
<p>Primary Mechanical Vibrators </p><p>Music 206: Mechanical Vibration </p><p>• With a model of a wind instrument body, a model of the mechanical “primary” resonator is needed for a complete instrument. </p><p>Tamara Smyth, [email protected] <br>Department of Music, <br>University of California, San Diego (UCSD) </p><p>November 15, 2019 </p><p>• Many sounds are produced by coupling the mechanical vibrations of a source to the resonance of an acoustic tube: </p><p>– In vocal systems, air pressure from the lungs controls the oscillation of a membrane (vocal fold), creating a variable constriction through which air flows. <br>– Similarly, blowing into the mouthpiece of a clarinet will cause the reed to vibrate, narrowing and widening the airflow aperture to the bore. </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Mass-spring System </li><li style="flex:1">Equation of Motion </li></ul><p></p><p>• Before modeling this mechanical vibrating system, let’s review some acoustics, and mechanical vibration. <br>• The force on an object having mass m and acceleration a may be determined using Newton’s </p><p>second law of motion </p><p>• The simplest oscillator is the mass-spring system: </p><p>F = ma. </p><p>– a horizontal spring fixed at one end with a mass connected to the other. <br>• There is an elastic force restoring the mass to its </p><p>equilibrium position, given by Hooke’s law </p><p>m</p><p>F = −Kx, </p><p>Kx</p><p>where K is a constant describing the stiffness of the spring. </p><p>Figure 1: An ideal mass-spring system. </p><p>• The spring force is equal and opposite to the force due to acceleration, yielding the equation of motion: <br>• The motion of an object can be describe in terms of its </p><p>d<sup style="top: -0.31em;">2</sup>x </p><p>1. displacement x(t) </p><p></p><ul style="display: flex;"><li style="flex:1">m</li><li style="flex:1">= −Kx. </li></ul><p>dt<sup style="top: -0.25em;">2 </sup>dx </p><p>2. velocity v(t) = </p><p>dt dv d<sup style="top: -0.31em;">2</sup>x </p><p>3. acceleration a(t) = </p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">dt </li><li style="flex:1">dt<sup style="top: -0.25em;">2 </sup></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">3</li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">4</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Solution to Equation of Motion </li><li style="flex:1">Motion of the Mass Spring </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">• The solution to </li><li style="flex:1">• We can make the following inferences from the </li></ul><p>oscillatory motion (displacement) of the mass-spring system written as: </p><p>d<sup style="top: -0.315em;">2</sup>x dt<sup style="top: -0.25em;">2 </sup></p><ul style="display: flex;"><li style="flex:1">m</li><li style="flex:1">= −Kx, </li></ul><p></p><p>is a function proportional to its second derivative. <br>• This condition is met by the sinusoid: </p><p>x = A cos(ω<sub style="top: 0.13em;">0</sub>t + φ) x(t) = A cos(ω<sub style="top: 0.13em;">0</sub>t) </p><p>– Energy is conserved, the oscillation never decays. </p><p>– At the peaks: </p><p>dx </p><p>∗ the spring is maximally compressed or stretched; ∗ the mass is momentarily stopped as it is changing direction; </p><p>= −ω<sub style="top: 0.13em;">0</sub>A sin(ω<sub style="top: 0.13em;">0</sub>t + φ) </p><p>dt d<sup style="top: -0.315em;">2</sup>x </p><p>= −ω<sub style="top: 0.215em;">0</sub><sup style="top: -0.355em;">2</sup>A cos(ω<sub style="top: 0.13em;">0</sub>t + φ) </p><p>dt<sup style="top: -0.245em;">2 </sup></p><p>– At zero crossings, </p><p>• Substituting into the equation of motion yields: </p><p>d<sup style="top: -0.31em;">2</sup>x </p><p>∗ the spring is momentarily relaxed (it is neither