Physics Highlights from the ATLAS Experiment

Physics Highlights from the ATLAS Experiment

Physics Highlights from the ATLAS Experiment Karl Jakobs For the ATLAS Collaboration ICHEP 2020, Prague / Virtual Conference 10 Years at the Energy Frontier 2010 CERNMarch/April 2020 cerncourier.com COURIERReporting on international high-energy physics Fabiola Gianotti 0 ICHEP 2010, Paris ATLAS 2011 - 2012 Obs. -1 s = 7 TeV: ∫Ldt = 4.6-4.8 fb Exp. Local p s = 8 TeV: ∫Ldt = 5.8-5.9 fb-1 ±1 σ LARGE HADRON COLLIDER 1 0σ 10-1 1σ 10-2 2σ 10 YEARS AT THE -3 10 3σ 10-4 4σ ENERGY FRONTIER 10-5 10-6 5 10-7 σ 2012 10-8 -9 10 6σ -10 107 10 Data 2012 ATLAS 106 Z/γ* -11 Z’ → ee 10 Events Top quark 5 -1 10 L dt = 20.3 fb Dijet & W+Jets ∫ Diboson 110 115 120 125 130 135 140 145 150 4 10 s = 8 TeV Z’ SSM (1.5 TeV) Z’ SSM (2.5 TeV) m [GeV] 103 H 102 10 1 10-1 1.4 1.2 1 0.8 0.6 0.08 0.1 0.2 0.3 0.4 0.5 1 2 3 4 Data/Expected mee [TeV] ~~ ~ 0 gg production; g→ q q χ∼ 1 ATLAS SUSY 2014 1400 Observed limit (±1 σtheory) [GeV] 0 1 ∼ Expected limit (±1 σ ) χ -1 exp m L dt = 20.3 fb , s=8 TeV 1200 ∫ Observed limit (4.7 fb-1, 7 TeV) 0 leptons, 2-6 jets Expected limit (4.7 fb-1, 7 TeV) 1000 800 600 400 200 0 400 600 800 1000 1200 1400 m~g [GeV] 2016 MICE reports muon cooling Protons target cardiac arrhythmia Exploring the Einstein Telescope 2018 K. Jakobs, ATLAS Experiment, ICHEP 2020 ICHEP 2018, Seoul 2 LHC Run 2 (2015 – 2018) pp In Run 2 (2015 – 2018): Delivered: 156 fb-1 Recorded: 147 fb-1 (Data taking efficiency 94.2%) Good for Physics: 139 fb-1 (Efficiency 94.6%, à high data quality) • 94 public results (51 papers) with complete Run-2 pp dataset, 139 fb-1 https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ResultswithData2018 • 10 public results ( 2 papers) incl. the 2018 Heavy Ion data, 1.7 nb-1 https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults • 35 ICHEP 2020 Conference contributions https://atlas.cern/updates/atlas-news/summary-ichep-2020 K. Jakobs, ATLAS Experiment, ICHEP 2020 3 Higgs Boson Physics H à ZZ* à4ℓ H à γγ H à WW* à eν µν arXiv:2004.03969 ATLAS-CONF-2020-026 (VBF) ATLAS-CONF-2020-045 6 180 ATLAS Preliminary 10 Data 3000 Data ATLAS Preliminary Data Uncertainty ATLAS Higgs (125 GeV) -1 -1 s = 13 TeV, 139 fb s = 13 TeV, 139 fb H H H ZZ* 4l VBF ggF 160 → → Z(Z*) Background 5 H → WW * → eνµν s = 13 TeV, 139 fb-1 m = 125.09 GeV 10 tXX, VVV 2500 H Other H tt/Wt 140 Z+jets, tt