<p><strong>Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>A.L.S. Loke, E. Terzioglu, A.A. Kumar, T.T. Wee, K. Rim, </strong><br><strong>D. Yang, B. Yu, L. Ge, L. Sun, J.L. Holland, C. Lee, </strong><br><strong>S. Yang, J. Zhu, J. Choi, H. Lakdawala, Z. Chen, W.J. Chen, </strong><br><strong>S. Dundigal, S.R. Knol, C.-G. Tan, S.S.C. Song, H. Dang, </strong><br><strong>P.G. Drennan, J. Yuan, P.R. Chidambaram, R. Jalilizeinali, </strong><br><strong>S.J. Dillen, X. Kong, and B.M. Leary </strong></p><p><a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a><br><strong>Qualcomm Technologies, Inc. </strong></p><p><strong>September 4, 2017 </strong></p><p><strong>CERN ESE Seminar (Based on AACD 2017) </strong></p><p><strong>Mobile SoC Migration to FinFET </strong></p><p>Mobile SoC is now main driver for CMOS scaling • Power, Performance, Area, Cost (PPAC) considerations, cost = f(volume) </p><p>• Snapdragon™ 820 - Qualcomm Technologies’ first 14nm product • Snapdragon™ 835 – World’s first 10nm product </p><p>Not drawn to scale </p><p>Plenty of analog/mixed-signal content </p><p><strong>Display </strong><br><strong>Camera </strong></p><p>• PLLs & DLLs • Wireline I/Os </p><p><strong>Memory </strong><br><strong>DSP </strong></p><p><strong>BT & WLAN </strong></p><p>• Data converters • Bandgap references • Thermal sensors • Regulators </p><p><strong>GPU </strong></p><p>• ESD protection </p><p><strong>Audio </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Modem </strong></li><li style="flex:1"><strong>CPU </strong></li></ul><p></p><p>SoC technology driven by logic & SRAM scaling needs due to cost </p><p>Terzioglu, Qualcomm [1] </p><p><strong>Slide 1 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Outline </strong></p><p>• Fully-Depleted FinFET Basics • Technology Considerations • Design Considerations • Conclusion </p><p><strong>Slide 2 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Towards Stronger Gate Control </strong></p><p>log (<em>I</em><sub style="top: 0.495em;"><em>D</em></sub>) </p><p>gate </p><p><em>V</em><sub style="top: 0.58em;"><em>GS </em></sub></p><p><em>I</em><sub style="top: 0.495em;"><em>Dsat </em></sub><em>I</em><sub style="top: 0.495em;"><em>Dlin </em></sub></p><p><em>C</em><sub style="top: 0.58em;"><em>ox </em></sub></p><p><em>V</em><sub style="top: 0.58em;"><em>DS </em></sub></p><p><strong>S</strong></p><p>drain </p><p><em>I</em><sub style="top: 0.495em;"><em>T </em></sub><br><em>I</em><sub style="top: 0.495em;"><em>off </em></sub></p><p><em>ϕ</em><sub style="top: 0.495em;"><em>s </em></sub></p><p>source </p><p></p><ul style="display: flex;"><li style="flex:1"><em>C</em><sub style="top: 0.58em;"><em>D </em></sub></li><li style="flex:1"><em>C</em><sub style="top: 0.58em;"><em>B </em></sub></li></ul><p></p><p>lower supply lower power </p><p><strong>DIBL </strong></p><p>body </p><p><em>V</em><sub style="top: 0.495em;"><em>GS </em></sub></p><p><em>V</em><sub style="top: 0.58em;"><em>BS </em></sub></p><p><em>V</em><sub style="top: 0.495em;"><em>T s at </em></sub><em>V</em><sub style="top: 0.495em;"><em>Tlin </em></sub><em>V</em><sub style="top: 0.495em;"><em>DD </em></sub></p><p>• Capacitor divider dictates source-barrier <em>ϕ</em><sub style="top: 0.495em;"><em>s </em></sub>& <em>I</em><sub style="top: 0.495em;"><em>D </em></sub></p><p>• Fully-depleted finFET weakens <em>C</em><sub style="top: 0.495em;"><em>B</em></sub><em>, C</em><sub style="top: 0.495em;"><em>D </em></sub> steeper <em>S</em>, less <em>DIBL </em></p><p>& less body effect <br>• Lower supply & lower power for given <em>I</em><sub style="top: 0.495em;"><em>off </em></sub>& <em>I</em><sub style="top: 0.495em;"><em>D </em></sub></p><p><strong>Slide 3 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Concept of Fully-Depleted </strong></p><p>• Dopants <em>not </em>fundamental to field-effect action, just provide mirror charge to set up <em>E</em>-field to induce surface inversion </p><p>• Use heavily-doped “bottom plate” under undoped body to terminate <em>E</em>-fields from gate (extremely retrograded well doping) </p><p>undoped body </p><p>• Body becomes <em>fully-depleted </em></p><p>gate as it has no charge to offer </p><p>• Implementations </p><p>• Planar on bulk </p><p>source </p><p>“bottom plate” </p><p>drain </p><p>• Planar on SOI (FD-SOI) • 3-D (e.g., finFET) on bulk • 3-D on SOI </p><p>Yan <em>et al</em>., Bell Labs [2] Fujita <em>et al</em>., Fujitsu [3] <br>Cheng <em>et al</em>., IBM [4] </p><p><strong>Slide 4 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Migrating to Fully-Depleted FinFET </strong></p><p>Planar <br>FinFET </p><p>fully-depleted body channel </p><ul style="display: flex;"><li style="flex:1">n<sup style="top: -0.45em;">+ </sup>drain </li><li style="flex:1">p-well tie </li></ul><p>n<sup style="top: -0.45em;">+ </sup>drain p-well tie gate </p><p>NMOS </p><p>n<sup style="top: -0.45em;">+ </sup>source p-well n<sup style="top: -0.4499em;">+ </sup>source <br>STI <br>STI p-well </p><p></p><ul style="display: flex;"><li style="flex:1">p-substrate </li><li style="flex:1">p-substrate </li></ul><p>p<sup style="top: -0.45em;">+ </sup>drain </p><p>p<sup style="top: -0.45em;">+ </sup>source n-well n-well tie p<sup style="top: -0.45em;">+ </sup>drain n-well tie </p><p>PMOS </p><p>p<sup style="top: -0.45em;">+ </sup>source n-well </p><ul style="display: flex;"><li style="flex:1">p-substrate </li><li style="flex:1">p-substrate </li></ul><p></p><p><strong>Slide 5 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Outline </strong></p><p>• Fully-Depleted FinFET Basics </p><p>• Technology Considerations </p><p>• Mechanical Stressors • High-K/Metal-Gate • Lithography • Middle-End-Of-Line </p><p>• Design Considerations • Conclusion </p><p><strong>Slide 6 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Journey to FinFETs </strong></p><p>• 16/14nm complexity accumulated from scaling innovations introduced earlier across multiple earlier nodes </p><p><strong>Technology Innovation </strong><br><strong>Foundry </strong><br><strong>Debut </strong><br><strong>Reason </strong><br><strong>Required </strong></p><p>Mobility boost for more </p><p>FET drive & higher <em>I</em><sub style="top: 0.4753em;"><em>on</em></sub><em>/I</em><sub style="top: 0.4753em;"><em>off </em></sub></p><p></p><ul style="display: flex;"><li style="flex:1">Mechanical stressors </li><li style="flex:1">40nm </li></ul><p>HKMG replacement 28nm (HK-first) Higher <em>C</em><sub style="top: 0.475em;"><em>ox </em></sub>for more FET </p><ul style="display: flex;"><li style="flex:1">gate integration </li><li style="flex:1">20nm (HK-last) drive & channel control </li></ul><p>Sub-80nm pitch </p><ul style="display: flex;"><li style="flex:1">20nm </li><li style="flex:1">Multiple-patterning </li></ul><p>lithography without EUV </p><p>Contact FET diffusion & <br>20nm <br>Complex </p><ul style="display: flex;"><li