2021 ACT Quantaloidal Approach

2021 ACT Quantaloidal Approach

Quantaloidal approach to constraint satisfaction Soichiro Fujii, Yuni Iwamasa and Kei Kimura ACT 2021 Quantaloids = {complete join-semilattices}-enriched categories Quantaloidal approach to constraint satisfaction Constraint satisfaction problem (CSP): general framework for computational problems including k-SAT, graph k-colouring, … Soichiro Fujii, Yuni Iwamasa and Kei Kimura ACT 2021 (Computational) Overview problems Quantaloids CSP !FinSet Special case Quantaloidal CSP "FinSet Special ": quantale case TVCSP (Optimisation problem) ℝFinSet (Computational) Overview problems Quantaloids CSP !FinSet Special case Quantaloidal CSP "FinSet Special ": quantale case TVCSP (Optimisation problem) ℝFinSet Graph k-colouring (k ∈ ℕ) v2 v4 v1 v3 v5 ∃s: {v1, …, v5} → {1,…, k} s.t. ∀edge (vi, vj), s(vi) ≠ s(vj)? Ex. k = 3 { 1 , 2 , 3 } A CSP instance I = (V, D, *) consists of: • V: finite set of variables • D: finite set called the domain • *: finite set of “constraints” A constraint is (k, x, ρ) where • k ∈ ℕ, x ∈ Vk, ρ ⊆ Dk. A function satisfies the constraint if s: V → D (k, x = (x1, …, xk), ρ) . (s(x1), …, s(xk)) ∈ ρ A solution of I = (V, D, *) is a function s: V → D satisfying every constraint in *. ,(I) = {solutions of I} ⊆ [V, D] Ex. Graph k-colouring v2 v4 v1 v3 v5 ∃s: {v1, …, v5} → {1,…, k} s.t. ∀edge (vi, vj), s(vi) ≠ s(vj)? A function s: V → D satisfies the constraint k x x ρ ( ′, x = ( 1, …, k′), ) V = {v1, …, v5} if . (s(x ), …, s(x ) ) ∈ ρ D = {1,…, k} 1 k′ 2 * = {(2,(vi, vj), ≠ ⊆ D ) ∣ (vi, vj): edge} (Computational) Overview problems Quantaloids CSP !FinSet Special case Quantaloidal CSP "FinSet Special ": quantale case TVCSP (Optimisation problem) ℝFinSet The 2-category !FinSet: φ φ ψ Obj. Finite sets Comp. A ⟶ B ⟶ C 2-cell A ⇓ B φ ψ ∘ φ = { g ∘ f ∣ g ∈ ψ, f ∈ φ } Mor. A ⟶ B φ′ {idA} φ ⊆ [A, B] Id. A ⟶ A φ ⊆ φ′ !FinSet is a quantaloid (the free quantaloid over FinSet): • ∀A, B ∈ !FinSet, !FinSet(A, B) = (![A, B], ⊆ ) is a complete lattice. • ∀A, B, C ∈ !FinSet, !FinSet(B, C) × !FinSet(A, B) ⟶∘ !FinSet(A, C) preserves arbitrary joins in each variable: ψ φi ψi φ B ⟶ C (A ⟶ B)i∈I (B ⟶ C)i∈I A ⟶ B ψ φ ψ φ ψ φ ψ φ ∘ (⋁ i) = ⋁( ∘ i) (⋁ i) ∘ = ⋁( i ∘ ) i∈I i∈I i∈I i∈I In particular, φ • ∀A ⟶ B, C ∈ !FinSet, !FinSet(φ, C): !FinSet(B, C) ⟶ !FinSet(A, C) ψ φ ψ preserves arbitrary joins. (B ⟶ C) (A ⟶ B ⟶ C) ⟺ !FinSet(φ, C) has a right adjoint ( − ) ↙ φ: !FinSet(A, C) ⟶ !FinSet(B, C) θ B (A ⟶ C) φ θ ↙ φ ⇓ A C θ The right extension of θ along φ B B ψ ψ ↘ θ ψ ⇓ The right lifting of along A C A C θ ψ θ θ (Computational) Overview problems Quantaloids CSP !FinSet Special case Quantaloidal CSP "FinSet Special ": quantale case TVCSP (Optimisation problem) ℝFinSet A CSP instance I = (V, D, *) consists of: Each constraint (k, x, ρ) • V: finite set of variables yields !FinSet • D: finite set called the domain V • *: finite set of “constraints” { } ρ ↙ {x} A constraint is (k, x, ρ) where x k k ⇓ • k ∈ ℕ, x ∈ V , ρ ⊆ D . [k] D ρ A function s: V → D satisfies the constraint (k, x = (x , …, x ), ρ) if (s(x ), …, s(x )) ∈ ρ. ρ ↙ {x} ⊆ [V, D] 1 k 1 k A solution of I = (V, D, *) is a function { s: V → D ∣ s satisfies s: V → D satisfying every constraint in *. the constraint (k, x, ρ) } ,(I) = {solutions of I} ⊆ [V, D] I ρ V D ,( ) = ⋂ ↙ {x}: ⟶ (k,x,ρ)∈* (Computational) Overview problems Quantaloids CSP !FinSet Special case Quantaloidal CSP "FinSet Special ": quantale case TVCSP (Optimisation problem) ℝFinSet (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case Quantaloidal CSP "FinSet Special -valued polymorphisms ": quantale case " TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case Quantaloidal CSP "FinSet Special -valued polymorphisms ": quantale case " TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms Dichotomy theorem. [Bulatov 2017, Zhuk 2020] For each “constraint language” 7, CSP(7) is either in P or is NP-complete. A constraint language 7 consists of • D: finite set Finite relational structure ki : finite family of relations on . • (ρi ⊆ D )i∈I D : constraint