + 풃 푎 푟 cos 휃 = sec 휃 = , 푎 ≠ 0 푟 푎 (풂, 풃) 휽 풙 푏 푎 tan 휃 = , 푎 ≠ 0 cot 휃 = , 푏 ≠ 0 푎 푏 APPLICATIONS 풔 Arc Length: 푠 = 푟휃, 휃 in radians 1 Area of Sector: 퐴 = 푟2휃, 휃 in radians 2 휃 Angular Speed: 휔 = , 휃 in radians 푡 푠 Linear Speed: 푣 = , 푣 = 휔푟 푡 SOLVING TRIANGLES sin 퐴 sin 퐵 sin 퐶 푩 Law of Sine: = = 푎 푏 푐 퐜 풂 Law of Cosine: 푎2 = 푏2 + 푐2 − 2푏푐 cos 퐴 2 2 2 푨 푪 푏 = 푎 + 푐 − 2푎푐 cos 퐴 b 푐2 = 푎2 + 푏2 − 2푎푏 cos 퐴 TRIGONOMETRIC IDENTITIES Fundamental Identities sin 휃 cos 휃 tan휃 = cot 휃 = cos 휃 sin 휃 1 1 1 csc 휃 = sec 휃 = cot 휃 = sin 휃 cos 휃 tan 휃 sin2 휃 + cos2 휃 = 1 1 + tan2 휃 = sec2 휃 1 + cot2 휃 = csc2 휃 Even-Odd Identities Cofunction Identities sin(−휃) = − sin 휃 csc( − 휃) = − csc 휃 cos(90° − 휃) = sin 휃 cos(−휃) = cos 휃 sec( − 휃) = sec 휃 sin(90° − 휃) = cos 휃 tan(−휃) = − tan 휃 cot( − 휃) = − cot 휃 tan(90° − 휃) = tan 휃 Sum and Difference Formulas Double-Angle Formulas sin(훼 + 훽) = sin 훼 cos 훽 + cos 훼 sin 훽 sin(2휃) = 2 sin 휃 cos 휃 sin(훼 − 훽) = sin 훼 cos 훽 − cos 훼 sin 훽 cos(2휃) = cos2 휃 − sin2 휃 cos(훼 + 훽) = cos 훼 cos 훽 − sin 훼 sin 훽 = 2 cos2 휃 − 1 cos(훼 − 훽) = cos 훼 cos 훽 + sin 훼 sin 훽 = 1 − 2sin2 휃 tan 훼 + tan 훽 2 tan 휃 tan(훼 + 훽) = tan(2휃) = 1 − tan 훼 tan 훽 1 − tan2 휃 tan 훼 − tan 훽 tan(훼 − 훽) = 1 + tan 훼 tan 훽 LIBRARY OF TRIGONOMETRIC FUNCTIONS Sine Function 푓(푥) = sin 푥 Cosine Function 푓(푥) = cos 푥 Tangent Function 푓(푥) = tan 푥 Secant Function 푓(푥) = sec 푥 Cosecant Function 푓(푥) = csc 푥 Cotangent Function 푓(푥) = cot 푥 Math 2412 Precalculus Students in Precalculus should know all the formulas from Math 1314 College Algebra and Math 1316 Trigonometry plus the following. Half Angle Formulas 1−cos 2휃 1+cos 2휃 1−cos 2휃 sin 휃 = ±√ cos 휃 = ±√ tan 휃 = 2 2 sin 2휃 Products and Quotients of Complex Numbers in Polar Form Let 푧1 = 푟1(cos 휃1 + sin 휃1) and 푧2 = 푟2(cos 휃2 + sin 휃2). Then 푧1푧2 = 푟1푟2[cos(휃1 + 휃2) + sin(휃1 + 휃2)] and, if 푧2 ≠ 0, 푧1 푟1 = [cos(휃1 − 휃2) + sin(휃1 − 휃2)]. 푧2 푟2 DeMoivre’s Theorem If 푧 = 푟(cos 휃 + sin 휃) and n is a positive integer, 푧푛 = 푟푛[cos(푛휃) + sin(푛휃)]. Complex Roots Let 푤 = 푟(cos 휃0 + sin 휃0) be a complex number and let n≥2be an integer. If 푤 ≠ 0, there are n distinct complex nth roots of 푤, given by the formula 휃0 2푘휋 휃0 2푘휋 푧 = 푛√푟 [cos ൬ + ൰ + sin ൬ + ൰]. 