style="flex:1">middle-end-of-line </li><li style="flex:1">gate with tighter CPP </li></ul><p></p><p><strong>Slide 7 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Mechanical Stressors </strong></p><p>• Mobility depends on channel lattice strain (piezoresistivity) • Grow stressors to induce channel strain along <em>L </em></p><p>• Tensile for NMOS, compressive for PMOS • Techniques: S/D epitaxy, stress memorization, gate stress </p><p>• Anisotropic mobility & stress response </p><p>• <em>L </em>vs. <em>W </em>direction, (100) fin top vs. (110) fin sidewall </p><p><em>NMOS </em><br><em>PMOS </em></p><p>Garcia Bardon <em>et al</em>., IMEC [5] Liu <em>et al</em>., Globalfoundries [6] </p><p><strong>Slide 8 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Stress-Related Layout Effects </strong></p><p>• Stressors are stronger in 16/14nm for more FET drive, so layout effects can be more severe schematic/layout Δ </p><p>• Stress build-up in longer active, <em>I</em><sub style="top: 0.495em;"><em>D</em></sub>/fin not constant vs. # fins • Interaction with stress of surrounding isolation & ILD • NMOS/PMOS stress mutually weaken each other • New effects being discovered, e.g., gate-cut stress effect </p><p>PMOS <br>NMOS </p><p>Faricelli, AMD [7] <br>Lee <em>et al</em>., Samsung [8] <br>Sato <em>et al</em>., IBM [9] </p><p><strong>Slide 9 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Electrical Chip-Package Interaction </strong></p><p>• FET mobility sensitive to stress from die attach to package • Package stress can impact long-range device matching <br>(e.g., I/O impedance, bias references, data converters) </p><p>0% <br>+10% </p><ul style="display: flex;"><li style="flex:1">+8% </li><li style="flex:1">-2% </li></ul><p>-4% -6% -8% -10% <br>+6% +4% +2% <br>0% <br>Terzioglu, Qualcomm [1] </p><p><strong>Slide 10 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>High-K/Metal-Gate (HKMG) </strong></p><p>• Increase <em>C</em><sub style="top: 0.495em;"><em>ox </em></sub>with less <em>I</em><sub style="top: 0.495em;"><em>gate </em></sub>& no poly depletion, but HK/MG interface is very delicate </p><p>• Replacement metal gate (RMG) after S/D anneal for stable <em>V</em><sub style="top: 0.495em;"><em>T </em></sub>• Gate = (ALD MG stack to set <em>Φ</em><sub style="top: 0.495em;"><em>M</em></sub>)+(metal fill to reduce <em>R</em><sub style="top: 0.495em;"><em>G</em></sub>) • HK-first HK-last for better gate edge control </p><p></p><ul style="display: flex;"><li style="flex:1">less silicide </li><li style="flex:1">metal fill </li></ul><p></p><ul style="display: flex;"><li style="flex:1">MG </li><li style="flex:1">silicide </li></ul><p>HK <br>(bottom+sides) <br>HK <br>(bottom only) </p><p>HK-last <br>HK-first </p><p></p><ul style="display: flex;"><li style="flex:1">Auth <em>et al</em>., Intel [10] </li><li style="flex:1">Packan <em>et al</em>., Intel [11] </li></ul><p></p><p><strong>Slide 11 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>HKMG Concerns </strong></p><p>• Very high <em>R</em><sub style="top: 0.495em;"><em>gate </em></sub> non-quasistatic effects • Variation in MG grain orientation <em>V</em><sub style="top: 0.495em;"><em>T </em></sub>variation • Metal boundary effect (Δ<em>V</em><sub style="top: 0.495em;"><em>T </em></sub>near interface between two <em>Φ</em><sub style="top: 0.495em;"><em>M</em></sub>) • Gate density induced mismatch (Δ<em>V</em><sub style="top: 0.495em;"><em>T </em></sub>from RMG CMP dishing) </p><p>MG very resistive </p><p><em>Φ</em><sub style="top: 0.4101em;"><em>M1 </em></sub></p><p>gate over fin fins in </p><p>gate trench </p><p>PMOS fins </p><p><em>Φ</em><sub style="top: 0.41em;"><em>M </em></sub>metal </p><p>metal fill <br>NMOS fins </p><p><em>Φ</em><sub style="top: 0.4099em;"><em>M2 </em></sub></p><p>gate fins spacer </p><p>Asenov, U Glasgow [12] <br>Yamaguchi <em>et al</em>., Toshiba [13] <br>Yang <em>et al</em>., Qualcomm [14] </p><p><strong>Slide 12 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Lithography Innovations </strong></p><p>• Needed for sub-80nm pitch, EUV not ready for production 1. Pitch splitting mask coloring, overlay-related DRCs 2. Orthogonal cut mask reduce line-end-to-end spacing 3. Spacer-based patterning for fins, adopting for gate </p><p>sacrificial mandrel spacer </p><ul style="display: flex;"><li style="flex:1">Mask A </li><li style="flex:1">Mask B </li></ul><p></p><p>Auth <em>et al</em>., Intel [10], [15] Dorsch, www.semi.org [16] </p><p><strong>Slide 13 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Complex Middle-End-Of-Line (MEOL) </strong></p><p>• Difficult to land diffusion & gate contacts on tight CPP • Self-aligned contacts to prevent contact-to-gate shorts </p><p>• Separate contacts to diffusion & to gate, </p><p>Metal-1 </p><p>also insert via under Metal-1 </p><p>via </p><p>• Significant BEOL, MEOL & <em>R</em><sub style="top: 0.495em;"><em>ext </em></sub>resistance </p><p>misalignment nitride cap </p><p>gate contact diffusion contact </p><p><em>gate </em></p><p>spacer </p><p><strong>contact gate </strong></p><p>well </p><p><strong>S/D </strong></p><p>Auth <em>et al</em>., Intel [15] <br>Rashed <em>et al</em>., Globalfoundries [17] </p><p><strong>Slide 14 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Outline </strong></p><p>• Fully-Depleted FinFET Basics • Technology Considerations </p><p>• Design Considerations </p><p>• General </p><p>• Parasitic <em>C </em>& <em>R </em></p><p>• Stacked FET • Passives, PNP-BJT, ESD Diodes • I/O Voltages </p><p>• Conclusion </p><p><strong>Slide 15 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Designing with FinFET </strong></p><p>• More drive current for given footprint </p><p>• Quantized channel width </p><p>– Challenge for logic & SRAM – OK for analog, enough <em>g</em><sub style="top: 0.41em;"><em>m </em></sub>granularity </p><p>drain contact </p><p>• Less DIBL better <em>r</em><sub style="top: 0.495em;"><em>out</em></sub>, 3 intrinsic gain </p><p>• Essentially no body effect (ΔV<sub style="top: 0.495em;">T </sub>< 10mV) </p><p>• Higher <em>R</em><sub style="top: 0.495em;"><em>s </em></sub>& <em>R</em><sub style="top: 0.495em;"><em>d </em></sub>spreading resistance </p><p>• Lower <em>C</em><sub style="top: 0.495em;"><em>j </em></sub>but higher <em>C</em><sub style="top: 0.495em;"><em>gd </em></sub>& <em>C</em><sub style="top: 0.495em;"><em>gs </em></sub>coupling </p><p>• Higher <em>R</em><sub style="top: 0.495em;"><em>well </em></sub>(<em>R</em><sub style="top: 0.495em;"><em>diode</em></sub>, latch-up) </p><p>source </p><p><em>gate </em></p><p>contact spacer </p><p>well </p><p>• Mismatch depends on fin geometry, MG grains, gate density, stress, less on RDF </p><p>Sheu, TSMC [18] <br>Hsueh <em>et al</em>., TSMC [19] </p><p><strong>Slide 16 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Stronger Parasitic Coupling </strong></p><p>• S/D trench