Silicon Photonic Integrated Circuits

Silicon Photonic Integrated Circuits

Silicon Photonic Integrated Circuits Roger Helkey John Bowers University of California, Santa Barbara Art Gossard, Jonathan Klamkin, Dan Blumenthal, Minjoo Larry Lee1, Kei May Lau2, Yuya Shoji3, Tetsuya Mizumoto3, Paul Morton4, Tin Komljenovic, N. Volet, Paolo Pintus, Xue Huang, Daehwan Jung2, Shangjian Zhang, Chong Zhang, Jared Hulme, Alan Liu, Mike Davenport, Justin Norman, Duanni Huang, Alex Spott, Eric J. Stanton, Jon Peters, Sandra Skendzic, Charles Merritt5, William Bewley5, Igor Vurgaftman5, Jerry Meyer5, Jeremy Kirch6, Luke Mawst6, Dan Botez6 1 Yale University 2 Tokyo Institute of Technology 3 Hong Kong University of Science and Technology 4 Morton Photonics 5 Naval Research Laboratory 6 University of Wisconsin UCSB Research supported by ONR, Mike Haney ARPA-E, 1 Conway, Lutwak at DARPA MTO, Aurrion, Keysight What is Silicon Photonics? • Making photonic integrated circuits on Silicon using CMOS process technology in a CMOS fab • Improved performance and better process control • Wafer scale testing • Low cost packaging • Scaling to >1 Tb/s High bandwidth High volume Long distances Low cost Noise Immunity High Scalability 2 Advantage - Waveguide loss InP / GaAs Optimized Si Si Bauters et al. Optics Express (2011) Silicon Photonics Papers First Hybrid Silicon PIC with >200 photonic elements (2014) Hybrid Silicon Modulator with 74 GHz BW (2012) First Hybrid Silicon DFB (2008) First Hybrid Silicon PIC (2007) First Hybrid Silicon Photodiode (2007) First Hybrid Silicon Amplifier (2006) First Hybrid Silicon Laser (2005) Soref and Bennet (1987) Si Photonics - Heterogeneous Integration • CMOS compatible process • Efficient light coupling with Si WG • Component development • PIC integration with >400 elements High gain SOA on Si Isolators/Circulator on Si Low-Loss AWG in Vis Davenport, CLEO SM4G.3 Huang, CLEO SM3E.1 Stanton, CLEO SM1F.1 4.8 μm QCL laser on Si 2.56 Tbps NoC Spott, CLEO STh3L.4 Zhang, CLEO JTh4C.4 5 Optical Amplifier on Si • Scale of Si PICs rapidly increasing 2 mm • Overcome insertion loss, splitter loss • Increase power and equalize optical power in multi-channel devices • Recover signal power before detection Heterogeneous amplifier section Passive Si waveguide Contact metal Heterogeneous transition Davenport, Skendzic, Volet, Bowers CLEO 2016 6 Amplifier on Si - Process flow a) Silicon etching b): III-V bonding c): III-V etching f): Via and e): Hydrogen d) Deposition of probe metal implant electrodes Davenport, Skendzic, Volet, Bowers CLEO 2016 7 Amplifier on Si - Dimensions Davenport, Skendzic, Volet, Bowers CLEO 2016 8 Amplifier on Si - Heterogeneous Transition Passive Si waveguide P-mesa taper Active region taper Si taper N-InP taper Active Si/InP waveguide Davenport, Skendzic, Volet, Bowers CLEO 2016 9 Amplifier on Si – Transition Reflection Polished Passive facet silicon (R=0.28) waveguide • Reflection determined Heterogeneous by fitting model to ASE Polished gain section facet spectrum (R=0.32) • Rtaper r = -46 dB Davenport, Skendzic, Volet, Bowers CLEO 2016 10 Amplifier on Si - Performance • High gain: 26 dB from 0.95 μm waveguide device • High power: 16 dBm from 1.4 μm waveguide device • Large 3dB BW: 66 nm Davenport, Skendzic, Volet, Bowers CLEO 2016 11 Microring Isolator - Nonreciprocity . Optical isolators allow light transmission in only one direction . Necessary in many applications to block undesired feedback for lasers . Requires nonreciprocal phenomenon to break spatial-temporal symmetry Nonreciprocal phase shift (NRPS) . Forward and backwards propagating modes in a magneto-optic waveguide have different propagation constant (b). Nonreciprocal phase shift in a phase-sensitive Unbalanced MZI Microring structure can result in optical isolation for the TM Y. Shoji, T. Mizumoto, et al., M.C. Tien, J. Bowers, et al., mode. Opt. Express (2008) Opt. Express (2011) Huang, Pintus, Zhang, Shoji, Mizumoto, Morton, Bowers OFC 2016 12 Microring Isolator - Design . Magneto-optic material Ce:YIG wafer bonded to all-pass silicon microring . CW and CCW modes are different, causing a resonance split Transmitted Intrinsic Power CW mode (forward) CCW mode 휆 (backward) Resonance wavelength split Operating wavelength . Resonance wavelength split dependent on waveguide geometry . Isolation depends on extinction ratio and coupling coefficient Huang, Pintus, Zhang, Shoji, Mizumoto, Morton, Bowers OFC 2016 13 Microring isolator - Results . 