Signal + Background WW Z /γ* All categories Events / bin 4 Uncertainty 2000 10 Mis-Id Other VV 120 ln(1+S/B) weighted sum 1500 S = Inclusive 3 Events/2.5 GeV 10 100 1000 Sum of Weights / GeV 102 80 500 60 10 100 40 mγγ [GeV] 1 50 20 0 1.4 Cont. Bkg. 1.2 0 − −50 80 90 100 110 120 130 140 150 160 170 110 120 130 140 150 160 1 Data / Pred. 0.8 Data mγγ [GeV] m4l [GeV] 0.6 4 3 σ = 53.5 ± 4.9 (stat) ± 2.1 (syst) pb σ BRγγ = 127 ± 7 (stat) ± 7 (syst) fb 2 σ = 55.7 ± 2.8 pb σ BR = 116 ± 5 fb Bkg.) / Bkg. 1 SM SM γγ − 0 Top CR Z+jets CR [0,0.25] [0.25,0.59][0.59,0.73][0.73,0.83][0.83,0.89][0.89,0.93][0.93,1.00] (Tot. CRs DNN output in SR Large Run-2 dataset allows for more detailed measurements +0.17 VBF BR = 0.85 ± 0.10 (stat) (syst) pb σ WW - 0.13 - Differential cross sections VBF σ SM BRWW = 0.81 ± 0.02 pb - Search for rarer decay modes Obs. (exp.) significance: 7.0σ (6.2σ) K. Jakobs, ATLAS Experiment, ICHEP 2020 4 (i) Decays into Fermions: Run-2 results on VH, H à bb Resolved analysis (standard) Vector bosons at high pT (boosted topology) arXiv:2007.02873 arXiv:2007.02873 CERN-EP-2020-093 Resolved analysis Signal strength: µ = σobs / σSM +0.12 +0.14 µVH(bb) = 1.02 - 0.11 (stat) - 0.13 (syst) Good agreement between measurements and SM predictions Obs. (exp.) significance: 6.7σ (6.7σ) significance (ZH): 5.3σ (5.1σ) Boosted analysis: measurement at high pT à increased sensitivity to BSM physics K. Jakobs, ATLAS Experiment, ICHEP 2020 5 (ii) Decays into 2nd Generation Fermions? • Important milestone: test of Yukawa sector H à µµ decays offer the most promising path to 2nd gen arXiv:2007.07830 • However: BR (H à µµ) ~ 2.2 10-4, and huge background from Drell-Yan production of µ pairs • Optimised analysis: - Exploit topological and kinematic differences between different Higgs production modes and the background - Use of multivariate techniques à Classify events in 20 mutually exclusive categories Best fit signal strength: µ = 1.2 ± 0.6 Obs. (exp.) significance: 2.0σ (1.7σ) Run 3 and beyond essential to increase sensitivity K. Jakobs, ATLAS Experiment, ICHEP 2020 6 (iii) Search for rare and invisible decays qqH à qq inv. (VBF) H à Zγ ATLAS-CONF-2020-008 arXiv:2005.05382 Limit on BR (H à inv.): < 0.13 (95% CL) Background-only hypothesis: p-value of 1.3% (2.2σ) Best fit signal strength: µ = 2.0 ± 0.9 (stat) +0.4 (syst) Zγ - 0.3 (exp. µZγ = 1.0 ± 0.8 ± 0.3 for a SM Higgs) Run 3 and