contacts & gate form vertical plate capacitors • Worse supply rejection in LDO regulators • Kickback noise to analog biasing signals, e.g., LPDDR RX • Adding capacitance increases area & wake-up time <br>(concern for burst-mode operation, e.g., IoT) </p><p><em>V</em><sub style="top: 0.41em;"><em>bias </em></sub><br><em>V</em><sub style="top: 0.41em;"><em>ref </em></sub></p><p><strong>C</strong><sub style="top: 0.41em;"><strong>GS </strong></sub></p><p>OTA </p><p><strong>C</strong><sub style="top: 0.41em;"><strong>GD </strong></sub></p><p></p><ul style="display: flex;"><li style="flex:1"><em>V</em><sub style="top: 0.41em;"><em>in </em></sub></li><li style="flex:1"><em>V</em><sub style="top: 0.41em;"><em>out </em></sub></li><li style="flex:1"><em>V</em><sub style="top: 0.41em;"><em>ref </em></sub></li></ul><p><em>V</em><sub style="top: 0.41em;"><em>out </em></sub></p><p><strong>Slide 17 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Dealing with High Series Resistance </strong></p><p>• MEOL parasitic resistances very significant • Double-source layout becoming common to halve S/D <em>R</em><sub style="top: 0.495em;"><em>contact </em></sub>• Drivers needs to drive very low impedances, e.g., 50Ω • Better to unshare diffusions to reduce <em>R </em>despite higher <em>C, </em>contrary to “conventional wisdom” </p><p>diffusion contact short together </p><p><strong>Slide 18 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Stacked FET </strong></p><p>• Ideal transconductor needs high <em>r</em><sub style="top: 0.495em;"><em>out </em></sub>& long <em>L </em>• <em>L</em><sub style="top: 0.495em;"><em>max </em></sub>limited by gate litho/etch loading & HKMG integration • Stacked FET is common but intermediate diffusion degrades </p><p><em>r</em><sub style="top: 0.495em;"><em>out </em></sub>in GHz range </p><p>• Impact on intrinsic gain, common-mode noise rejection, … </p><p>high-frequency ac current low-frequency ac current </p><p><strong>Slide 19 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Resistor Options </strong></p><p>• Precision MEOL resistor <br>(thin metal compound on ILD0) </p><p>• Difficult to build poly resistor ends in HK-last process </p><p>• Ends not well defined, current spreading near contacts <br>• Decouples resistor integration from FEOL </p><p>• Metal-gate resistor </p><p>• Available for free • Not well controlled • <em>ρ</em><sub style="top: 0.495em;"><em>sheet </em></sub>depends on gate density, </p><p><em>W</em>, <em>W</em><sub style="top: 0.495em;"><em>max </em></sub>limit </p><p><strong>Slide 20 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Capacitor Options </strong></p><p>• Metal-Oxide-Metal (MOM) - Rarely has scaling helped analog <br>• Be careful with non-physical BEOL overlay corner models </p><p>reality </p><p></p><ul style="display: flex;"><li style="flex:1"><em>C</em><sub style="top: 0.41em;"><em>max </em></sub>model </li><li style="flex:1"><em>C</em><sub style="top: 0.4101em;"><em>min </em></sub>model </li></ul><p></p><p>vs. </p><p></p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">B</li><li style="flex:1">A</li><li style="flex:1">A</li><li style="flex:1">B</li><li style="flex:1">A</li><li style="flex:1">A</li><li style="flex:1">B</li><li style="flex:1">A</li></ul><p></p><p>• Accumulation-mode varactor </p><p><em>C</em></p><p>• Steeper transition for </p><p></p><ul style="display: flex;"><li style="flex:1">n+ </li><li style="flex:1">n+ </li><li