Analog/Mixed-Signal Design in Finfet Technologies A.L.S

Analog/Mixed-Signal Design in Finfet Technologies A.L.S

<p><strong>Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>A.L.S. Loke, E. Terzioglu, A.A. Kumar, T.T. Wee, K. Rim, </strong><br><strong>D. Yang,&nbsp;B. Yu, L. Ge, L. Sun, J.L. Holland, C. Lee, </strong><br><strong>S. Yang, J. Zhu, J. Choi, H. Lakdawala, Z. Chen, W.J. Chen, </strong><br><strong>S. Dundigal, S.R. Knol, C.-G. Tan, S.S.C. Song, H. Dang, </strong><br><strong>P.G. Drennan, J. Yuan,&nbsp;P.R. Chidambaram, R. Jalilizeinali, </strong><br><strong>S.J. Dillen, X. Kong, and B.M. Leary </strong></p><p><a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a><br><strong>Qualcomm Technologies, Inc. </strong></p><p><strong>September 4, 2017 </strong></p><p><strong>CERN ESE Seminar (Based on AACD 2017) </strong></p><p><strong>Mobile SoC Migration to FinFET </strong></p><p>Mobile SoC is now main driver for CMOS scaling • Power, Performance, Area, Cost (PPAC) considerations, cost = f(volume) </p><p>• Snapdragon™ 820 - Qualcomm Technologies’ first 14nm product • Snapdragon™ 835 – World’s first 10nm product </p><p>Not drawn to scale </p><p>Plenty of analog/mixed-signal content </p><p><strong>Display </strong><br><strong>Camera </strong></p><p>• PLLs &amp; DLLs • Wireline I/Os </p><p><strong>Memory </strong><br><strong>DSP </strong></p><p><strong>BT &amp; WLAN </strong></p><p>• Data converters • Bandgap references • Thermal sensors • Regulators </p><p><strong>GPU </strong></p><p>• ESD protection </p><p><strong>Audio </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Modem </strong></li><li style="flex:1"><strong>CPU </strong></li></ul><p></p><p>SoC technology driven by logic &amp; SRAM scaling needs due to cost </p><p>Terzioglu, Qualcomm [1] </p><p><strong>Slide 1 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Outline </strong></p><p>• Fully-Depleted FinFET Basics • Technology Considerations • Design Considerations • Conclusion </p><p><strong>Slide 2 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Towards Stronger Gate Control </strong></p><p>log (<em>I</em><sub style="top: 0.495em;"><em>D</em></sub>) </p><p>gate </p><p><em>V</em><sub style="top: 0.58em;"><em>GS </em></sub></p><p><em>I</em><sub style="top: 0.495em;"><em>Dsat </em></sub><em>I</em><sub style="top: 0.495em;"><em>Dlin </em></sub></p><p><em>C</em><sub style="top: 0.58em;"><em>ox </em></sub></p><p><em>V</em><sub style="top: 0.58em;"><em>DS </em></sub></p><p><strong>S</strong></p><p>drain </p><p><em>I</em><sub style="top: 0.495em;"><em>T </em></sub><br><em>I</em><sub style="top: 0.495em;"><em>off </em></sub></p><p><em>ϕ</em><sub style="top: 0.495em;"><em>s </em></sub></p><p>source </p><p></p><ul style="display: flex;"><li style="flex:1"><em>C</em><sub style="top: 0.58em;"><em>D </em></sub></li><li style="flex:1"><em>C</em><sub style="top: 0.58em;"><em>B </em></sub></li></ul><p></p><p>lower supply lower power </p><p><strong>DIBL </strong></p><p>body </p><p><em>V</em><sub style="top: 0.495em;"><em>GS </em></sub></p><p><em>V</em><sub style="top: 0.58em;"><em>BS </em></sub></p><p><em>V</em><sub style="top: 0.495em;"><em>T s at </em></sub><em>V</em><sub style="top: 0.495em;"><em>Tlin </em></sub><em>V</em><sub style="top: 0.495em;"><em>DD </em></sub></p><p>• Capacitor divider dictates source-barrier <em>ϕ</em><sub style="top: 0.495em;"><em>s </em></sub>&amp; <em>I</em><sub style="top: 0.495em;"><em>D </em></sub></p><p>• Fully-depleted