beyond essential to increase sensitivity K. Jakobs, ATLAS Experiment, ICHEP 2020 Dark Matter interpretation (Higgs portal models) 7 Combined Measurements of Higgs Boson production and decays Channels included in the combination: (ii) Production Cross Sections (assume SM branching ratios) ATLAS-CONF-2020-027 ATLAS Preliminary Total Stat. Syst. SM s = 13 TeV, 24.5 - 139 fb-1 m = 125.09 GeV, |y | < 2.5 H H p = 86% SM Total Stat. Syst. ggF 1.00 ± 0.07 ( ± 0.05 , ± 0.05 ) + 0.18 + 0.12 VBF 1.15 − 0.17 ( ± 0.13 , − 0.10 ) + 0.23 + 0.17 + 0.15 WH 1.20 − 0.21 ( − 0.16 , − 0.14 ) + 0.22 + 0.15 ZH 0.98 − 0.21 ( ± 0.16 , − 0.13 ) ttH+tH 1.10 + 0.21 ( + 0.16 , + 0.14 ) (i) Global signal strength − 0.20 − 0.15 − 0.13 Describing a common scaling of the expected Higgs boson 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 yields in all processes (σ x BR) (SM: µ = 1.0) Cross-section normalized to SM value All major production processes observed µ = 1.06 ± 0.07 (significance > 5σ ) +0.05 First observation of WH production: 6.3σ (5.2σ exp) [ ± 0.04 (stat) ± 0.03 (exp) - 0.04 (sig.th) ± 0.02 (bkg.th) ] K. Jakobs, ATLAS Experiment, ICHEP 2020 8 (iii) Measurements of simplified template cross-sections (STXS) ATLAS-CONF-2020-027 ATLAS - Partition phase space into a set of non-overlapping regions Preliminary Total Stat. Syst. -1 s = 13 TeV, 139 fb +0.14 +0.12 +0.07 B γγ /B ZZ* 1.07 ( , ) - Defined in terms of kinematics of the Higgs boson, associated jets, m = 125.09 GeV, |y | < 2.5 −0.12 −0.11 −0.06 H H p = 95% B /B +0.57 +0.48 +0.30 SM bb ZZ* 0.77 −0.28 ( −0.25, −0.12) W and Z bosons Total Stat. Syst. SM 0 0.5 1 1.5 2 à Match experimental selections, avoid large theory uncertainties, Total Stat. Syst. H +0.22 +0.19 +0.10 0-jet, p < 10 GeV 0.82 ( , ) sensitive to deviations from SM T −0.20 −0.18 −0.09 0-jet, 10 ≤ pH < 200 GeV +0.15 +0.13 +0.08 T 1.12 −0.14 ( −0.12, −0.07) 1-jet, pH < 60 GeV +0.31 +0.28 T 0.61 −0.30 ( −0.27, ±0.13) 1-jet, 60 ≤ pH < 120 GeV +0.31 +0.28 +0.13 T 1.31 −0.29 ( −0.27, −0.10) gg H + bbH¯ 1-jet, 120 ≤ pH < 200 GeV +0.45 +0.42 +0.15 ! T 0.72 −0.41 ( −0.40, −0.09) H H gg→H × B ZZ* ≥ 2-jet, m jj < 350 GeV, p < 120 GeV 0.30 ±0.45 ( ±0.42, ±0.16) 0-jet,pT < 10 GeV T = 0 jets ≥ 2-jet, m < 350 GeV, 120 ≤ pH < 200 GeV +0.46 +0.41 +0.21 jj T 0.67 −0.44 ( −0.39, −0.19) 0-jet, 10 pH < 200 GeV EW qq0 Hqq0 T ! H +0.83 +0.73 +0.39 ≥ 2-jet, m jj ≥ 350 GeV, p < 200 GeV 1.61 ( , ) H