SI Units and Gaussian Units

SI Units and Gaussian Units

Appendix A SI Units and Gaussian Units A.1 Conversion of Amounts All factors of 3 (apart from exponents) should, for accurate work, be replaced by 2.99792456, arising from the numerical value of the velocity of light. [43] Physical quantity Symbol SI(MKSA) Gaussian Length l 1 meter (m) 102 centimeters (cm) Mass m 1 kilogram (kg) 103 grams (gm or g) Time t 1 second (sec or s) 1 second (sec or s) Frequency f 1 hertz (Hz) 1 hertz (Hz) Force F 1 newton (N) 105 dynes Work, Energy W; U 1 joule (J) 107 ergs Power P 1 watt (W) 107 ergs/s Charge q 1 coulomb (C) 3 £ 109 statcoulombs Charge density % 1 C/m3 3 £ 103 statcoul/cm3 Current I 1 ampere (A) 3 £ 109 statamperes Current density J 1 A/m2 3 £ 105 statamp/cm2 Potential ' 1 volt (V) 10¡2=3 statvolt Electric ¯eld E 1 V/m 10¡4=3 statvolt/cm Electric induction D 1 C/m2 12¼ £ 105 statvolt/cm Polarization P 1 C/m2 3 £ 105 moment/cm3 Magnetic flux © 1 weber (Wb) 108 maxwell (Mx) Magnetic induction B 1 tesla (T) 104 gauss (Gs) Magnetic ¯eld H 1 A/m 4¼ £ 10¡3 oersted (Oe) Magnetization M 1 A/m 10¡3 moment/cm3 Conductance G 1 siemens (S) 9 £ 1011 cm/s Conductivity σ 1 S/m 9 £ 109 1/s Resistance R 1 ohm (­) 10¡11=9 s/cm Capacitance C 1 farad (F) 9 £ 1011 cm Inductance L 1 henry (H) 109 cm 674 Appendix A A.2 Formulas in SI (MKSA) Units and Gaussian Units Name of formula SI (MKSA) Gaussian r £ E = ¡@ B r £ E = ¡1 @ B @ t c @ t Maxwell r £ H = @ D + J r £ H = 1 @ D + 4¼ J @ t c @ t c equations r ¢ D = % r ¢ D = 4¼% r ¢ B = 0 r ¢ B = 0 1 Lorentz force F = q(E + v £ B) F = q(E + c v £ B) Constitutional D = ²0E + P = ²ED = E + 4¼P = ²E equations B = ¹0(H + M) = ¹HB = H + 4¼M = ¹H J = γE J = γE Constitutional ² = ²0(1 + Âe) = ²0²r ² = 1 + 4¼Âe = ²r parameters ¹ = ¹0(1 + Âm) = ¹0¹r ¹ = 1 + 4¼Âm = ¹r n £ (E2 ¡ E1) = 0 n £ (E2 ¡ E1) = 0 4¼ Boundary n £ (H2 ¡ H1) = J s n £ (H2 ¡ H1) = c J s equations n ¢ (D2 ¡ D1) = %s n ¢ (D2 ¡ D1) = 4¼%s n ¢ (B2 ¡ B1) = 0 n ¢ (B2 ¡ B1) = 