style="flex:1">accumulation </li></ul><p></p><p>higher <em>K</em><sub style="top: 0.495em;"><em>VCO </em></sub></p><p>• Quarter-gap <em>Φ</em><sub style="top: 0.495em;"><em>M </em></sub>gate material for higher <em>V</em><sub style="top: 0.495em;"><em>T </em></sub></p><p>n-well inversion </p><p>p-substrate </p><p><em>V</em><sub style="top: 0.495em;"><em>GS </em></sub></p><p>• Metal-Insulator-Metal (MIM) – Extra cost, less common </p><p>Chang <em>et al</em>., UC Berkeley [20] </p><p><strong>Slide 21 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>PNP-BJT & ESD Diodes </strong></p><p>PNP-BJT </p><p>emitter p+ </p><p></p><ul style="display: flex;"><li style="flex:1">base </li><li style="flex:1">collector </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n+ </li><li style="flex:1">p+ </li></ul><p></p><ul style="display: flex;"><li style="flex:1">n-well </li><li style="flex:1">p-well </li></ul><p>p-substrate </p><p>STI ESD Diode <br>Gated ESD Diode </p><p>n+ </p><ul style="display: flex;"><li style="flex:1">p+ </li><li style="flex:1">n+ </li></ul><p>p+ </p><p>n-well p-substrate n-well p-substrate </p><p><strong>Slide 22 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>Low-Voltage Bandgap Reference </strong></p><p>Ideality </p><p>Factor, <em>η </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>I</em><sub style="top: 0.37em;"><em>o </em></sub></li><li style="flex:1"><em>I</em><sub style="top: 0.37em;"><em>o </em></sub></li></ul><p></p><p><em>AI</em><sub style="top: 0.37em;"><em>o </em></sub></p><p>higher series </p><p><em>R</em><sub style="top: 0.4551em;"><em>D </em></sub></p><p>OTA </p><p><em>V</em><sub style="top: 0.37em;"><em>ref </em></sub></p><p>usable </p><p><em>I</em><sub style="top: 0.455em;"><em>o</em></sub><em>/N </em>& <em>I</em><sub style="top: 0.455em;"><em>o </em></sub></p><p>range </p><p><em>V</em><sub style="top: 0.37em;"><em>D </em></sub></p><ul style="display: flex;"><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>1 </em></sub></li><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>1 </em></sub></li><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>2 </em></sub></li><li style="flex:1"><em>R</em><sub style="top: 0.37em;"><em>3 </em></sub></li></ul><p></p><p><em>N</em></p><p>1</p><p>log(<em>I</em><sub style="top: 0.495em;"><em>D</em></sub>) </p><ul style="display: flex;"><li style="flex:1"><em>AR</em><sub style="top: 0.495em;"><em>3 </em></sub></li><li style="flex:1"><em>η kT </em></li><li style="flex:1"><em>AR</em><sub style="top: 0.495em;"><em>3 </em></sub></li></ul><p></p><p><em>R</em><sub style="top: 0.495em;"><em>2 </em></sub></p><p>• PTAT+CTAT using currents </p><p>• More <em>R</em><sub style="top: 0.495em;"><em>D </em></sub> smaller <em>N </em></p><p><em>V</em><sub style="top: 0.495em;"><em>ref </em></sub>= <em>V</em><sub style="top: 0.495em;"><em>D </em></sub>+ </p><p>ln<em>N </em></p><p><em>R</em><sub style="top: 0.495em;"><em>1 </em></sub></p><p><em>q</em></p><p>• Higher <em>V</em><sub style="top: 0.495em;"><em>D </em></sub> headroom issue </p><ul style="display: flex;"><li style="flex:1">CTAT </li><li style="flex:1">PTAT </li></ul><p></p><p>Banba <em>et al</em>., Toshiba [21] </p><p><strong>Slide 23 </strong></p><p><strong>Loke et al., Analog/Mixed-Signal Design in FinFET Technologies </strong></p><p><strong>I/O Voltage Not Scaling With Core Supply </strong></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages29 Page
-
File Size-