Degree of a Field Extension

Degree of a Field Extension

Degree of a field extension From Wikipedia, the free encyclopedia Contents 1 Abstract algebra 1 1.1 History ................................................. 1 1.1.1 Early group theory ...................................... 1 1.1.2 Modern algebra ........................................ 3 1.2 Basic concepts ............................................. 4 1.3 Applications .............................................. 4 1.4 See also ................................................ 5 1.5 References ............................................... 5 1.6 Sources ................................................ 5 1.7 External links ............................................. 5 2 Adjunction (field theory) 6 2.1 Definition ............................................... 6 2.2 Notes ................................................. 6 2.3 Examples ............................................... 6 2.4 Properties ............................................... 6 2.5 References ............................................... 7 3 Algebraic element 8 3.1 Examples ............................................... 8 3.2 Properties ............................................... 8 3.3 See also ................................................ 8 3.4 References ............................................... 9 4 Algebraic extension 10 4.1 Properties ............................................... 10 4.2 Generalizations ............................................ 11 4.3 See also ................................................ 11 4.4 Notes ................................................. 11 4.5 References ............................................... 11 5 Algebraic structure 12 5.1 Introduction .............................................. 12 5.2 Examples ............................................... 12 i ii CONTENTS 5.2.1 One set with operations .................................... 12 5.2.2 Two sets with operations ................................... 14 5.3 Hybrid structures ........................................... 15 5.4 Universal algebra ........................................... 15 5.5 Category theory ............................................ 16 5.6 See also ................................................ 16 5.7 References ............................................... 16 5.8 External links ............................................. 17 6 Arity 18 6.1 Examples ............................................... 18 6.1.1 Nullary ............................................ 18 6.1.2 Unary ............................................. 19 6.1.3 Binary ............................................. 19 6.1.4 Ternary ............................................ 19 6.1.5 n-ary ............................................. 19 6.1.6 Variable arity ......................................... 19 6.2 Other names .............................................. 19 6.3 See also ................................................ 20 6.4 References ............................................... 20 6.5 External links ............................................. 21 7 Closure (mathematics) 22 7.1 Basic properties ............................................ 22 7.2 Closed sets ............................................... 22 7.3 P closures of binary relations ..................................... 23 7.4 Closure operator ............................................ 23 7.5 Examples ............................................... 24 7.6 See also ................................................ 24 7.7 Notes ................................................. 24 7.8 References ............................................... 25 8 Degree of a field extension 26 8.1 Definition and notation ........................................ 26 8.2 The multiplicativity formula for degrees ............................... 26 8.2.1 Proof of the multiplicativity formula in the finite case .................... 27 8.2.2 Proof of the formula in the infinite case ........................... 27 8.3 Examples ............................................... 28 8.4 Generalization ............................................ 28 8.5 References .............................................. 28 9 Field (mathematics) 29 9.1 Definition and illustration ....................................... 29 CONTENTS iii 9.1.1 First example: rational numbers ............................... 30 9.1.2 Second example: a field with four elements .......................... 31 9.1.3 Alternative axiomatizations .................................. 31 9.2 Related algebraic structures ...................................... 31 9.2.1 Remarks ........................................... 31 9.3 History ................................................. 32 9.4 Examples ............................................... 32 9.4.1 Rationals and algebraic numbers ............................... 32 9.4.2 Reals, complex numbers, and p-adic numbers ........................ 32 9.4.3 Constructible numbers .................................... 33 9.4.4 Finite fields .......................................... 33 9.4.5 Archimedean fields ...................................... 34 9.4.6 Field of functions ....................................... 34 9.4.7 Local and global fields .................................... 34 9.5 Some first theorems .......................................... 34 9.6 Constructing fields ........................................... 35 9.6.1 Closure operations ...................................... 35 9.6.2 Subfields and field extensions ................................. 35 9.6.3 Rings vs fields ......................................... 36 9.6.4 Ultraproducts ......................................... 36 9.7 Galois theory ............................................. 36 9.8 Generalizations ............................................ 37 9.8.1 Exponentiation ........................................ 37 9.9 Applications .............................................. 37 9.10 See also ................................................ 37 9.11 Notes ................................................. 38 9.12 References ............................................... 38 9.13 Sources ................................................ 38 9.14 External links ............................................. 39 10 Field extension 40 10.1 Definitions .............................................. 40 10.2 Caveats ................................................ 40 10.3 Examples ............................................... 41 10.4 Elementary properties ......................................... 41 10.5 Algebraic and transcendental elements and extensions ........................ 41 10.6 Normal, separable and Galois extensions ............................... 42 10.7 Generalizations ............................................ 43 10.8 Extension of scalars .......................................... 43 10.9 See also ................................................ 43 10.10Notes ................................................. 43 10.11References ............................................... 43 iv CONTENTS 10.12External links ............................................. 43 11 Function (mathematics) 44 11.1 Introduction and examples ....................................... 46 11.2 Definition ............................................... 47 11.3 Notation ................................................ 48 11.4 Specifying a function ......................................... 49 11.4.1 Graph ............................................. 49 11.4.2 Formulas and algorithms ................................... 49 11.4.3 Computability ......................................... 50 11.5 Basic properties ............................................ 50 11.5.1 Image and preimage ...................................... 50 11.5.2 Injective and surjective functions ............................... 51 11.5.3 Function composition ..................................... 51 11.5.4 Identity function ....................................... 53 11.5.5 Restrictions and extensions .................................. 53 11.5.6 Inverse function ........................................ 53 11.6 Types of functions ........................................... 53 11.6.1 Real-valued functions ..................................... 54 11.6.2 Further types of functions ................................... 54 11.7 Function spaces ............................................ 54 11.7.1 Currying ........................................... 55 11.8 Variants and generalizations ...................................... 55 11.8.1 Alternative definition of a function .............................. 55 11.8.2 Partial and multi-valued functions .............................. 55 11.8.3 Functions with multiple inputs and outputs .......................... 56 11.8.4 Functors ............................................ 57 11.9 History ................................................. 57 11.10See also ................................................ 57 11.11Notes ................................................. 57 11.12References ............................................... 58 11.13Further reading ............................................ 58 11.14External links ............................................. 59 12 Galois theory 60 12.1 Application to classical problems ................................... 60 12.2 History ................................................ 60 12.2.1 Pre-history .......................................... 60 12.2.2 Galois’ writings ........................................ 62 12.2.3 Aftermath .........................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    161 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us