0 Z Z 1 % 0 1 % 0 Coulomb's law E = 4¼² 2 r^dV E = ² 2 r^dV V r V r Z Z 1 % 0 1 % 0 ' = 4¼² r dV ' = ² r dV V V Z Z ¹ J £ r^ 0 ¹ J £ r^ 0 Biot-Savart B = 4¼ 2 dV B = c 2 dV V r V r law Z Z ¹ J 0 ¹ J 0 A = 4¼ r dV A = c r dV V V 2 % 2 % Poison r ' = ¡ ² r ' = ¡4¼ ² equations 2 2 4¼ r A = ¡¹J r A = ¡ c ¹J SI Units and Gaussian Units 675 Name of formula SI (MKSA) Gaussian 2 ²¹ 2 Wave r2E ¡ ²¹@ E = 0 r2E ¡ @ E = 0 @ t2 c2 @ t2 equations 2 ²¹ 2 r2H ¡ ²¹@ H = 0 r2H ¡ @ H = 0 @ t2 c2 @ t2 Dynamic B = r £ A B = r £ A potentials E = ¡r' ¡ @ A E = ¡r' ¡ 1 @ A @ t c @ t @' ²¹ @' Lorentz gauge r ¢ A + ²¹ = 0 r ¢ A + = 0 @ t c @ t @2' % ²¹ @2' % D'Alembert r2' ¡ ²¹ = ¡ r2' ¡ = ¡4¼ @ t2 ² c2 @ t2 ² equations 2 ²¹ 2 r2A¡²¹@ A =¡¹J r2A¡ @ A =¡4¼ ¹J @ t2 c2 @ t2 c Z Z 1 %(t ¡ r=c) 0 1 %(t ¡ r=c) 0 Retarding '= 4¼² r dV '= ² r dV V V potentials Z Z ¹ J(t ¡ r=c) 0 ¹ J(t ¡ r=c) 0 A= 4¼ r dV A= c r dV V V 1 1 Energy density w = 2(E ¢ D + H ¢ B) w = 8¼ (E ¢ D + H ¢ B) c Poynting vector P = E £ H P = 4¼ E £ H 676 Appendix A A.3 Pre¯xes and Symbols for Multiples Multiple Pre¯x Symbol 10¡18 atto a 10¡15 femto f 10¡12 pico p 10¡9 nano n 10¡6 micro ¹ 10¡3 milli m 10¡2 centi c 10¡1 deci d 10 deka da 102 hecto h 103 kilo k 106 mega M 109 giga G 1012 tera T 1015 peta P 1018 exa E Appendix B Vector Analysis B.1 Vector Di®erential Operations B.1.1 General Orthogonal Coordinates r ³ @ x ´2 ³ @ y ´2 ³ @ z ´2 u1; u2; u3; h1; h2; h3; hi = + + ; i = 1; 2; 3 @ ui @ ui @ ui A = u^1A1 + u^2A2 + u^3A3 X3 1 @ ' 1 @ ' 1 @ ' 1 @ ' r' = u^ = u^ + u^ + u^ (B.1) i h @ u 1 h @ u 2 h @ u 3 h @ u i=1 i i 1 1 2 2 3 3 1 X3 @ r ¢ A = (hjhkAi) h1h2h3 @ ui · i=1 ¸ 1 @ @ @ = (h2h3A1) + (h3h1A2) + (h1h2A3) (B.2) h1h2h3 @ u1 @ u2 @ u3 · ¸ X3 1 @ @ r £ A = u^i (hkAk) ¡ (hjAj) hjhk @ uj @ uk i=1 · ¸ 1 @ @ = u^ (h A ) ¡ (h A ) 1 h h @ u 3 3 @ u 2 2 2 3 · 2 3 ¸ 1 @ @ + u^ (h A ) ¡ (h A ) 2 h h @ u 1 1 @ u 3 3 3 1 · 3 1 ¸ 1 @ @ + u^3 (h2A2) ¡ (h1A1) (B.3) h1h2 @ u1 @ u2 678 Appendix B 1 X3 @ ³h h @' ´ r2' = j k