Amsip028-Endmatter.Pdf

Amsip028-Endmatter.Pdf

Lectures on Chaotic Dynamical System s This page intentionally left blank https://doi.org/10.1090/amsip/028 AMS/IP Studies in Advanced Mathematics Volume 28 Lectures on Chaotic Dynamical System s Valentin Afraimovich and Sze-Bi Hsu American Mathematical Society • International Press Shing-Tung Yau , Genera l Edito r 2000 Mathematics Subject Classification. Primar y 37-XX . Library o f Congres s Cataloging-in-Publicatio n Dat a Afraimovich, V . S . (Valenti n Senderovich ) Lectures o n chaoti c dynamica l system s / Valenti n Afraimovic h an d Sze-B i Hsu . p. cm . — (AMS/I P studie s i n advance d mathematics , ISS N 1089-328 8 ; v. 28 ) Includes bibliographica l reference s an d index . ISBN 0-8218-3168- 2 (alk . paper ) 1. Differentiabl e dynamica l systems . 2 . Chaoti c behavio r i n systems . I . Hsu , Sze-Bi , 1948 - II. Title . III . Series . QA614.8.A385 200 2 514/.74—dc21 2002074423 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed t o the Acquisition s Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 200 3 by the America n Mathematica l Societ y an d Internationa l Press . Al l right s reserved . The America n Mathematica l Societ y an d Internationa l Pres s retai n al l right s except thos e grante d t o th e Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t http://www.ams.org / Visit th e Internationa l Pres s hom e pag e a t URL : http://www.intlpress.com / 10 9 8 7 6 5 4 3 2 1 0 8 0 7 0 6 0 5 0 4 0 3 Contents 1 Basi c Concept s 1 1.1 Th e Worl d o f the Observable s 1 1.2 Dynamica l System s 3 1.3 Dynamica l Chaos . Som e Definitions 6 1.4 System s with Dissipatio n 9 1.5 Strang e Attractors : Firs t Encounte r 2 6 1.6 Characteristic s o f Complexity o f Attractors 3 7 1.7 Mari e Theorem an d Taken s Definitio n 4 1 2 Zero-Dimensiona l Dynamic s 5 1 2.1 Symboli c Dynamic s 5 1 2.2 Application s o f the Bernoull i Schem e 5 5 2.3 "Two-sided " Bernoull i Shif t 6 2 2.4 Topologica l Marko v Chain s 7 1 2.5 Topologica l Pressur e , Hausdorff An d Bo x Dimension .... 8 1 3 One-Dimensiona l Dynamic s 9 5 3.1 Lorenz-typ e Map s 9 5 3.2 Continuou s an d Smoot h Map s o f the Interva l Il l 3.3 Ergodi c Propertie s an d Invarian t Measure s 13 4 4 Two-Dimensiona l Dynamic s 15 3 4.1 Henon-typ e Map s 15 3 4.2 Th e Notio n o f Hyperbolicity 15 7 4.3 Sufficien t Condition s fo r Hyperbolicit y 16 1 4.4 Poincare-Birkhof f Proble m 16 9 4.5 Homoclini c Bifurcation s 19 5 4.6 Strang e Attractor s o f Som e Map s o f the Plan e 21 0 5 System s wit h 1. 5 Degree s o f Freedo m 21 7 5.1 Smal l Periodic Perturbatio n o f Morse-Smale System s .... 21 7 5.2 Bifurcation s O f Codimension On e Subjected t o Periodic Per- turbations 22 0 5.3 Th e Melhiko v Function 22 9 5.4 Route s to Chaos . Period-Doublin g Cascad e 24 2 5.5 Critica l Saddle-Nod e Bifurcation s an d Destructio n o f Tori . 24 7 v vi CONTENTS 6 Generate d b y 3- D Vecto r Field s 25 7 6.1 Homoclini c Bifurcation s i n System s 25 7 6.2 Tw o Homoclinic Orbit s 26 6 6.3 Th e Geometri c Loren z Attracto r 27 4 6.4 Saddle-Focu s Homoclini c Bifurcation s 28 6 7 Lyapuno v Exponent s 29 5 Appendix 31 1 .1 Proo f o f the Annulu s Principl e 31 1 .2 Norma l Form fo r the Andronov-Hopf-Naimark-Sacker Bifur - cation 31 7 .3 Dissipativ e "Separatri x Map " 32 0 .4 Derivatio n o f the Zaslavsk y ma p [Z ] 32 2 .5 Concludin g Remark s o n Symboli c Dynamic s 32 5 .6 Hyperbolicit y Condition s 32 9 References 33 9 Index 35 1 Preface There are many books related to the field o f science which is called " chaotic dynamics", an d many o f them may serve as introductory textbooks fo r stu - dents (see , fo r instance , [AAIS] , [C] , [D] , [GH] , [KH] , [MS] , [0] , [PT2] , [Ro2], [Sp] , [W ] and reference s therein) . I n order to justify (fro m ou r poin t of view) the existenc e o f the present book , le t u s observe that th e origi n o f "dynamical chaos" has three main components: (1 ) differentiable dynamic s (mainly th e par t create d b y Alekseev , Anosov , Bowen , Shil'mkov , Sinai , Smale and others); (2 ) the derivation an d study o f mathematical model s o f physical systems (Chirikov , Zaslavsk y and others in plasma physics; Loren z and other s i n meteorology ; Hayashi , Rabinovich , Chu a an d other s i n elec - trical engineering ; May , Keene r an d other s i n mathematica l biology ; an d many other specialists in different branche s o f natural sciences); (3 ) the pos- sibility o f compute r simulatio n o f "really" nonlinea r systems . I f yo u loo k carefully a t th e book s devote d t o chao s o n th e shelve s o f the bookstores , you wil l se e that the y ca n b e partitione d (mor e o r les s without difficulty ) into three groups, i n accordance wit h the point s o f view mentioned above . In ou r lectur e notes , w e have tried t o kee p the highes t possibl e leve l o f "physicaF (an d mathematical ) intuition , whil e bein g mathematicall y rig - orous. Moreover , w e have explained som e algorithm s an d formulate d som e problems fo r those who are interested i n computer stud y o f chaotic dynam - ics. Secondly, i n ou r boo k w e wer e concerne d abou t reader s wh o ar e no t familiar wit h nonlinea r dynamic s a t all . A reader (say , graduat e student ) knowing nothin g (except , o f course , som e "standard knowledge" o f func - tional analysis , ordinar y differentia l equations , etc. ) wh o goe s through al l the example s presente d i n th e book , wil l the n b e abl e t o enjo y readin g proofs o f theorems i n books suc h a s [KH] , [MS] , to understand th e mathe - matics hidde n unde r th e nicel y describe d physica l problem s i n [O] , [SUZ], will not b e afrai d o f "numerical difficultie s i n [CK] , [GHP] , etc. A t least , we hope this wil l be so. However, t o fulfil l tha t aim , w e had t o omi t a lo t o f material. Onl y a very small piece of ergodic theory has been mentioned (th e interested reade r should loo k a t [CFS] , [KH] , [Y2 ] and reference s therein) . Hamiltonia n sys - tems ar e almos t no t touche d i n ou r boo k (sam e references) . Furthemore , the attentive reader wil l see that a s soon as a problem becomes too specific , we stop considerin g it . I n brief , ou r boo k i s an introductio n an d onl y a n vn Vlll PREFACE introduction t o the field o f dynamical chaos .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us