language 7 = (D, (ρi)i∈I) CSP(7): set of CSP instances defined by I = (V, D′, *) ∈ CSP(7) ⟺ D′ = D and ∀(k, x, ρ) ∈ *, ρ ∈ 7 When is CSP(7) easy to solve? • CSP(7) is in P if 7 admits enough “symmetry” • CSP(7) is NP-complete otherwise The relevant “symmetry” of 7 is captured by polymorphisms of 7 = homomorphisms (of relational structures) 7n → 7. Dichotomy theorem. [Bulatov 2017, Zhuk 2020] 7: constraint language ∀x, y, z ∈ D . f(y, x, y, z) = f(x, y, z, x) • CSP(7) is in P if 7 admits a Siggers operation f: D4 → D as a polymorphism • CSP(7) is NP-complete otherwise. : constraint language 7 = (D, (ρi)i∈I) ∀n ∈ ℕ, let Pol(7)n = {n-ary polymorphisms of 7} = {homomorphisms 7n → 7} Assume I: singleton, so that 7 = (D, ρ ⊆ Dk). n Then Pol(7)n : D ⟶ D is given by: Dn Dn n n n n {πi}i=1 ↘ ρ {πi}i=1 {πi}i=1 ↘ ρ ρ ↙ ({πi}i=1 ↘ ρ) ⇓ ⇓ = Pol(7)n k D k D [ ] ρ [ ] ρ (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case Quantaloidal CSP "FinSet Special -valued polymorphisms ": quantale case " TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case Quantaloidal CSP "FinSet Special -valued polymorphisms ": quantale case " TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms A quantale is a one-object quantaloid. Explicitly, " = (Q, ≤ , e, ⊗ ) is a quantale if • (Q, ≤ ): complete lattice • (Q, e, ⊗ ): monoid satisfying: α β α β α β α β ⊗ (⋁ i) = ⋁( ⊗ i) (⋁ i) ⊗ = ⋁( i ⊗ ) i∈I i∈I i∈I i∈I " = (Q, ≤ , e, ⊗ ): quantale The quantaloid "FinSet: φ ψ Obj. Finite sets Comp. A ⟶ B ⟶ C φ Mor. A B ψ φ h ψ g φ f f A B g B C g f h ⟶ ( ∘ )( ) = ⋁{ ( ) ⊗ ( ) ∣ : → , : → , ∘ = } φ: [A, B] → Q “Singleton” morphism φ f Id. {idA} A ⟶ B A ⟶ A 2-cell A ⇓ B {f} A ⟶ B φ′ f A B Q { }: [ , ] → φ ≤ φ′ e if g f g = { ⊥Q otherwise (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case " = 2 Quantaloidal CSP "FinSet Special -valued polymorphisms ": quantale case " TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case " = 2 Quantaloidal CSP "FinSet Special -valued polymorphisms ": quantale case " TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms " = (Q, ≤ , e, ⊗ ): quantale A " -valued CSP instance I = (V, D, *) consists of: • V: finite set of variables • D: finite set called the domain • *: finite set of “" -valued constraints” A " -valued constraint is (k, x, ρ) where ρ: [k] ⟶ D in "FinSet • k ∈ ℕ, x ∈ Vk, ρ ⊆ Dk. ρ: Dk → Q Each "-valued constraint (k, x, ρ) yields V "FinSet ,(I) = ρ ↙ {x}: V ⟶ D {x} ρ ↙ {x} ⋀ ⇓ (k,x,ρ)∈* [k] D ρ ,(I): [V, D] → Q A " -valued constraint language 7 consists of • D: finite set ki : finite family of relations on . • (ρi ⊆ D )i∈I D : finite family of morphisms in (ρi : [ki] ⟶ D)i∈I "FinSet Assume I: singleton, so that 7 = (D, ρ: [k] ⟶ D). n Then Pol(7)n : D ⟶ D is given by: n Pol(7)n( f ) ∈ Q: the “degree” to which Pol(7) : [D , D] → Q n n f: D → D is a polymorphism of 7 Dn Dn n n n n {πi}i=1 ↘ ρ {πi}i=1 {πi}i=1 ↘ ρ ρ ↙ ({πi}i=1 ↘ ρ) ⇓ ⇓ = Pol(7)n k D k D [ ] ρ [ ] ρ (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case " = 2 Quantaloidal CSP "FinSet Special -valued polymorphisms ": quantale case " TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms (Computational) Overview problems Quantaloids CSP !FinSet Polymorphisms Special case " = 2 Quantaloidal CSP "FinSet Special "-valued polymorphisms ": quantale case " = ℝ TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms Letting " = ℝ = (ℝ ∪ {±∞}, ≥ ,0,+) (cf. [Lawvere 1973]), we obtain a class of optimisation problems: inf sup ρ(s(x1), …, s(xk)) s: V→D (k,x,ρ)∈* which we call “tropical valued CSPs”. Dichotomy theorem for TVCSPs.* 7: ℝ-valued constraint language • TVCSP(7) is in P if there exists a Siggers operation 4 with . f: D → D 0 ≥ Pol( f )4 • TVCSP(7) is NP-hard otherwise. * For a slightly more expressive version of TVCSPs. (Computational) Summary problems Quantaloids CSP !FinSet Polymorphisms Special case Dichotomy theorem " = 2 Quantaloidal CSP "FinSet Special "-valued polymorphisms ": quantale case " = ℝ TVCSP (Optimisation problem) ℝFinSet ℝ-valued polymorphisms Dichotomy theorem.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us