PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/75873 Please be advised that this information was generated on 2021-10-05 and may be subject to change. S e a r c h in g f o r Q u a n t u m G r a v it y w it h H ig h - e n e r g y A t m o s p h e r ic N e u t r in o s a n d A M A N D A - I I by J o h n L a w r e n c e K e l l e y A dissertation submitted in partial fulfillment of the requirements for the degree of D o c t o r o f P h il o s o p h y (P h y s ic s ) at the U n iv e r s it y o f W is c o n s in - M a d is o n 2008 © 2008 John Lawrence Kelley All Rights Reserved S e a r c h i n g f o r Q u a n t u m G r a v it y w i t h H i g h - e n e r g y A t m o s p h e r i c N e u t r i n o s a n d AMANDA-II John Lawrence Kelley Under the supervision of Professor Albrecht Karle At the University of Wisconsin - Madison The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV. Albrecht Karle (Adviser) The collaborative nature of science is often one of its more enjoyable aspects, and I owe a debt of gratitude to many people who helped make this work possible. First, I offer my thanks to my adviser, Albrecht Karle, for his support and for the freedom to pursue topics I found interesting (not to mention multiple opportunities to travel to the South Pole). I would like to thank Gary Hill for numerous helpful discussions, especially about statistics, and for always being willing to talk through any problem I might have. Francis Halzen sold me on IceCube during my first visit to Madison, and I have learned from him never to forget the big picture. Many thanks to Teresa Montaruli for her careful analysis and insightful questions, and to Paolo Desiati for listening patiently and offering helpful advice. I thank Dan Hooper for suggesting that I look into the phenomenon of quantum decoherence and thus starting me off on this analysis in the first place. And I thank Kael Hanson for providing fantastic opportunities for involvement in IceCube hardware and software development, and Bob Morse for a chance to explore radio detection techniques. I offer my thanks as well to my officemate and friend, Jim Braun, for a collaboration that has made the past years much more enjoyable. The 0(1000) pots of coffee we have shared were also rather instrumental in fueling this work. I would like to thank my parents, James and Lorraine, for their unflagging encouragement through all of my career-related twists and turns. Finally, I offer my deepest gratitude to my partner, Autumn, for her support, flexibility, and understanding — and for leaving our burrito- and sushi-filled life in San Francisco to allow me to pursue this degree. May the adventures continue. ii C ontents 1 Introduction 1 2 Cosmic Rays and Atmospheric Neutrinos 4 2.1 Cosmic Rays .................................................................................................................................... 4 2.2 Atmospheric Neutrinos and M u o n s ............................................................................................ 7 2.2.1 P ro d u c tio n .......................................................................................................................... 7 2.2.2 Energy Spectrum and Angular D istrib u tio n ............................................................... 7 2.3 Neutrino O scillations....................................................................................................................... 10 3 Quantum Gravity Phenomenology 13 3.1 Violation of Lorentz In v a ria n c e ................................................................................................... 13 3.2 Quantum D ecoherence................................................................................................................... 17 4 Neutrino Detection 21 4.1 General Techniques.......................................................................................................................... 21 4.2 Cerenkov Radiation ....................................................................................................................... 22 4.3 Muon Energy Loss .......................................................................................................................... 23 4.4 Other Event Topologies ................................................................................................................ 23 4.5 B ackground....................................................................................................................................... 25 5 The AMANDA-II Detector 26 5.1 Overview .......................................................................................................................................... 26 5.2 Optical Properties of the Ic e .......................................................................................................... 26 iii 5.3 Data Acquisition and Triggering ................................................................................................ 28 5.4 C a lib ra tio n ....................................................................................................................................... 30 6 Simulation and Data Selection 31 6.1 Simulation .......................................................................................................................................... 31 6.2 Filtering and Track R econstruction............................................................................................ 32 6.3 Quality Cuts .................................................................................................................................... 34 6.3.1 Point-source Cuts ............................................................................................................. 34 6.3.1.1 Likelihood R a tio ................................................................................................ 34 6.3.1.2 Sm oothness.......................................................................................................... 35 6.3.1.3 Paraboloid E r r o r ................................................................................................ 35 6.3.1.4 Flariness and Stability Period ..................................................................... 36 6.3.2 Purity Cuts .......................................................................................................................... 36 6.3.3 High-Nch Excess and Additional Purity C u ts ........................................................... 38 6.4 Final Data Sample .......................................................................................................................... 45 6.5 Effective Area .................................................................................................................................... 47 6.6 A Note on B lin d n e ss....................................................................................................................... 47 7 Analysis Methodology 49 7.1 O bservables....................................................................................................................................... 49 7.2 Statistical Methods .......................................................................................................................... 52 7.2.1 Likelihood Ratio ................................................................................................................ 53 7.2.2 Confidence Intervals .......................................................................................................... 54 7.3 Incorporating Systematic Errors ................................................................................................ 55 7.4 Discussion .......................................................................................................................................... 57 7.5 Complications .................................................................................................................................... 57 7.5.1 Computational Requirements ......................................................................................... 57 7.5.2 Zero D im en sio n s................................................................................................................ 59 7.6 Binning and Final Event Count ................................................................................................... 59 iv 8 Systematic Errors 62 8.1 General Approach .......................................................................................................................... 62 8.2 Sources of Systematic
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages133 Page
-
File Size-