h1h2h3 @ ui hi @ ui · i=1 ¸ 1 @ ³h h @' ´ @ ³h h @' ´ @ ³h h @' ´ = 2 3 + 3 1 + 1 2 (B.4) h1h2h3 @ u1 h1 @ u1 @ u2 h2 @ u2 @ u3 h3 @ u3 r2A = r(r ¢ A) ¡ r £ r £ A · ³ ´¸ 1 @F0 1 @F3 @F2 = u^1 ¡ ¡ h1 @ u1 h2h3 @ u2 @ u3 · ³ ´¸ 1 @F0 1 @F1 @F3 + u^2 ¡ ¡ h2 @ u2 h3h1 @ u3 @ u1 · ³ ´¸ 1 @F0 1 @F2 @F1 + u^3 ¡ ¡ (B.5) h3 @ u3 h1h2 @ u1 @ u3 where F0 = r ¢ A · ¸ h1 @ @ F1 = h1(r £ A)1 = (h3A3) ¡ (h2A2) h2h3 @ u2 @ u3 · ¸ h2 @ @ F2 = h2(r £ A)2 = (h1A1) ¡ (h3A3) h3h1 @ u3 @ u1 · ¸ h3 @ @ F3 = h3(r £ A)3 = (h2A2) ¡ (h1A1) h1h2 @ u1 @ u2 B.1.2 General Cylindrical Coordinates @ h @ h u ; u ; z; h = 1; 1 = 0; 2 = 0 1 2 3 @ z @ z 1 @' 1 @' @' r' = u^1 + u^2 + z^ (B.6) h1 @ u1 h2 @ u2 @ z · ¸ 1 @ @ @Az r ¢ A = (h2A1) + (h1A2) + (B.7) h1h2 @ u1 @ u2 @ z · ¸ 1 @A @ r £ A = u^ z ¡ (h A ) 1 h @ u @ z 2 2 2 · 2 ¸ 1 @ @A + u^ (h A ) ¡ z 2 h @ z 1 1 @ u 1 · 1 ¸ 1 @ @ + u^3 (h2A2) ¡ (h1A1) (B.8) h1h2 @ u1 @ u2 · ³ ´ ³ ´¸ 2 2 1 @ h2 @' @ h1 @' @ ' r ' = + + 2 (B.9) h1h2 @ u1 h1 @ u1 @ u2 h2 @ u2 @ z Vector Analysis 679 2 2 2 r A = r AT + z^r Az (B.10) where Az is the longitudinal component and AT is the transverse 2- dimensional vector of A A = AT + z^Az; AT = u^1A1 + u^2A2 · ³ ´ ³ ´¸ 2 2 1 @ h2 @Az @ h1 @Az @ Az r Az = + + 2 h1h2 @ u1 h1 @ u1 @ u2 h2 @ u2 @ z µ ¶ 1 @F 1 @F @2A 2 ^ 0 z 1 r AT = u1 ¡ + 2 h1 @ u1 h2 @ u2 @ z µ ¶ 1 @F 1 @F @2A ^ 0 z 2 + u2 + + 2 (B.11) h2 @ u2 h1 @ u1 @ z where · ¸ 1 @ @ F0 = r ¢ AT = (h2A1) + (h1A2) h1h2 @ u1 @ u2 · ¸ 1 @ @ Fz = jr £ AT j = (h2A2) ¡ (h1A1) h1h2 @ u1 @ u2 B.1.3 Rectangular Coordinates x; y; z; h1 = 1; h2 = 1; h3 = 1 @' @' @' r' = x^ + y^ + z^ (B.12) @ x @ y @ z @A @A @A r ¢ A = x + y + z (B.13) @ x @ y @ z µ ¶ µ ¶ µ ¶ @A @A @A @A @A @A r£A = x^ z ¡ y +y^ x ¡ z +z^ y ¡ x (B.14) @ y @ z @ z @ x @ x @ y @2' @2' @2' r2' = + + (B.15) @ x2 @ y2 @ z2 2 2 2 2 r A = x^r Ax + y^r Ay + z^r Az (B.16) B.1.4 Circular Cylindrical Coordinates ½; Á; z; h1 = 1; h2 = r; h3 = 1 @' 1 @' @' r' = ½^ + Á^ + z^ (B.17) @ ½ ½ @Á @ z 1 @ 1 @A @A r ¢ A = (½A ) + Á + z (B.18) ½ @ ½ ½ ½ @Á @ z 680 Appendix B · ¸ · ¸ · ¸ 1 @A @A @A @A 1 @ @A r £ A=½^ z ¡ Á + Á^ ½ ¡ z + z^ (½A ) ¡ ½ (B.19) ½ @Á @ z @ z @ ½ ½ @ ½ Á @Á µ ¶ 1 @ @' 1 @2' @2' r2' = ½ + + (B.20) ½ @ ½ @ ½ ½2 @Á2 @ z2 µ ¶ µ ¶ 2 @A A 2 @A A r2A=½^ r2A ¡ Á ¡ ½ +Á^ r2A + ½ ¡ Á +z^r2A (B.21) ½ ½2 @Á ½2 Á ½2 @Á ½2 z B.1.5 Spherical Coordinates r; θ; Á; h1 = 1; h2 = r; h3 = r sin θ @' 1 @' 1 @' r' = r^ + θ^ + Á^ (B.22) @ r r @ θ r sin θ @Á 1 @ 1 @ 1 @A r ¢ A = (r2A ) + (sin θA ) + Á (B.23) r2 @ r r r sin θ @ θ θ r sin θ @Á · ¸ 1 @ @A r £ A = r^ (sin θA ) ¡ θ r sin θ @ θ Á @Á · ¸ · ¸ 1 1 @A @ 1 @ @A + θ^ r ¡ (rA ) + Á^ (rA ) ¡ r (B.24) r sin θ @Á @ r Á r @ r θ @ θ µ ¶ 1 @ @' 1 @ ³ @'´ 1 @2' r2' = r2 + sin θ + (B.25) r2 @ r @ r r2 sin θ @ θ @ θ r2 sin2 θ @Á2 · ¸ 2 ³ @A @A ´ r2A = r^ r2A ¡ A + cot θA + csc θ Á + θ r r2 r θ @Á @ θ · ¸ 1 ³ @A @A ´ + θ^ r2A ¡ csc2 θA ¡2 r +2 cot θ csc θ Á θ r2 θ @ θ @Á · ¸ 1 ³ @A @A ´ + Á^ r2A ¡ csc2 θA ¡2 csc θ r ¡2 cot θ csc θ θ (B.26) Á r2 Á @Á @Á B.2 Vector Formulas B.2.1 Vector Algebraic Formulas A ¢ B = B ¢ A (B.27) A £ B = ¡B £ A (B.28) A ¢ (B £ C) = B ¢ (C £ A) = C ¢ (A £ B) (B.29) A £ (B £ C) = (A ¢ C)B ¡ (A ¢ B)C (B.30) (A £ B) ¢ (C £ D) = (A ¢ C)(B ¢ D) ¡ (A ¢ D)(B ¢ C) (B.31) (A £ B) £ (C £ D) = (A £ B ¢ D)C ¡ (A £ B ¢ C)D (B.32) Vector Analysis 681 B.2.2 Vector Di®erential Formulas r(' + Ã) = r' + rà (B.33) r('Ã) = 'rà + Ãr' (B.34) r(A ¢ B) = (A ¢ r)B + (B ¢ r)A + A £ (r £ B) + B £ (r £ A) (B.35) r ¢ (A + B) = r ¢ A + r ¢ B (B.36) r ¢ ('A) = A ¢ r' + 'r ¢ A (B.37) r ¢ (A £ B) = B ¢ (r £ A) ¡ A ¢ (r £ B) (B.38) r £ (A + B) = r £ A + r £ B (B.39) r £ ('A) = r' £ A + 'r £ A (B.40) r £ (A £ B) = A(r ¢ B) ¡ B(r ¢ A) + (B ¢ r)A ¡ (A ¢ r)B (B.41) r ¢ r' = r2' (B.42) r £ r' = 0 (B.43) r ¢ r £ A = 0 (B.44) r £ r £ A = r(r ¢ A) ¡ r2A (B.45) B.2.3 Vector Integral Formulas Volume V is bounded by closed surface S.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    36 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us