Chapter 6 – Fourier Optics

Chapter 6 – Fourier Optics

Chapter 6 – Fourier Optics Gabriel Popescu University of Illinois at Urbana‐Champpgaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical and Computer Engineering, UIUC ECE 460 –Optical Imaging 3.10 Lens as a phase transformer i . EEeo becomes important . How is the wavefront changed by a lens? b(x,y) (x,y) x22 y P α C1 R1 R2 b1 b2 b0 (,)x yknbxykbbxy (,) [o (,)] (3.32) glass air kbo k(1)(,) n b x y Chapter 3: Imaging 2 ECE 460 –Optical Imaging 3.10 Lens as a phase transformer . Let’s calculate b(x,y); assume small angles bR11() PC 1 RR22 () R R 11 2 11 1 1 x . Taylor expansion: 1| x xo 1 Small Angle Approx 2 (Gaussian) 22 (3.33) bR1111 R 1 22 xy22 . tan R1 22 . xy So: bx1(,y ) (3.34) 2R1 Chapter 3: Imaging 3 ECE 460 –Optical Imaging 3.10 Lens as a phase transformer bx(,y )bbxo 12 (,y ) bx (,y ) xy22 11 (3.35) bo 2 R12R . This is the thickness approximation . The phase φ becomes: ()(x, yk)(1)(o kb (1)()n b x, y) 22 xy 11 (3.36) o kn(1) 2 R12R 111 . But we know: (1)n f RR12 Chapter 3: Imaging 4 ECE 460 –Optical Imaging 3.10 Lens as a phase transformer k E(x, y) EE(x’(x, y) E '(xy , ) Exy ( , ) te ( xy , ) (3.37) . The lens transformation is: tei e k ixy()22 (3.38) iknb 2 f eeo . Chapter 3: Imaging 5 ECE 460 –Optical Imaging 3.10 Lens as a phase transformer . A lens transforms an incident plane wavefront into a parabolic shape . Note: f > 0 covergent lens f < 0 divergent f . So, if we know how to propagate through free space, then we can calculate field amplitude and phase through any imaging system Chapter 3: Imaging 6 ECE 460 –Optical Imaging 3.11 Huygens‐Fresnel principle y . Spherical waves: eikR . Wavelet: h R R 22 x z 222 xy . Rxyzz1 2 z z . We are interested close to OA, i.e. small angles 1 xy22 Rz 1 2 (3. 39) 2 z Chapter 3: Imaging 7 ECE 460 –Optical Imaging 3.11 Huygens‐Fresnel principle ikR . For amplitude11 is OK R z e R z 22 . For phase 1 xy kR kz 1 2 z z R The wavelet becomes: z ikz kx()22 y e i 22 h()(xy, ) e 2z (3. 40a) fxy()( , ) x y z 2 . Remember, for the lens we found: f ()xx k 22 ixy() (3.40b) io 2 f txye (, ) ee Negative Lens . Free space acts on the wavefront like a divergent lens (note “+” sign in phase) Chapter 3: Imaging 8 ECE 460 –Optical Imaging 3.11 Huygens‐Fresnel principle . At a given plane, a field is made of point sources y Ex( ,y )Ex ( ',y ') (xx ') (yy ')dx ' dy ' x . Eq 3.40 a‐b represent the impulse response of the system (free space or lens) . Recall linear systems (Chapter 2, page 12, Eq 2.16) . Final response ((p)output) is the convolution of the input with the impulse response (or Greeen’s function) . Nice! Space or time signals work the same! f (')(xxxdxfx 00 ')' ( ) Chapter 3: Imaging 9 ECE 460 –Optical Imaging 3.11 Huygens‐Fresnel principle y θ z U ()(,) U ()(xy, ) x Uxy(, ) U (, )( hx , y ) dd ik 22 ()()xy Ux(,y ) Ue (, )2z dd (3.41) Remember: V Chapter 3: Imaging 10 ECE 460 –Optical Imaging 3.11 Huygens‐Fresnel principle . Fresnel diffraction equation = convolution xy22 Rz1 . Fresnel diffraction equation is an approximation 2 2z of Huygens principle (17th century) 1 eikR(,) Ux(,)y Udd (,) cos(,) (3.42) iR (,) . ! Fresnel is good enough for our pourpose . Note: we don’ t care about constants A (no x‐y dependence) ik ()()xy22 Uxy()( , )( U (), ) e2z dd Chapter 3: Imaging 11 ECE 460 –Optical Imaging 3.12 Fraunhofer Approximation Z Z Z3 . One more approximation (far field) 1 2 x . The phase factor in Fresnel is: Near Field k 22 (,xy ) ( x ) ( y ) Fresnel 2z k 22 22 Fraunhofer ()()2()x yxy 2z (3.43) ≈ 0 . If zk() 22 , we obtain the Fraunhofer equation: i2 ()xy Ux(,y ) AU (, ) ez dd(3.44) . Thus eq. 3.44 defines a Fourier transform . Useful to calculate diffraction patterns ! Chapter 3: Imaging 12 ECE 460 –Optical Imaging 3.12 Fraunhofer Approximation x . Let’s define: f x z y f y z iff2( ) Uf(, f ) U (,). exy dd (3.45) xy . Example: diffraction on a slit x k z a Chapter 3: Imaging 13 ECE 460 –Optical Imaging 3.12 Fraunhofer Approximation x a, |x| < a/2 . One dimensional: Ux() a 0, rest . The far‐field is given by Fraunhofer eq: ifi2 xf x Uf()x Uxe () dx a a x 2 2 a . Similarity Theorem + [()]sin()x cfx : Uf()xx a sin() caf sin(afx ) a (3.46) afx x . fx z Chapter 3: Imaging 14 ECE 460 –Optical Imaging 3.12 Fraunhofer Approximation . Always measure intensity the diffraction pattern is: 2 2 2 sin(afx ) If()xx Uf () a (3.48) afx . Also Babinet’s Principle I(fx) fx() F [] 1()()[]f xF -2π -π π 2π afx Chapter 3: Imaging 15 ECE 460 –Optical Imaging 3.12 Fraunhofer Approximation f 1 . Note: sin(af ) sin x width of diffraction pattern x 1 a a . narrow slit: a1 . wide slit: a2 . Similarity Theorem ↔ uncertainty principle Chapter 3: Imaging 16 Quiz: What is the diffraction pattern from 2 slits of size a separated by d? a d ECE 460 –Optical Imaging 3.13 Fourier Properties of lenses U(x2,y2) U(x1,y1) U(x3,y3) U(x4,y4) OA F F’ z d1 d2 . Propagation: Fresnel U(x1,y1) U(x2,y2) Lens U(x2,y2)U(x3,y3) Fresnel U(x3,y3)U(x4,y4) Chapter 3: Imaging 18 ECE 460 –Optical Imaging 3.13 Fourier Properties of lenses ik 22 xx yy 21 2 1 2d1 . Ux(,22 y ) A 12 Ux (,) 11 ye dxdy 11 k ixy22 2 f 33 . Ux()( 33, y)( AUx 2333 (), y) e ik 22 xx yy 43 43 2d2 . U(, x44 y ) A 34 U (,) x 33 y e dx 33 dy (3.49) . Combining Eqs (3.49) is a little messy, but there is a special case when eqs simplify very useful Chapter 3: Imaging 19 ECE 460 –Optical Imaging 3.13 Fourier Properties of lenses U U . If d1 = d2 = f 1 4 FF’ff ixfyf2( 11xy ) U()( x44, y)( A 41 U 111 () x, y) e dx 11 dy (3. 50) xy44 ffxy; ff What is []U 2 []U 2 . Same eq as (3.45); now z f [*]UU . Lenses work as Fourier transformers UU * . Useful for spatial filtering Autocorrelation Chapter 3: Imaging 20 ECE 460 –Optical Imaging 3.13 Fourier Properties of lenses . Exercise: Use Matlab to FFT images (look up “fft2” in help) a) FFT iFFT Final Granting (amplitude) High‐pass FFT iFFT b) Final Band‐pass . Note the relationship between the frequencies passed and the details / contrast in the final image Chapter 3: Imaging 21 Fourier Optics Uinput Uoutput f f F F’ 2D FT pairs diffraction patterns (Using ImageJ) FT is in Log(Abs) scale!! Why? Time‐domain: sound • load your mp3 • plot time‐series • plot frequency amplitu de, phase, power spectrum, linear/ log • show frequency bands, i.e. “equalizer” • adjust and ppylay in real time Equalizer from mp3 player Space‐domain: image • load your image • display image • show 2D frequency amplitu de, phase, power spectrum, linear/ log • show rings of equal freq., “image equalizer” • adjust and disppylay in real time‐ example on next slide Fourier Filtering (ImageJ).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us