finFET weakens <em>C</em><sub style="top: 0.495em;"><em>B</em></sub><em>, C</em><sub style="top: 0.495em;"><em>D </em></sub> steeper <em>S</em>, less <em>DIBL </em></p><p>&amp; less body effect <br>• Lower supply &amp; lower power for given <em>I</em><sub style="top: 0.495em;"><em>off </em></sub>&amp; <em>I</em><sub style="top: 0.495em;"><em>D </em></sub></p><p><strong>Slide 3 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Concept of Fully-Depleted </strong></p><p>• Dopants <em>not </em>fundamental to field-effect action, just provide mirror charge to set up <em>E</em>-field to induce surface inversion </p><p>• Use heavily-doped “bottom plate” under undoped body to terminate <em>E</em>-fields from gate (extremely retrograded well doping) </p><p>undoped body </p><p>• Body becomes <em>fully-depleted </em></p><p>gate as it has no charge to offer </p><p>• Implementations </p><p>• Planar on bulk </p><p>source </p><p>“bottom plate” </p><p>drain </p><p>• Planar on SOI (FD-SOI) • 3-D (e.g., finFET) on bulk • 3-D on SOI </p><p>Yan <em>et al</em>., Bell Labs [2] Fujita <em>et al</em>., Fujitsu [3] <br>Cheng <em>et al</em>., IBM [4] </p><p><strong>Slide 4 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Migrating to Fully-Depleted FinFET </strong></p><p>Planar <br>FinFET </p><p>fully-depleted body channel </p><ul style="display: flex;"><li style="flex:1">n<sup style="top: -0.45em;">+ </sup>drain </li><li style="flex:1">p-well tie </li></ul><p>n<sup style="top: -0.45em;">+ </sup>drain p-well tie gate </p><p>NMOS </p><p>n<sup style="top: -0.45em;">+ </sup>source p-well n<sup style="top: -0.4499em;">+ </sup>source <br>STI <br>STI p-well </p><p></p><ul style="display: flex;"><li style="flex:1">p-substrate </li><li style="flex:1">p-substrate </li></ul><p>p<sup style="top: -0.45em;">+ </sup>drain </p><p>p<sup style="top: -0.45em;">+ </sup>source n-well n-well tie p<sup style="top: -0.45em;">+ </sup>drain n-well tie </p><p>PMOS </p><p>p<sup style="top: -0.45em;">+ </sup>source n-well </p><ul style="display: flex;"><li style="flex:1">p-substrate </li><li style="flex:1">p-substrate </li></ul><p></p><p><strong>Slide 5 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Outline </strong></p><p>• Fully-Depleted FinFET Basics </p><p>• Technology Considerations </p><p>• Mechanical Stressors • High-K/Metal-Gate • Lithography • Middle-End-Of-Line </p><p>• Design Considerations • Conclusion </p><p><strong>Slide 6 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Journey to FinFETs </strong></p><p>• 16/14nm complexity accumulated from scaling innovations introduced earlier across multiple earlier nodes </p><p><strong>Technology Innovation </strong><br><strong>Foundry </strong><br><strong>Debut </strong><br><strong>Reason </strong><br><strong>Required </strong></p><p>Mobility boost for more </p><p>FET drive &amp; higher <em>I</em><sub style="top: 0.4753em;"><em>on</em></sub><em>/I</em><sub style="top: 0.4753em;"><em>off </em></sub></p><p></p><ul style="display: flex;"><li style="flex:1">Mechanical stressors </li><li style="flex:1">40nm </li></ul><p>HKMG replacement&nbsp;28nm (HK-first)&nbsp;Higher <em>C</em><sub style="top: 0.475em;"><em>ox </em></sub>for more FET </p><ul style="display: flex;"><li style="flex:1">gate integration </li><li style="flex:1">20nm (HK-last)&nbsp;drive &amp; channel control </li></ul><p>Sub-80nm pitch </p><ul style="display: flex;"><li style="flex:1">20nm </li><li style="flex:1">Multiple-patterning </li></ul><p>lithography