compressed nor stressed), and thus holds no PE <br>∗ all energy is in the form of KE. </p><p></p><ul style="display: flex;"><li style="flex:1">m</li><li style="flex:1">= −Kx, </li></ul><p>dt<sup style="top: -0.25em;">2 </sup></p><p>✭</p><ul style="display: flex;"><li style="flex:1">✭</li><li style="flex:1">✭</li></ul><p>✭</p><p>K</p><p>✭</p><ul style="display: flex;"><li style="flex:1">✭</li><li style="flex:1">✭</li></ul><p>✭<br>✭</p><p>s(ω<sub style="top: 0.13em;">0</sub>t + φ), </p><p>2</p><p>0✭ </p><ul style="display: flex;"><li style="flex:1">✭</li><li style="flex:1">✭</li><li style="flex:1">✭</li></ul><p>✭</p><p>– Since energy is conserved, the KE at zero crossings is exactly the amount needed to stretch the spring to displacement −A or compress it to +A. </p><p>✭</p><ul style="display: flex;"><li style="flex:1">✭</li><li style="flex:1">✭</li></ul><p></p><p>s(ω<sub style="top: 0.13em;">0</sub>t + φ) = − A co </p><p></p><ul style="display: flex;"><li style="flex:1">✭</li><li style="flex:1">✭</li></ul><p></p><p>−ω A co </p><p></p><ul style="display: flex;"><li style="flex:1">✭</li><li style="flex:1">✭</li></ul><p></p><ul style="display: flex;"><li style="flex:1">✭</li><li style="flex:1">✭</li><li style="flex:1">✭</li><li style="flex:1">✭</li></ul><p>✭</p><p>m</p><p>showing that the natural frequency of vibration is </p><p>r</p><p>K</p><p>ω<sub style="top: 0.13em;">0 </sub>= </p><p>.m</p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">5</li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">6</li></ul><p></p><p>PE and KE in the mass-spring oscillator <br>Conservation of Energy </p><p>• The total energy of the ideal mass-spring system is constant: <br>• All vibrating systems consist of this interplay between an energy storing component and an energy carrying (“massy”) component. </p><p>E = PE + KE </p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">KA<sup style="top: -0.355em;">2 </sup>sin<sup style="top: -0.355em;">2</sup>(ω<sub style="top: 0.125em;">0</sub>t + φ) + cos<sup style="top: -0.355em;">2</sup>(ω<sub style="top: 0.125em;">0</sub>t + φ) </li></ul><p>21</p><p>• The potential energy PE of the ideal mass-spring system is equal to the work done<sup style="top: -0.315em;">1 </sup>stretching or compressing the spring: </p><p>=</p><p>KA<sup style="top: -0.355em;">2 </sup></p><p>2</p><p>Potential Energy (PE) </p><p>1<br>0.8 0.6 0.4 0.2 <br>0</p><p>1</p><p>PE = Kx<sup style="top: -0.355em;">2</sup>, </p><p>21<br>=</p><p>KA<sup style="top: -0.355em;">2 </sup>cos<sup style="top: -0.355em;">2</sup>(ω<sub style="top: 0.13em;">0</sub>t + φ). </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li><li style="flex:1">0.5 </li><li style="flex:1">0.6 </li><li style="flex:1">0.7 </li><li style="flex:1">0.8 </li><li style="flex:1">0.9 </li><li style="flex:1">1</li></ul><p></p><p>• The kinetic energy KE in the system is given by the motion of mass: </p><p>Time (s) </p><p>Kinetic Energy (KE) </p><p>1<br>0.8 0.6 0.4 0.2 <br>0</p><p>1</p><p>KE = mv<sup style="top: -0.355em;">2</sup>, </p><p>2</p><p>K</p><p>1</p><p>✟✯ ✟</p><p><sub style="top: 0.1em;">✟ </sub>2 </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>✟</p><p>mω A sin (ω<sub style="top: 0.13em;">0</sub>t + φ) </p><p>✟</p><p>==</p><p>0</p><p>21</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li><li style="flex:1">0.5 </li></ul><p>Time (s) </p><ul style="display: flex;"><li style="flex:1">0.6 </li><li style="flex:1">0.7 </li><li style="flex:1">0.8 </li><li style="flex:1">0.9 </li><li style="flex:1">1</li></ul><p></p><p>KA<sup style="top: -0.355em;">2 </sup>sin<sup style="top: -0.355em;">2</sup>(ω<sub style="top: 0.13em;">0</sub>t + φ). </p><p>2</p><p>Figure 2: The interplay between PE and KE. </p><p><sup style="top: -0.15em;">1</sup>work