푘 푛 푛 푛 푛 Where 푘 = 0, 1, 2, ⋯ , 푛 − 1. CONICS 풙ퟐ + 풚ퟐ = ퟏ (ퟎ, 풓) Circle (−풓, ퟎ) (풓, ퟎ) (ퟎ, −풓) ퟐ ퟐ ퟐ ퟐ 풚 = ퟒ풂풙 풚 = −ퟒ풂풙 풙 = ퟒ풂풚 풙 = −ퟒ풂풚 푫: 풙 = −풂 푫: 풙 = 풂 푫: 풚 = 풂 Parabola 푭(ퟎ, 풂) 푽 푭(−풂, ퟎ) 푽 푽 푭(풂, ퟎ) 푽 푭(ퟎ, −풂) 푫: 풚 = −풂 풙ퟐ 풚ퟐ 풙ퟐ 풚ퟐ + = ퟏ, 푎 > 푏, 푐2 = 푎2 − 푏2 + = ퟏ, 푎 > 푏, 푐2 = 푎2 − 푏2 풂ퟐ 풃ퟐ 풃ퟐ 풂ퟐ 푽ퟐ(ퟎ, 풂) (ퟎ, 풃) 푭 (ퟎ, 풄) ퟐ Ellipse 푽ퟏ(−풂, ퟎ) 푭ퟏ(−풄, ퟎ) 푭ퟐ(풄, ퟎ) 푽ퟐ(풂, ퟎ) (−풃, ퟎ) (풃, ퟎ) 푭ퟏ(ퟎ, −풄) (ퟎ, −풃) 푽ퟏ(ퟎ, −풂) 풙ퟐ 풚ퟐ 풚ퟐ 풙ퟐ − = ퟏ, 푐2 = 푎2 + 푏2 − = ퟏ, 푐2 = 푎2 + 푏2 풂ퟐ 풃ퟐ 풂ퟐ 풃ퟐ 푏 푏 푎 푎 Asymptote: 푦 = 푥, 푦 = − 푥 Asymptote: 푦 = 푥, 푦 = − 푥 푎 푎 푏 푏 푭ퟐ(ퟎ, 풄) 퐕ퟏ(−풂, ퟎ) 퐕ퟐ(풂, ퟎ) Hyperbola 퐕ퟐ(ퟎ, 풂) 푭ퟏ(−풄, ퟎ) 푭ퟐ(풄, ퟎ) 퐕ퟏ(ퟎ, −풂) 푭ퟏ(ퟎ, −풄) POLAR EQUATIONS OF CONICS(Focus at the Pole, Eccentricity 풆) Equation Description 푒푝 Directrix is perpendicular to the polar axis at a distance 푝 units to the left of 푟 = 1 − 푒 cos 휃 the pole: 푥 = −푝 푒푝 Directrix is perpendicular to the polar axis at a distance 푝 units to the right of 푟 = 1 + 푒 cos 휃 the pole: 푥 = 푝 푒푝 Directrix is parallel to the polar axis at a distance 푝 units above the pole: 푟 = 1 + 푒 sin 휃 푦 = 푝 푒푝 Directrix is parallel to the polar axis at a distance 푝 units below the pole: 푟 = 1 − 푒 sin 휃 푦 = −푝 Eccentricity If 푒 = 1, the conic is a parabola; the axis of symmetry is perpendicular to the directrix. If 0 < 푒 < 1, the conic is an ellipse; the major axis is perpendicular to the directrix. If 푒 > 1, the conic is a hyperbola; the transverse axis is perpendicular to the directrix. ARITHMETIC SEQUENCE 푎푛 = 푎1 + (푛 − 1)푑 푆푛 = 푎1 + (푎1 + 푑) + (푎1 + 2푑) + ⋯ + [푎1 + (푛 − 1)푑] 푛 = [2푎 + (푛 − 1)푑] 2 1 푛 = [푎 + 푎 ] 2 1 푛 GEOMETRIC SEQUENCE 푛−1 푎푛 = 푎1푟 2 푛−1 푆푛 = 푎1 + 푎1푟 + 푎1푟 + ⋯ + 푎1푟 푛) 푎1(1−푟 = 1−푟 GEOMETRIC SERIES If |푟| < 1, ∞ 푎 푎 + 푎 푟 + 푎 푟2 + ⋯ = ∑ 푎 푟푘−1 = 1 1 1 1 1 1 − 푟 푘=1 If |푟| ≥ 1, the infinite geometric series does not have a sum. PERMUTATIONS/COMBINATIONS 0! = 1 1! = 1 푛! = 푛(푛 − 1) ∙ ⋯ ∙ (3)(2)(1) 푛! 푃(푛, 푟) = (푛 − 푟)! 푛 푛! C(n, r) = ( ) = 푟 (푛 − 푟)! 푟! BINOMIAL THEOREM 푛 푛 푛 (푎 + 푏)푛 = 푎푛 + ( ) 푏푎푛−1 + ( ) 푏2푎푛−2 + ⋯ + ( ) 푏푛−1푎 + 푏푛 1 2 푛 − 1 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us