without EUV </p><p>Contact FET diffusion &amp; <br>20nm <br>Complex </p><ul style="display: flex;"><li style="flex:1">middle-end-of-line </li><li style="flex:1">gate with tighter CPP </li></ul><p></p><p><strong>Slide 7 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Mechanical Stressors </strong></p><p>• Mobility depends on channel lattice strain (piezoresistivity) • Grow stressors to induce channel strain along <em>L </em></p><p>• Tensile for NMOS, compressive for PMOS • Techniques: S/D epitaxy, stress memorization, gate stress </p><p>• Anisotropic mobility &amp; stress response </p><p>• <em>L </em>vs. <em>W </em>direction, (100) fin top vs. (110) fin sidewall </p><p><em>NMOS </em><br><em>PMOS </em></p><p>Garcia Bardon <em>et al</em>., IMEC [5] Liu <em>et al</em>., Globalfoundries [6] </p><p><strong>Slide 8 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Stress-Related Layout Effects </strong></p><p>• Stressors are stronger in 16/14nm for more FET drive, so layout effects can be more severe  schematic/layout Δ </p><p>• Stress build-up in longer active, <em>I</em><sub style="top: 0.495em;"><em>D</em></sub>/fin not constant vs. # fins • Interaction with stress of surrounding isolation &amp; ILD • NMOS/PMOS stress mutually weaken each other • New effects being discovered, e.g., gate-cut stress effect </p><p>PMOS <br>NMOS </p><p>Faricelli, AMD [7] <br>Lee <em>et al</em>., Samsung [8] <br>Sato <em>et al</em>., IBM [9] </p><p><strong>Slide 9 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Electrical Chip-Package Interaction </strong></p><p>• FET mobility sensitive to stress from die attach to package • Package stress can impact long-range device matching <br>(e.g., I/O impedance, bias references, data converters) </p><p>0% <br>+10% </p><ul style="display: flex;"><li style="flex:1">+8% </li><li style="flex:1">-2% </li></ul><p>-4% -6% -8% -10% <br>+6% +4% +2% <br>0% <br>Terzioglu, Qualcomm [1] </p><p><strong>Slide 10 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>High-K/Metal-Gate (HKMG) </strong></p><p>• Increase <em>C</em><sub style="top: 0.495em;"><em>ox </em></sub>with less <em>I</em><sub style="top: 0.495em;"><em>gate </em></sub>&amp; no poly depletion, but HK/MG interface is very delicate </p><p>• Replacement metal gate (RMG) after S/D anneal for stable <em>V</em><sub style="top: 0.495em;"><em>T </em></sub>• Gate = (ALD MG stack to set <em>Φ</em><sub style="top: 0.495em;"><em>M</em></sub>)+(metal fill to reduce <em>R</em><sub style="top: 0.495em;"><em>G</em></sub>) • HK-first  HK-last for better gate edge control </p><p></p><ul style="display: flex;"><li style="flex:1">less silicide </li><li style="flex:1">metal fill </li></ul><p></p><ul style="display: flex;"><li style="flex:1">MG </li><li style="flex:1">silicide </li></ul><p>HK <br>(bottom+sides) <br>HK <br>(bottom only) </p><p>HK-last <br>HK-first </p><p></p><ul style="display: flex;"><li style="flex:1">Auth <em>et al</em>., Intel [10] </li><li style="flex:1">Packan <em>et al</em>., Intel [11] </li></ul><p></p><p><strong>Slide 11 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>HKMG Concerns </strong></p><p>• Very high <em>R</em><sub style="top: 0.495em;"><em>gate </em></sub> non-quasistatic effects • Variation in MG grain orientation  <em>V</em><sub style="top: 0.495em;"><em>T </em></sub>variation • Metal boundary effect (Δ<em>V</em><sub style="top: 0.495em;"><em>T </em></sub>near interface between two <em>Φ</em><sub style="top: 