is the product of the average force and the distance moved in the direction of the force </p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">7</li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">8</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Other Simple Oscillators—Pendulum </li><li style="flex:1">Other Simple Oscillators—Helmholtz </li></ul><p>Resonator </p><p>• Besides the mass-spring, there are other examples of </p><ul style="display: flex;"><li style="flex:1">simple harmonic motion. </li><li style="flex:1">• A Helmholtz Resonator: The mass of air in the </li></ul><p>neck serves as a piston, and the larger volume as the spring. <br>• A pendulum: a mass m attached to a string of length l vibrates in simple harmonic motion, provided that x ≪ l. </p><p>S<br>Lm</p><p>V</p><p>lmx</p><p>• The resonant frequency of the Helmholtz resonator is given by </p><p>Figure 3: A simple pendulum. </p><p>r</p><p></p><ul style="display: flex;"><li style="flex:1">c</li><li style="flex:1">a</li></ul><p></p><p>f<sub style="top: 0.13em;">0 </sub>= </p><p>,<br>2π V L </p><p>where a is the area of the neck, V is the volume, L is the length of the neck and c is the speed of sound. <br>• The frequency of vibration is </p><p>r</p><p>1</p><p>gl</p><ul style="display: flex;"><li style="flex:1">f = </li><li style="flex:1">,</li></ul><p>2π </p><p>where g is the acceleration due to gravity. <br>• According to this equation, would changing the mass change the frequency? </p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">9</li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">10 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Damped Vibration </li><li style="flex:1">Mass-spring-damper system </li></ul><p></p><p>• In a real system, mechanical energy is lost due to friction and other mechanisms causing damping. <br>• Damping of an oscillating system corresponds to a loss of energy or equivalently, a decrease in the amplitude of vibration. <br>• Unless energy is reintroduced into the system, the </p><p>amplitude of the vibrations with decrease with time. </p><p>Km</p><p>• A change in peak amplitude with time is called an envelope, and if the envelope decreases, the vibrating system is said to be damped. </p><p>x</p><p>Figure 5: A mass-spring-damper system. </p><p>1<br>0.8 </p><p>• The damper is a mechanical resistance (or viscosity) and introduces a drag force F<sub style="top: 0.13em;">r </sub>typically proportional to velocity, </p><p>0.6 0.4 0.2 </p><p>F<sub style="top: 0.13em;">r </sub>= −Rv </p><p>0</p><p>dx </p><p>= −R </p><p>,</p><p>−0.2 −0.4 −0.6 −0.8 <br>−1 </p><p>dt </p><p>where R is the mechanical resistance. </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li><li style="flex:1">0.5 </li><li style="flex:1">0.6 </li><li style="flex:1">0.7 </li><li style="flex:1">0.8 </li><li style="flex:1">0.9 </li><li style="flex:1">1</li></ul><p></p><p>Figure 4: A damped sinusoid. </p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">11 </li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">12 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Damped Equation of Motion </li><li style="flex:1">The Solution to the Damped Vibrator </li></ul><p></p><p>• The equation of motion for the damped system is obtained by adding the drag force into the equation of motion: <br>• The solution to the system equation </p><p>dx<sup style="top: -0.31em;">2 </sup>dt<sup style="top: -0.25em;">2 </sup>dx </p><p>+ 2α + ω<sub style="top: 0.215em;">0</sub><sup style="top: -0.355em;">2</sup>x = 0 </p><p>d<sup style="top: -0.31em;">2</sup>x dt<sup style="top: -0.25em;">2 </sup>dx dt m</p><p>+ R + Kx = 0, </p><p>has the form </p><p>dt </p><p>or alternatively </p><p>x = A(t) cos(ω<sub style="top: 0.13em;">d</sub>t + φ). </p><p>where A(t) is the amplitude envelope </p><p>A(t) = e<sup style="top: -0.355em;">−t/τ </sup>= e<sup style="top: -0.355em;">−αt </sup></p><p>and the natural frequency ω<sub style="top: 0.13em;">d </sub></p><p>d<sup style="top: -0.315em;">2</sup>x dt<sup style="top: -0.245em;">2 </sup>dx </p><p>+ 2α + ω<sub style="top: 0.215em;">0</sub><sup style="top: -0.355em;">2</sup>x = 0, </p><p>dt <br>,</p><p>where α = R/2m and ω<sub style="top: 0.21em;">0</sub><sup style="top: -0.315em;">2 </sup>= K/m. <br>• The damping in a system is often measured by the quantity τ, which is the time for the amplitude to decrease to 1/e: </p><p>q</p><p>ω<sub style="top: 0.13em;">d </sub>= ω<sub style="top: 0.23em;">0</sub><sup style="top: -0.295em;">2 </sup>− α<sup style="top: -0.245em;">2</sup>, </p><p>is lower than that of the ideal mass-spring system </p><p>r</p><p>1</p><p>2m τ = </p><p>=</p><p>.</p><ul style="display: flex;"><li style="flex:1">α</li><li style="flex:1">R</li></ul><p>K</p><p>ω<sub style="top: 0.13em;">0 </sub>= </p><p>.m</p><p>• Peak A and φ are determined by the initial displacement and velocity. </p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">13 </li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">14 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Systems with Several Masses </li><li style="flex:1">System Equations for Two </li></ul><p>Spring-Coupled Masses </p><p>• When there is a single mass, its motion has only one degree of freedom and one natural mode of vibration. </p><p>a</p><p></p><ul style="display: flex;"><li style="flex:1">x<sub style="top: 0.081em;">1 </sub></li><li style="flex:1">x<sub style="top: 0.081em;">2 </sub></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">m</li><li style="flex:1">m</li></ul><p></p><ul style="display: flex;"><li style="flex:1">K</li><li style="flex:1">K</li><li style="flex:1">K</li></ul><p></p><p>• Consider the system having 2 masses and 3 springs: </p><p>Figure 7: A short section of a string. </p><p>a</p><p></p><ul style="display: flex;"><li style="flex:1">x<sub style="top: 0.081em;">1 </sub></li><li style="flex:1">x<sub style="top: 0.081em;">2 </sub></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">m</li><li style="flex:1">m</li></ul><p></p><p>• The extensions of the left, middle and right springs are x<sub style="top: 0.13em;">1</sub>, x<sub style="top: 0.13em;">2 </sub>− x<sub style="top: 0.13em;">1</sub>, and −x<sub style="top: 0.13em;">2</sub>, respectively. </p><p></p><ul style="display: flex;"><li style="flex:1">K</li><li style="flex:1">K</li><li style="flex:1">K</li></ul><p></p><p>Figure 6: 2-mass 3-spring system. </p><p>• When a spring is extended by x, the mass attached to </p><ul style="display: flex;"><li style="flex:1">the </li><li style="flex:1">• The system will have two “normal” independent </li></ul><p>modes of vibration: <br>– left experiences a positive horizontal restoring </p><p>force F<sub style="top: 0.13em;">r </sub>= Kx; <br>1. one in which masses move in the same direction, </p><p>with frequency <br>– right experiences an equal and opposite force </p><p>F<sub style="top: 0.13em;">r </sub>= −Kx, </p><p>r</p><p>1</p><p>Km</p><p>f<sub style="top: 0.13em;">1 </sub>= </p><p>where K is the spring constant. </p><p>2π </p><p>• The equation of motion for the displacement of the first mass: <br>2. one in which masses move in different directions with frequency </p><p>r</p><p>mx¨<sub style="top: 0.13em;">1 </sub>= −Kx<sub style="top: 0.13em;">1 </sub>+ K(x<sub style="top: 0.13em;">2 </sub>− x<sub style="top: 0.13em;">1</sub>), </p><p>and the second mass, </p><p>1</p><p>3K </p><p>f<sub style="top: 0.13em;">2 </sub>= </p><p></p><ul style="display: flex;"><li style="flex:1">2π </li><li