32 dB of isolation with record Demonstrated isolators on silicon low 2.3 dB excess loss achieved with small footprint (35 mm radius). Consumes <10 mW of power, and no permanent magnet is needed . Current controlled magnetic This Work field and Joule heating provides tuning over 0.6 nm with >20 dB of isolation. Huang, Pintus, Zhang, Shoji, Mizumoto, Morton, Bowers OFC 2016 Microring Circulator 1->2 2->1 . Light circulates depending on whether it is coupled into the CW Circulation Direction 1 (off-resonance) or the CCW (on- 2 resonance) mode in the ring. 4 3 Huang, Pintus, Zhang, Shoji, Mizumoto, Morton, Bowers IPC 2016 15 Microring Circulator - Results Experimental Simulated 2 2 • Isolation Ratio =|S21| /|S12| = 11dB Huang, Pintus, Zhang, Shoji, Mizumoto, Morton, Bowers IPC 2016 7 AWG - Spectral Beam Combining Visible to Mid-IR • Multiplexing data • Spectroscopy • Scaling power and brightness • Ultra low-loss arrayed waveguide gratings (AWGs) are important Stanton, Spott, Davenport, Volet, Bowers CLEO 2016 17 Previously demonstrated low-loss AWGs Low-loss AWGs with < 1 dB insertion loss in near-IR: – D. Dai et al., Opt. Express 19, (2011). – J. F. Bauters et al., Appl. Phys. A 116, (2014). – A. Sugita et al., IEEE Photon. Technol. Lett. 12, (2000). Low-loss AWGs near-visible spectrum are difficult to make Recent demonstration of 1.2 dB insertion loss at 900 nm – D. Martens et al., IEEE Photon. Technol. Lett. 27, (2015). • Wavelength target 760 nm – Scattering loss scales by 1/λ4 – 1.2 dB @ 900 nm -> 1.6-2 dB @ 760 nm (scattering loss contribution 1/3rd-2/3rd) Stanton, Spott, Davenport, Volet, Bowers CLEO 2016 18 Challenges for low-loss AWGs • Waveguide propagation loss -αz E(z) = E0e Scattering loss scales by 1/λ4 High aspect ratio waveguides to decrease interfacial scattering Minimize material impurities • Transition loss from straight to bends Use adiabatic transitions • Phase and amplitude errors in arrayed waveguides Mask optimization - process Minimize mask errors Stanton, Spott, Davenport, Volet, Bowers CLEO 2016 19 AWG - Mask Writing Address-Unit Using small address unit for the mask writing is critical in near-visible region 50 nm address unit 5 nm address unit • Pseudo-random length error • Pseudo-random length error ± 150 nm ± 15 nm Stanton, Spott, Davenport, Volet, Bowers CLEO 2016 20 Insertion loss analysis • Center channel insertion loss < 0.5 dB (Record – 760 nm) • Record low crosstalk < -23 dB Stanton, Spott, Davenport, Volet, Bowers CLEO 2016 21 Mid-infrared Silicon Photonics Mid-infrared (~2-20 µm) photonics • Spectral Beam Combining • Gas sensing • Chemical bond spectroscopy • Biological sensing • Environmental analysis • Remote sensing Methane trapped in ice, National Geographic • Nonlinear optics - Reduced two photon absorption in silicon past 1.8 µm Spott, Peters, Davenport, Stanton, Merritt, Bewley, Vurgaftman, Meyer, Kirch, Mawst, Botez, Bowers CLEO 2016 Power plant emissions, National Geographic 22 4.8 µm Quantum Cascade Laser • 30-stage QCL material adapted for heterogeneous integration • 4-8 µm-wide III-V mesas with 1.5-3.5 µm-wide Si waveguides • 3 mm-long hybrid III-V/Si active region • 45 µm-long III-V tapers • λ/4-shifted 1st order distributed feedback (DFB) grating in silicon waveguide under active region Spott, Peters, Davenport, Stanton, Merritt, Bewley, Vurgaftman, Meyer, Kirch, Mawst, Botez, Bowers CLEO 2016 23 4.8 µm Laser Fabrication Bond Remove substrate Dry etch upper clad Wet etch active Deposit lower metal Dry etch lower clad Deposit PECVD SiN Dry etch vias Deposit upper metal Deposit probe metal (2)(6)(7)(4)(5)(8)(3)(1)(9) RemoveCHDepositHCHFBond3PO4/H3 III4dry/H2 /PECVDPdsubstrate-VAr 2etchO/Ge/ todry2/ SONOIDIvias etchPd SiN withwet/Au bottomn etch -mechanicalwaveguideInP bottomtop QCL claddingmetal n-InP metal stages lappinglayers and selective wet etch 24 4.8 µm DFB (with Taper) • Low threshold current densities • Low differential efficiency • Highest output power ~11 mW/facet Spott, Peters, Davenport, Stanton, Merritt, Bewley, Vurgaftman, Meyer, Kirch, Mawst, Botez, Bowers CLEO 2016 25 4.8 µm DFB (Taper Removed) • Heterogeneous taper limiting performance? – Polished off one side for further testing – 211 mW output power (pulsed) • Up to 100 ˚C pulsed operation • Extracted T0: 푇/푇0 - 퐽푡ℎ = 퐽0e → 푇0 = 199 퐾 Spott, Peters, Davenport, Stanton, Merritt, Bewley, Vurgaftman, Meyer, Kirch, Mawst, Botez, Bowers CLEO 2016 26 Evolution of Multicore Processors 1) Number of transistors is rapidly increasing 2) clock rates are not increasing 3) Power consumption is constrained 4) Rapidly increasing number of cores Source: C. Batten 27 Waveguide Optics – Available Width • Get enough optical channels off the edge of the chip? • For waveguides around chip perimeter need: – Very dense waveguides, or – High clock speeds and WDM David Miller IEEE Photonics Conf 2013 28 Photonic Moore’s Law • Integrated reconfigurable transceiver network for chip-level interconnection – Over 400 elements on chip – Total 2.56 Tbps data capacity 103 This work 102 101 Number Number of Elements / PIC InP Si HSP 100 1985 1990 1995 2000 2005 2010 2015 Year Chong Zhang, S. Zhang,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us