0.495em;"><em>M</em></sub>) • Gate density induced mismatch (Δ<em>V</em><sub style="top: 0.495em;"><em>T </em></sub>from RMG CMP dishing) </p><p>MG very resistive </p><p><em>Φ</em><sub style="top: 0.4101em;"><em>M1 </em></sub></p><p>gate over fin fins in </p><p>gate trench </p><p>PMOS fins </p><p><em>Φ</em><sub style="top: 0.41em;"><em>M </em></sub>metal </p><p>metal fill <br>NMOS fins </p><p><em>Φ</em><sub style="top: 0.4099em;"><em>M2 </em></sub></p><p>gate fins spacer </p><p>Asenov, U Glasgow [12] <br>Yamaguchi <em>et al</em>., Toshiba [13] <br>Yang <em>et al</em>., Qualcomm [14] </p><p><strong>Slide 12 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Lithography Innovations </strong></p><p>• Needed for sub-80nm pitch, EUV not ready for production 1. Pitch splitting  mask coloring, overlay-related DRCs 2. Orthogonal cut mask  reduce line-end-to-end spacing 3. Spacer-based patterning for fins, adopting for gate </p><p>sacrificial mandrel spacer </p><ul style="display: flex;"><li style="flex:1">Mask A </li><li style="flex:1">Mask B </li></ul><p></p><p>Auth <em>et al</em>., Intel [10], [15] Dorsch, www.semi.org [16] </p><p><strong>Slide 13 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Complex Middle-End-Of-Line (MEOL) </strong></p><p>• Difficult to land diffusion &amp; gate contacts on tight CPP • Self-aligned contacts to prevent contact-to-gate shorts </p><p>• Separate contacts to diffusion &amp; to gate, </p><p>Metal-1 </p><p>also insert via under Metal-1 </p><p>via </p><p>• Significant BEOL, MEOL &amp; <em>R</em><sub style="top: 0.495em;"><em>ext </em></sub>resistance </p><p>misalignment nitride cap </p><p>gate contact diffusion contact </p><p><em>gate </em></p><p>spacer </p><p><strong>contact gate </strong></p><p>well </p><p><strong>S/D </strong></p><p>Auth <em>et al</em>., Intel [15] <br>Rashed <em>et al</em>., Globalfoundries [17] </p><p><strong>Slide 14 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Outline </strong></p><p>• Fully-Depleted FinFET Basics • Technology Considerations </p><p>• Design Considerations </p><p>• General </p><p>• Parasitic <em>C </em>&amp; <em>R </em></p><p>• Stacked FET • Passives, PNP-BJT, ESD Diodes • I/O Voltages </p><p>• Conclusion </p><p><strong>Slide 15 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Designing with FinFET </strong></p><p>• More drive current for given footprint </p><p>• Quantized channel width </p><p>– Challenge for logic &amp; SRAM – OK for analog, enough <em>g</em><sub style="top: 0.41em;"><em>m </em></sub>granularity </p><p>drain contact </p><p>• Less DIBL  better <em>r</em><sub style="top: 0.495em;"><em>out</em></sub>, 3 intrinsic gain </p><p>• Essentially no body effect (ΔV<sub style="top: 0.495em;">T </sub>&lt; 10mV) </p><p>• Higher <em>R</em><sub style="top: 0.495em;"><em>s </em></sub>&amp; <em>R</em><sub style="top: 0.495em;"><em>d </em></sub>spreading resistance </p><p>• Lower <em>C</em><sub style="top: 0.495em;"><em>j </em></sub>but higher <em>C</em><sub style="top: 0.495em;"><em>gd </em></sub>&amp; <em>C</em><sub style="top: 0.495em;"><em>gs </em></sub>coupling </p><p>• Higher <em>R</em><sub style="top: 0.495em;"><em>well </em></sub>(<em>R</em><sub style="top: 0.495em;"><em>diode</em></sub>, latch-up) </p><p>source </p><p><em>gate </em></p><p>contact spacer </p><p>well </p><p>• Mismatch depends on fin geometry, MG grains, gate density, stress, less on RDF </p><p>Sheu, TSMC [18] <br>Hsueh <em>et al</em>., TSMC [19] </p><p><strong>Slide 