T −0.76 −0.69 −0.32 pT < 200 GeV 200 ≤ pH < 300 GeV +0.40 +0.37 +0.15 H T 1.19 −0.36 ( −0.33, −0.12) 1-jet,pT < 60 GeV 1-jet 300 ≤ pH < 450 GeV +0.56 +0.52 +0.20 = 1 jet T 0.39 −0.49 ( −0.46, −0.16) 1-jet, 60 pH < 120 GeV T pH ≥ 450 GeV +1.44 +1.33 +0.55 2 jets T 1.76 ( , ) ≥ −1.12 −1.05 −0.40 1-jet, 120 pH < 200 GeV T 2-jet,mjj < 350 GeV, VH topo +0.99 +0.95 2 jets ≥ ≤ 1-jet ≥ 1.00 −0.89 ( −0.84, ±0.29) +1.66 +1.54 +0.62 2-jet,m < 350 GeV, VH veto ≥ 2-jet, m jj < 350 GeV, VH veto 2.29 ( , ) ≥ jj −1.52 −1.45 −0.47 +0.83 +0.79 +0.24 2-jet,m < 350 GeV,pH < 120 GeV ≥ 2-jet, m jj < 350 GeV, VH topo 0.65 ( , ) mjj < 350 GeV ≥ jj T −0.73 −0.69 −0.21 qq→Hqq × B ZZ* H +0.64 +0.59 +0.26 ≥ 2-jet, 350 ≤ m jj < 700 GeV, p < 200 GeV 0.81 ( , ) H mjj 350 GeV T −0.56 −0.52 −0.21 2-jet,mjj < 350 GeV, 120 pT < 200 GeV ≥ ≥ H +0.34 +0.29 +0.19 ≥ 2-jet, m jj ≥ 700 GeV, p < 200 GeV 1.16 ( , ) H T −0.29 −0.26 −0.14 2-jet,mjj 350 GeV,pT 200 GeV 2-jet,m 350 GeV,pH < 200 GeV ≥ ≥ ≥ H +0.44 +0.41 +0.18 ≥ jj ≥ T ≥ 2-jet, m ≥ 350 GeV, p ≥ 200 GeV jj T 1.20 −0.37 ( −0.34, −0.14) H pT < 200 GeV 200 pH < 300 GeV T pV < 75 GeV +1.18 +1.16 +0.22 T 2.46 −1.02 ( −1.02, −0.13) H H 2-jet, 350 mjj < 700 GeV,p < 200 GeV V +1.01 +0.99 +0.20 300 pT < 450 GeV T 75 ≤ p < 150 GeV ≥ T 1.70 −0.82 ( −0.81, −0.12) qq→Hl ν × B ZZ* V +0.93 +0.83 +0.42 H H 150 ≤ p < 250 GeV 1.46 ( , ) p 450 GeV 2-jet,mjj 700 GeV,pT < 200 GeV T −0.72 −0.65 −0.32 T ≥ ≥ ≥ pV ≥ 250 GeV +0.79 +0.71 +0.34 T 1.28 −0.56 ( −0.52, −0.21) V(lep)H pV < 150 GeV +0.74 +0.54 +0.50 T 0.19 −0.82 ( −0.57, −0.59) H`⌫,pW < 75 GeV V +0.77 +0.70 +0.32 T gg/qq→Hll × B ZZ* 150 ≤ p < 250 GeV 1.30 ( , ) t¯tH T −0.56 −0.52 −0.21 pV ≥ 250 GeV +0.91 +0.81 +0.41 W T 1.41 ( , ) H`⌫, 75 pT < 150 GeV −0.63 −0.59 −0.23 qq0 H`⌫ H ! pT < 60 GeV W H`⌫, 150 pT < 250 GeV pH < 60 GeV +0.77 +0.76 +0.13 H T 0.72 ( , ) 60 pT < 120 GeV −0.64 −0.64 −0.08 H +0.51 +0.51 +0.08 W 60 ≤ p < 120 GeV 0.66 ( , ) H`⌫,pT 250 GeV T −0.43 −0.43 −0.05 ≥ H t Ht × B 120 p < 200 GeV ZZ* H +0.60 +0.59 +0.14 T 120 ≤ p < 200 GeV T 1.00 −0.51 ( −0.50, −0.10) H +0.53 +0.52 +0.10 Z H p ≥ 200 GeV H``,pT < 150 GeV p 200 GeV T 0.86 ( , ) T ≥ −0.45 −0.45 −0.06 pp H`` ! Z H``, 150 pT < 250 GeV tH × B +3.31 +3.23 +0.71 ZZ* 1.71 −2.52 ( −2.44, −0.63) H``,pZ 250 GeV tH T ≥ −6 −4 −2 02468 Figure 8: Definition of the STXS measurement regions used in this note.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us