style="flex:1">m</li></ul><p></p><p>mx¨<sub style="top: 0.125em;">2 </sub>= −K(x<sub style="top: 0.125em;">2 </sub>− x<sub style="top: 0.125em;">1</sub>) + K(−x<sub style="top: 0.125em;">2</sub>). </p><p>(assuming equal masses and springs). </p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">15 </li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">16 </li></ul><p></p><p>Additional Modes <br>Forced (Driven) Vibration </p><p>• When modes are independent, the system can vibrate in one mode with minimal excitation of another. <br>• Getting they system to vibrate at any single mode of vibration requires exciting, or driving the system at the desired mode. <br>• Unless constrained to one-dimension, the masses can </p><p>also move transversely (at right-angles to the springs). </p><p>• See Dan Russell’s site: The forced harmonic oscillator </p><p>• An additional mass adds an additional mode of vibration. <br>• When a simple harmonic oscillator is driven by an external force F(t), the equation of motion becomes <br>• An N-mass system has N modes per degree of freedom. </p><p>mx¨ + Rx˙ + Kx = F(t). </p><p>• The driving force may have harmonic time dependence, it may be impulsive, or it can be a random function of time (noise). <br>• As N gets very large, it becomes convenient to view the system as a continuous string with a uniform mass density and tension. </p><p>Figure 8: Increasing the number of masses (Science of Sound). </p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">17 </li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">18 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Phase of Driven Vibration </li><li style="flex:1">Resonance </li></ul><p></p><p>• At resonance, there is maximum transfer of energy between the hand and the mass-spring system. <br>• The force driving an oscillation can be illustrated by holding a slinky in the vertical direction. </p><p>• Plotting amplitude A with respect to f<sub style="top: 0.13em;">h</sub>, shows a curve that is almost symmetrical about its peak <br>• Move the hand up and down slowly: </p><p>– At low f<sub style="top: 0.13em;">h</sub>, both the hand and the mass move in the same direction, and the spring hardly stretches at all. </p><p>A<sub style="top: 0.13em;">max</sub>, i.e., it has a bandwidth measured a distance </p><ul style="display: flex;"><li style="flex:1">down from A<sub style="top: 0.13em;">max </sub></li><li style="flex:1">.</li></ul><p></p><p>0−5 </p><p>• Increasing f<sub style="top: 0.13em;">h </sub>makes it harder to move mass, and it lags behind the driving force. </p><p>−10 −15 −20 −25 −30 −35 </p><p>• At resonance f<sub style="top: 0.13em;">h </sub>= f<sub style="top: 0.13em;">0</sub>: <br>– the mass is 1/4 cycle behind the hand. – the amplitude is at its maximum. </p><p>−40 </p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">500 </li><li style="flex:1">1000 </li><li style="flex:1">1500 </li><li style="flex:1">2000 </li><li style="flex:1">2500 </li><li style="flex:1">3000 </li></ul><p></p><p>Driving Frequency, Hz </p><p>• The higher the Q (quality factor), of the vibrating system, the more abrupt the transition in phase. </p><p>Figure 9: A Resonator shows peak amplitude when the driving force is equal to the system’s natural frequency. </p><p>• Both the peak A<sub style="top: 0.13em;">max </sub>the bandwidth ∆f depend on the damping in the system: </p><p>1. heavily damped: ∆f is large and A<sub style="top: 0.13em;">max </sub>is small. 