16 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Stronger Parasitic Coupling </strong></p><p>• S/D trench contacts &amp; gate form vertical plate capacitors • Worse supply rejection in LDO regulators • Kickback noise to analog biasing signals, e.g., LPDDR RX • Adding capacitance increases area &amp; wake-up time <br>(concern for burst-mode operation, e.g., IoT) </p><p><em>V</em><sub style="top: 0.41em;"><em>bias </em></sub><br><em>V</em><sub style="top: 0.41em;"><em>ref </em></sub></p><p><strong>C</strong><sub style="top: 0.41em;"><strong>GS </strong></sub></p><p>OTA </p><p><strong>C</strong><sub style="top: 0.41em;"><strong>GD </strong></sub></p><p></p><ul style="display: flex;"><li style="flex:1"><em>V</em><sub style="top: 0.41em;"><em>in </em></sub></li><li style="flex:1"><em>V</em><sub style="top: 0.41em;"><em>out </em></sub></li><li style="flex:1"><em>V</em><sub style="top: 0.41em;"><em>ref </em></sub></li></ul><p><em>V</em><sub style="top: 0.41em;"><em>out </em></sub></p><p><strong>Slide 17 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Dealing with High Series Resistance </strong></p><p>• MEOL parasitic resistances very significant • Double-source layout becoming common to halve S/D <em>R</em><sub style="top: 0.495em;"><em>contact </em></sub>• Drivers needs to drive very low impedances, e.g., 50Ω • Better to unshare diffusions to reduce <em>R </em>despite higher <em>C, </em>contrary to “conventional wisdom” </p><p>diffusion contact short together </p><p><strong>Slide 18 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Stacked FET </strong></p><p>• Ideal transconductor needs high <em>r</em><sub style="top: 0.495em;"><em>out </em></sub>&amp; long <em>L </em>• <em>L</em><sub style="top: 0.495em;"><em>max </em></sub>limited by gate litho/etch loading &amp; HKMG integration • Stacked FET is common but intermediate diffusion degrades </p><p><em>r</em><sub style="top: 0.495em;"><em>out </em></sub>in GHz range </p><p>• Impact on intrinsic gain, common-mode noise rejection, … </p><p>high-frequency ac current low-frequency ac current </p><p><strong>Slide 19 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Resistor Options </strong></p><p>• Precision MEOL resistor <br>(thin metal compound on ILD0) </p><p>• Difficult to build poly resistor ends in HK-last process </p><p>• Ends not well defined, current spreading near contacts <br>• Decouples resistor integration from FEOL </p><p>• Metal-gate resistor </p><p>• Available for free • Not well controlled • <em>ρ</em><sub style="top: 0.495em;"><em>sheet </em></sub>depends on gate density, </p><p><em>W</em>, <em>W</em><sub style="top: 0.495em;"><em>max </em></sub>limit </p><p><strong>Slide 20 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Capacitor Options </strong></p><p>• Metal-Oxide-Metal (MOM) - Rarely has scaling helped analog  <br>• Be careful with non-physical BEOL overlay corner models </p><p>reality </p><p></p><ul style="display: flex;"><li style="flex:1"><em>C</em><sub style="top: 0.41em;"><em>max </em></sub>model </li><li style="flex:1"><em>C</em><sub style="top: 0.4101em;"><em>min </em></sub>model </li></ul><p></p><p>vs. </p><p></p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">B</li><li style="flex:1">A</li><li style="flex:1">A</li><li style="flex:1">B</li><li style="flex:1">A</li><li style="flex:1">A</li><li style="flex:1">B</li><li style="flex:1">A</li></ul><p></p><p>• Accumulation-mode varactor </p><p><em>C</em></p><p>• Steeper