2. little damping: ∆f is small and A<sub style="top: 0.125em;">max </sub>is large, creating a sharp resonance. </p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">19 </li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">20 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Quality Factor and Bandwidth </li><li style="flex:1">How to Discretize? </li></ul><p></p><p>• The bandwidth of the resonance is typically described </p><p>f<sub style="top: 0.13em;">0 </sub></p><p>• The one-sided Laplace transform of a signal x(t) is defined by using the quantity Q = </p><p>, for quality factor. </p><p>Z</p><p>∆f </p><p>∞</p><p></p><ul style="display: flex;"><li style="flex:1">∆</li><li style="flex:1">∆</li></ul><p></p><p>X(s) = L<sub style="top: 0.13em;">s</sub>{x} = </p><p>x(t)e<sup style="top: -0.355em;">−st</sup>dt </p><p>• A high-Q has a sharp resonance, and a low-Q has a broad resonance curve. </p><p>0</p><p>where t is real and s = σ + jω is a complex variable. <br>• For a vibrator set into motion and left to vibrate freely, its decay time is proportional to the Q of its resonance. <br>• The differentiation theorem for Laplace transforms states that </p><p>d</p><p>x(t) ↔ sX(s) </p><p>dt </p><p>where x(t) is any differentiable function that approaches zero as t goes to infinity. <br>• In terms of our mechanical system, given the </p><p>R</p><p></p><ul style="display: flex;"><li style="flex:1">resistance α = </li><li style="flex:1">, the quality factor is: </li></ul><p></p><p>2m </p><p>ω<sub style="top: 0.13em;">0 </sub></p><p>• The transfer function of an ideal differentiator is H(s) = s, which can be viewed as the Laplace transform of the operator d/dt. </p><p></p><ul style="display: flex;"><li style="flex:1">Q = </li><li style="flex:1">.</li></ul><p>2α </p><p>• Given the equation of motion </p><p>mx¨ + Rx˙ + Kx = F(t), </p><p>the Laplace Transform is </p><p>s<sup style="top: -0.355em;">2</sup>X(s) + 2αsX(s) + ω<sub style="top: 0.215em;">0</sub><sup style="top: -0.355em;">2</sup>X(s) = F(s). </p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">21 </li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">22 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Finite Difference </li><li style="flex:1">FDA of Equation of Motion </li></ul><p></p><p>• The finite difference approximation (FDA) amounts to replacing derivatives by finite differences, or </p><p>d</p><p>x(t) − x(t − δ) x(nT) − x[(n − 1)T] </p><p>∆</p><p>x(t) = lim </p><p>δ→0 </p><p>≈</p><p>.</p><ul style="display: flex;"><li style="flex:1">dt </li><li style="flex:1">δ</li><li style="flex:1">T</li></ul><p></p><p>• The z transform of the first-order difference operator is (1 − z<sup style="top: -0.31em;">−1</sup>)/T. Thus, in the frequency domain, the finite-difference approximation may be performed by making the substitution </p><p>1 − z<sup style="top: -0.315em;">−1 </sup></p><p>s → <br>T</p><p>• The first-order difference is first-order error accurate in T. Better performance can be obtained using the bilinear transform, defined by the substitution </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p>1 − z<sup style="top: -0.31em;">−1 </sup>1 + z<sup style="top: -0.25em;">−1 </sup><br>2</p><p>s −→ c </p><p>where c = </p><p>.T</p><p></p><ul style="display: flex;"><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">23 </li><li style="flex:1">Music 206: Mechanical Vibration </li><li style="flex:1">24 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Pressure Controlled Valves </li><li style="flex:1">Classifying Pressure-Controlled Valves </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">• Returning now to our model of wind instruments.... </li><li style="flex:1">• The method for simulating the reed typically depends </li></ul><p>on whether an additional upstream or downstream pressure causes the corresponding side of the valve to open or close further. <br>• Blowing into an instrument mouthpiece creates a pressure difference across the surface of the reed. </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-