transition for </p><p></p><ul style="display: flex;"><li style="flex:1">n+ </li><li style="flex:1">n+ </li><li style="flex:1">accumulation </li></ul><p></p><p>higher <em>K</em><sub style="top: 0.495em;"><em>VCO </em></sub></p><p>• Quarter-gap <em>Φ</em><sub style="top: 0.495em;"><em>M </em></sub>gate material for higher <em>V</em><sub style="top: 0.495em;"><em>T </em></sub></p><p>n-well inversion </p><p>p-substrate </p><p><em>V</em><sub style="top: 0.495em;"><em>GS </em></sub></p><p>• Metal-Insulator-Metal (MIM) – Extra cost, less common </p><p>Chang <em>et al</em>., UC Berkeley [20] </p><p><strong>Slide 21 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>PNP-BJT &amp; ESD Diodes </strong></p><p>PNP-BJT </p><p>emitter p+ </p><p></p><ul style="display: flex;"><li style="flex:1">base </li><li style="flex:1">collector </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n+ </li><li style="flex:1">p+ </li></ul><p></p><ul style="display: flex;"><li style="flex:1">n-well </li><li style="flex:1">p-well </li></ul><p>p-substrate </p><p>STI ESD Diode <br>Gated ESD Diode </p><p>n+ </p><ul style="display: flex;"><li style="flex:1">p+ </li><li style="flex:1">n+ </li></ul><p>p+ </p><p>n-well p-substrate n-well p-substrate </p><p><strong>Slide 22 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Low-Voltage Bandgap Reference </strong></p><p>Ideality </p><p>Factor, <em>η </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>I</em><sub style="top: 0.37em;"><em>o </em></sub></li><li style="flex:1"><em>I</em><sub style="top: 0.37em;"><em>o </em></sub></li></ul><p></p><p><em>AI</em><sub style="top: 0.37em;"><em>o </em></sub></p><p>higher series </p><p><em>R</em><sub style="top: 0.4551em;"><em>D </em></sub></p><p>OTA </p><p><em>V</em><sub style="top: 0.37em;"><em>ref </em></sub></p><p>usable </p><p><em>I</em><sub style="top: 0.455em;"><em>o</em></sub><em>/N </em>&amp; <em>I</em><sub style="top: 0.455em;"><em>o </em></sub></p><p>range </p><p><em>V</em><sub style="top: 0.37em;"><em>D </em></sub></p><ul style="display: flex;"><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>1 </em></sub></li><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>1 </em></sub></li><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>2 </em></sub></li><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>3 </em></sub></li></ul><p></p><p><em>N</em></p><p>1</p><p>log(<em>I</em><sub style="top: 0.495em;"><em>D</em></sub>) </p><ul style="display: flex;"><li style="flex:1"><em>AR</em><sub style="top: 0.495em;"><em>3 </em></sub></li><li style="flex:1"><em>η kT </em></li><li style="flex:1"><em>AR</em><sub style="top: 0.495em;"><em>3 </em></sub></li></ul><p></p><p><em>R</em><sub style="top: 0.495em;"><em>2 </em></sub></p><p>• PTAT+CTAT using currents </p><p>• More <em>R</em><sub style="top: 0.495em;"><em>D </em></sub> smaller <em>N </em></p><p><em>V</em><sub style="top: 0.495em;"><em>ref </em></sub>= <em>V</em><sub style="top: 0.495em;"><em>D </em></sub>+ </p><p>ln<em>N </em></p><p><em>R</em><sub style="top: 0.495em;"><em>1 </em></sub></p><p><em>q</em></p><p>• Higher <em>V</em><sub style="top: 0.495em;"><em>D </em></sub> headroom issue </p><ul style="display: flex;"><li style="flex:1">CTAT </li><li style="flex:1">PTAT </li></ul><p></p><p>Banba <em>et al</em>., Toshiba [21] </p><p><strong>Slide 23 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>I/O Voltage Not Scaling With Core Supply </strong></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us